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Abstract

Background: There has been growing interest in the analysis of certain polyphenols in wine, especially flavonoids, trihydroxystilbenes and
phenolic acids, stimulated by intense research into their potential benefits to human health. One of their main properties in this regard is
their antioxidant activity, which enables them to attenuate the development of atherosclerosis, inflammatory diseases, and cancer.
Methods: A two stage CD-1 mouse skin cancer model using 9,10-dimethyl-1,2-benzanthracene (DMBA) as initiator and phorbol
12-myristate 13-acetate (TPA) as promoter was employed to compare the antitumorigenic activities of one polyphenol from each of four
different classes: flavanols [(�)-catechin], stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid).
Animals were treated with specific polyphenols at doses ranging from 0 to 25 �moles (dissolved in 200 �L acetone), twice a week for
eighteen weeks. The solution was applied topically to the shaved dorsal region of each animal. The relative potencies of the polyphenols
were compared by evaluating the percentage inhibition of tumor formation in individual mice and the number of mice developing one or
more tumors with the different dose schedules.
Results: Probit analysis revealed that quercetin was the most (ED50�1 �mole) and gallic acid the least effective (ED50 5–10 �moles).
(�)-Catechin and trans-resveratrol were intermediate, with ED50 values of 5 and 6 �moles, respectively.
Conclusion: We have shown recently that trans-resveratrol is absorbed much more efficiently than (�)-catechin and quercetin in humans
after oral consumption. Taking this and the relative concentrations in red wine into account, together with the present results, we conclude
that trans-resveratrol may be the most effective anticancer polyphenol present in red wine as consumed po by healthy human subjects.
© 2002 The Canadian Society of Clinical Chemists. All rights reserved.

1. Introduction

A large body of literature has been devoted to studies
describing the potential anticancer activities of red wine
polyphenols [1–3]. In many instances, these effects can be
attributed to plausible biochemical mechanisms including
enhanced apoptosis, growth arrest at one or more points in
the cell cycle, inhibition of DNA synthesis, and modulation
of signal transduction pathways by altered expression of key
enzymes such as cyclooxygenases and protein kinases.
Many experimental approaches have been used in these
investigations, including use of cell lines, whole animals

and, in a few instances, human cancer patients. Four of these
compounds have attracted particular attention.

1.1. Quercetin

This flavone 3-ol (2-[3,4-dihydroxyphenyl]-3,5,7-trihy-
droxy-4H-1-benzopyran-4-one) has a wide spectrum of an-
ticancer properties including inhibition of the growth of
cells derived from human cancers such as those of stomach
[4], colon [5,6], prostate [7] and breast [8]. Additionally, it
suppresses the growth and development of uterine cervical
cancer [9], melanomas [10], and intestinal tumors [11] in
whole mice. In a phase I clinical trial, quercetin adminis-
tered by IV (IV) infusion lowered by sixfold the serum
concentration of CA125, a protein marker for ovarian can-
cer, in a terminal patient with this disease; in another patient
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with advanced hepatoma, serum �-fetoprotein (a marker
correlating with hepatic tumor burden) was significantly
diminished [12]. However, the same authors subsequently
found that a water-soluble pro-form of quercetin was inef-
fective when given po because of poor absorption [13].

1.2. (�)-Catechin

This is a flavane 3-ol (2-[3,4-dihydroxyphenyl]-3,4-di-
hydro-2H-1-benzopyran-3,5,7-triol). Abundantly present in
fruits and vegetables, it and a family of related congeners
are the principal polyphenols of green tea which is gaining
recognition as a beverage with considerable anticancer po-
tential. (�)-Catechin is effective in blocking the growth of
human cell lines originating from cancers of the prostate
[7,14] and breast [8], as well as inhibiting tobacco-induced
carcinogenesis in rat hepatocytes [15]. Its ability to prevent
cancer initiation receives strong support from a recent in-
vestigation in which it suppressed by 75% the occurrence of
intestinal tumors in mice bearing a germline defect causing
these lesions to arise spontaneously [16].

1.3. Trans-Resveratrol

This trihydroxy-stilbene is present in a number of plants,
but in few sources of human nutrition. Nuts, grapes, and red
wine are the principal examples. In 1997, it was reported
that trans-resveratrol (1–25 �M) inhibited the initiation and
promotion of hydrocarbon-induced skin cancer in mice, as
well as the progression of breast cancer in this species [17].
Potent antimutagenic activity was also demonstrated [18].
These observations have been extended by a multiplicity of
reports confirming by means of in vitro and whole animal
models that trans-reseveratrol is a very potent and versatile
anticancer agent targeting several different sites in the neo-
plastic process.

