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Abstract

Background: Human growth hormone (hGH) is naturally present in numerous isoforms, some of which arise from proteolytic processing in both
the pituitary and periphery. The nature of the enzymes that proteolytically cleave hGH and the regulation of this process are not fully understood.
Our objective is to examine if members of a newly discovered human tissue kallikrein family (KLKs) are expressed in the pituitary and if these
enzymes can cleave hGH in-vitro.
Methods: Expression of 12 of the KLKs (KLKs 4-15) and serine protease inhibitor Kazal-type 5 (SPINK5) genes and their proteins in the pituitary
was examined by RT-PCR and immunohistochemistry. Recombinant hGH was digested by various recombinant KLKs and fragments were
characterized by N-terminal sequencing. SPINK5 recombinant fragments were used for inhibition of KLK activities.
Results: We here describe for the first time expression of numerous KLKs (KLKs 5–8, 10–14) and SPINK5 in the pituitary. KLK6 and SPINK5
appeared to be localized to hGH-producing cells. KLKs 4–6, 8, 13 and 14 were able to cleave hGH, yielding various isoforms, in vitro. Inhibitor
SPINK5 fragments were able to suppress activity of KLKs 4, 5 and 14 in vitro. Based on these data, we propose a model for the proteolytic
processing of hGH in the pituitary and the regulation of this system by SPINK5 inhibitory domains. We speculate that loss of SPINK5 inhibitory
domains, as in the case of Netherton syndrome, may lead to proteolytic over-processing of hGH and to growth retardation.
Conclusion: We conclude that many KLKs and SPINK5 are expressed in the pituitary. This serine protease-inhibitor system is likely to participate
in the regulated proteolytic processing of hGH in the pituitary, leading to generation of hGH fragments. Our data suggest that KLKs 5, 6 and 14
might be involved in this process.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Human growth hormone (hGH) is known to exist as a
heterogeneous population of molecules in the human body [1].
In the periphery, 70–75% of hGH exists as the classic, 22 kDa,
191-amino acid single-chain form (single-hGH). Single-hGH
can be post-translationally processed by proteolytic cleavage
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Fig. 1. Expression of (mRNA)KLKs and SPINK5 mRNA in normal human
pituitary. Although KLK genes are known to encode for various splice variants
[46], in normal human pituitary, only classic formswere amplified forKLKs 5–7,
10–12, 14 and SPINK5. (mRNAs) KLK 10–12 and SPINK5 mRNA showed the
highest expression. Although the PCR product for (mRNA)KLK7was smeared, a
band corresponding to the classic form was confirmed by sequencing. (mRNAs)
KLK 4, 9 and 15 were not detected. Splice variants were detected for (mRNAs)
KLK8 and 13; (mRNA)KLK8 type 4 (GenBank Accession no.AF251125) and
(mRNA)KLK13 type 3 (GenBank Accession no. AB108823).

Fig. 2. Immunohistochemistry for hGH, KLK6 and SPINK5 proteins in normal
human anterior pituitary. Scale bar indicates 100 μm. hGH producing cells
seemed to also produce KLK6 and SPINK5 proteins (a,b,c). The endothelium of
small veins in the pituitary intensely expressed KLK6 and SPINK5 protein, but
not hGH (d,e).
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not only in the pituitary but also in plasma [2,3]. Putative
cleavage sites for numerous proteases, such as thrombin,
plasmin, collagenase, subtilisin and chymotrypsin-like serine
proteases are located around residues 134–150 [1,4,5]. These
modifications transform single-hGH to a 2-chain form, linked
by a disulfide bond [6], significantly slowing its rate of
metabolism in the circulation [7]. Besides the 22 kDa form, the
translated product of a splice variant and fragments of 17 (or
16), 12 and 5 kDa have also been detected both in the pituitary
and the periphery [8]. Upon reduction of the disulfide bond in
the 2-chain form, the generated 16 kDa N-terminal hGH
fragment inhibits endothelial cell proliferation and angiogenesis
in the early stage chick chorioallantoic membrane assay [9]. The
proportion of circulating non-22 kDa hGH isoforms, especially
2-chain form, increases in some children with growth
retardation, without a decrease in total hGH levels [10]. These
reports suggest that hGH not only requires proteolytic cleavage
to exert its full biological activity [2], but also that hGH
isoforms are potential endogenous regulators of physiological
and pathological processes such as angiogenesis [11]. However,
hGH isoforms are not distinguishable from single-hGH or from
each other by routine assays of hGH levels in plasma or other
biological fluids [8].