Its anticancer activity against human neoplasms has been
shown by many investigations utilizing human cancer cell-
lines, including those from breast [8,9,20], prostate [7,21],
colon [22,23] and oral squamous carcinoma [24]. One
mechanism responsible for this behavior seems to be apo-
ptosis [26–28], a final common pathway that can be initi-
ated by the action of trans-resveratrol on various signal
pathways regulating the cell cycle, including modulation of
tumor suppressor genes. A different mechanism that may be
important in the prevention of chemical carcinogenesis by
trans-resveratrol implicates the aryl hydrocarbon receptor
system necessary for the uptake and activation of many
carcinogens; these processes are blocked by trans-resvera-
trol at very low concentrations (�1 �M), especially in
whole animal experiments [29,30]. Recently, trans-resvera-
trol has been shown to inhibit the metastasis of primary
tumors in mice and their ability to induce the proliferation
of blood vessels into the tumor tissue, thus depriving the
malignant cells of oxygen and nutrients [31].

1.4. Gallic acid

This hydroxybenzoic acid is present in many fruits and
vegetables, but, like (�)-catechin and its congeners with
which it forms a family of esters, the most important nutri-
tional source of the compound is green tea. It is also used as
an antioxidant food additive, e.g., lauryl gallate and other
alkyl esters, agents that demonstrate the ability to kill ani-
mal tumor cells by inducing apoptosis [32,33]. The parent
compound manifests similar effects on human cancer cells
derived from lung [34], stomach and colon [35], as well as
human leukemic cells [36].

As a constituent of green tea, gallate derivatives are able
to promote signal-induced growth arrest of human breast
cancer cells [37], to inhibit hydrocarbon-induced mutagen-
esis in mice [38], to induce apoptosis in human peripheral
blood lymphocytes [39] and in human prostate cancer cells
[40].

Most of the reports cited above are based upon experi-
ments in which one compound (or one family of com-
pounds) was tested. Moreover, the vast majority are based
upon attempts to prevent growth or promote death of estab-
lished solid cancers or cancer cell-lines. For various rea-
sons, to be discussed later, it is very unlikely that red wine
polyphenols will be adequately absorbed and reach the
sustainable effective concentrations necessary for the suc-
cessful treatment of human cancers. A more plausible role
would be in preventing cancer. Optimal prophylaxis would
almost certainly require dietary supplementation, since in
most Western countries other than those in the Mediterra-
nean basin, fresh fruit and vegetables as well as wine do not
figure prominently in the general diet, especially among the
lower socio-economic classes where cancer risk is usually
greatest. However, there is little comparative information
about the relative efficacy of the four compounds of interest
in cancer prevention. This report describes our attempt us-
ing a two-stage mouse skin cancer model to compare their
antitumorigenic activities.

2. Materials and methods

2.1. Reagents & chemicals

Dimethyl sulfoxide (DMSO) and acetone all distilled in
glass were purchased from Mallinckrodt-Baker, Phillips-
berg, New Jersey. Phorbol 12-myristate 13-acetate (TPA;
cat. no. P 8139) and 9,10-dimethyl-1,2-benzathracene
(DMBA; cat. no. D 3254), (�)-catechin (cat. no. 86181–2),
quercetin (cat. no. 17196–4), trans-resveratrol (cat. no.
R5010) and gallic acid (cat. no. R 8647) were all purchased
from Sigma-Aldrich Canada Ltd., Oakville, Ontario. Stock
TPA was prepared by dissolving 25 mg in 1 mL of DMSO.
This product was stable in solution for six months. Stock
DMBA was prepared by dissolving 6.4 mg in 25 mL of
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acetone. All four polyphenols were dissolved in acetone
individually to achieve the desired concentrations.

2.2. Methods

Six groups of five CD-1 mice were used to evaluate the
antitumorigenicity of each of the four compounds. They
were purchased from Charles River Corporation (Quebec,
Canada) and were housed separately in disposable cages.
They were fed chow and tap water ad lib. Five of the six
groups were initially treated with DMBA at a dose of 200
nmoles in 200 �L acetone. The solution was applied topi-
cally to the shaved dorsal region of each animal. The sixth
group was used as a negative control receiving only acetone
initially and biweekly. The animals were treated topically
thereafter with one of the 4 phytochemicals at doses of 0
(positive control), 1, 5, 10, and 25 �moles dissolved in 200
�L acetone along with 5 nmoles of TPA twice a week. This
process continued for eighteen weeks. The flanks were
shaved weekly to observe tumor development that usually
commenced between weeks 8 to 10. When tumors became
numerous, shaving had to be discontinued to prevent infec-
tion. The tumors were counted at the end of the eighteenth
week when the skin was carefully shaved to fully reveal all
the lesions. The mean of each group and % reduction of
tumorigenicity relative to the positive controls were calcu-
lated and plotted against the dose.

The full protocol for this study was approved by the
Animal Experimentation committee of the University of
Toronto. It must be emphasized that the use of rubber gloves
is at all times essential because of the risk to personnel in
handling animals bearing chemical carcinogens. All exper-
iments were carried out at the Animal Facility of Mount
Sinai Hospital, Toronto, Ontario, Canada.

3. Results and discussion

Figure 1 demonstrates the appearance of the shaved
dorsal region of a negative-control mouse (top) and a pos-
itive-control mouse (bottom) after 18 weeks just before
sacrifice. The distinctive nature of the tumors and the ease
with which they can be counted is readily apparent. Animals
were examined for tumors from the eighth week onwards at
weekly intervals to assess progress, but accurate counts
could not be made in the absence of skin shaving.

Figure 2 displays the percentage reduction in tumors
related to the dose of each of the polyphenols used. Quer-
cetin was clearly the most effective and gallic acid the least
potent. No inhibition was seen up to a dose of 5 �moles for
the latter, whereas even at a dose of 1 �mole inhibition with
the former was �90%. Intermediate efficacy was exhibited
by (�)-catechin and trans-resveratrol. Probit analysis ap-
plied to these data utilizing Sigma Plot 5.0, SPSS, Inc.,
according to the statistical model of Lijinsky et al. [41]
provided ED50 values of 5 and 6 �moles, respectively for

(�)-catechin and trans-resveratrol. For the remaining two
polyphenols this could not be accurately calculated with the
doses selected. To accomplish this, much lower doses of
quercetin and somewhat higher doses of gallic acid will be
required. However, on the basis of the results obtained using
the present dose schedule, ED50 for quercetin is clearly well
below 1 �mole, whereas for gallic acid it lies somewhere
between 5 and 10 �moles.

As another means of evaluating the response, the number
of animals exhibiting one or more tumor at the end of the
experiment was related to dosage for all four polyphenols
(Table 1). Clearly, that number was much smaller for quer-
cetin [4] than for (�)-catechin [12], gallic acid [12] or
trans-resveratrol [15]. It should be emphasized that al-
though the 5 �mole dose of gallic acid reduced by one the
number of animals bearing tumors (Table 1), it did not
reduce the average number of tumors per animal compared
with the positive controls who had more tumors per animal
when averaged out than the mice treated with 5 �moles of
gallic acid. The superiority of quercetin by this criterion was

Fig. 1. Shaved dorsal region of a negative-control mouse (A) and a
positive-control mouse (B).
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statistically confirmed by the Fisher Exact Test (p � 0.023).
While the present findings unequivocably point to quercetin
as the most potent of the four compounds tested in this
model, other considerations have to be taken into account in
apportioning their relative contributions to the putative an-
titumorigenic potential of red wine.

First is their concentrations in red wine. These have been
shown to vary widely depending upon cultivar, region and
climatic conditions, as well as upon certain techniques used

during the winemaking process [42–45]. As a rough gen-
eralization based upon data from laboratories (mostly our
own) in which multiple polyphenols were simultaneously
analyzed in large and representative surveys [46–50], the
expected concentrations in a typical red wine would be in
the order (�)-catechin (70 mg/L or 0.24 mmoles/L), gallic
acid (25 mg/L or 0.16 mmoles/L), quercetin (6 mg/L or
0.018 mmoles/L) and resveratrol (6 mg/L or 0.026 mmoles/
L). The last named value includes both isomers, since the
cis- and trans-forms are in equilibrium and have similar
activities in any biologic system in which both have been
tested [51].

A second variable is the efficiency with which these
polyphenols are absorbed from the human intestinal tract
after wine consumption. We have recently reviewed evi-
dence based upon both human and animal investigations,
concluding that (�)-catechin and quercetin are poorly ab-
sorbed after oral doses [52]. We have also shown that
�50% of tritiated-trans-resveratrol is absorbed after gavage
in the rat [53]. Our latest report presents compelling evi-
dence that, in man, trans-resveratrol is absorbed approxi-
mately 20-fold more effectively than (�)-catechin [54].
This absorption is dependent upon enzymatic sulfation and
glucuronidation within the intestinal mucosa before entry
into the portal blood [55–57]. Only a few percent of the
circulating polyphenols and those excreted in human urine
are in the nonconjugated form [54]. It is possible, but not yet
proven, that this superior bioavailability will raise the blood
concentrations of trans-resveratrol after wine consumption
to the point where it attains a higher fraction of the ED50 for
antitumorigenic activity than that reached by the other poly-
phenols with which it has been compared in this investiga-
tion. In offering this speculation, we recognize that we are
extrapolating from the ED50 values calculated from the
present data obtained with the mouse skin cancer model; no
relevant experiments have been conducted on human can-
cer-bearing patients by us or other investigators. However,
in vitro and ex vivo studies utilizing natural cancer cells or
immortalized cancer cell-lines (see references cited in In-
troduction) have yielded comparable dose-response data for
human and murine cancers. Nevertheless extrapolation of
the present data, based on a small number of animals, to
humans is not warranted in advance of more compelling
confirmatory investigations involving larger numbers.

Fig. 2. Histograms showing relationship between percent reduction of
mouse-skin tumors in relation to dose of the four polyphenols evaluated in
this study.

Table 1
No. of Mice Exhibiting One or More Tumors at 18 Weeks After
Commencing Treatment With Various Concentrations of Polyphenols

Compound Dose (�moles/200 �L acetone)

0a 1 5 10 25

(�)-Catechin 4 4 5 2 1
Quercetin 4 1 3 0 0
trans-Resveratrol 5 5 4 3 3
Gallic Acid 5 5 4 3 0

a Positive controls
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