Human tissue kallikreins are secreted serine proteases, encoded
by a group of 15 genes that are tandemly located on chromosome
19q.13.4 [12–14]. With the new nomenclature [15], the genes are
designatedKLK1 through KLK15 and the encoded proteins KLK1
through KLK15. By using RT-PCR, immunohistochemistry and
ELISA assays, previous studies have shown that these enzymes are
expressed in diverse tissues, mainly steroid hormone-regulated
tissues, including the pituitary [12,16–21]. One member of this
family, KLK3, better known as prostate-specific antigen (PSA), is
the primary biomarker for diagnosis and monitoring of prostate
cancer [22]. Many other kallikreins have already been shown to be
useful biomarkers for pituitary tumors and ovarian, breast,
prostate, testicular and other cancers [12–14,23–26]. Despite the
wealth of literature on kallikrein over-expression in many different
types of cancers, the function and regulation of these enzymes in
normal and cancerous tissues are largely unknown. A recent
review describes possible links between kallikreins and receptor,
hormone or cytokine processing, angiogenesis, metastasis, cell
growth, etc. [13].

SPINK5 (also known as LEKTI for its protein product) is a
gene encoding a 125 kDa secretory serine protease inhibitor
pre-proprotein, containing 15 potential inhibitory domains
[27,28]. SPINK5 protein is thought to be cleaved by furin to
yield at least 14 independently working serine protease in-
hibitory domains [29,30]. Since SPINK5 protein and many
tissue kallikreins co-localize in the skin (in lamellar bodies of
the uppermost epidermis and the pilosebaceous units of normal
human skin tissue) [20,31–34], it has been hypothesized that
these proteins may be part of a proteolytic enzyme-inhibitor
system that controls skin desquamation and shedding [29,34–
38]. Indeed, recent evidence suggests that Netherton syndrome
patients, who lack SPINK5 inhibitory domains due to gene
mutations, suffer from severe erythroderma, hair shaft defects
and other atopic features [28,39,40]. These features are
attributed to elevated stratum corneum trypsin-like activity
which leads to over-desquamation and severe skin permeability
barrier dysfunction in Netherton syndrome patients [29] and
SPINK5-deficient mice, mimicking Netherton syndrome [41].

One consistent feature of Netherton syndrome patients is
growth retardation [39,40]. Based on this and the other findings
mentioned above, we hypothesized that the tissue kallikrein-



Fig. 3. hGH proteolytic processing by KLKs. Recombinant hGH (1.0 μg) kept at 37 °C for 24 h without enzymes (lane 1), digested hGHwith 0.1 ng of trypsin at 37 °C
for 24 h (lane 2), and digested hGHwith each KLK at 37 °C for 24 h (lane 3 and 3'), and each KLK (0.5–5.0 μg) incubated at 37 °C (lane 4) and at 4 °C (lane 5) for 24 h
were separated on gradient 4–12% Bis–Tris gels and stained with Coomassie blue. M, molecular mass markers. (••), N-terminal Phe1–Arg134 12 kDa hGH fragment;
(•), Thr135–Phe191 5 kDa hGH fragment (both confirmed by sequencing). Arrowheads, other hGH fragments. Recombinant KLK5 appears as several bands around
35–50 kDa (panel b, lanes 3–5) due to glycosylation [57]. KLK4 (0.4 μg), KLK5 (0.2 μg), KLK6 (0.4 μg), KLK8 (1.0 μg) and KLK13 (5.0 μg) generated the same
Phe1–Arg134 (••) and Thr135–Phe191 (•) (panels a–e, lane 3) fragments. KLK5 (0.5 μg) also cleaved after Arg8 and Arg94, generating 2 new Leu9–Arg134 (∼11 kDa)
and Ser95–Arg134 (∼3 kDa) fragments (panel b, lane 3'). A C-terminal 4.5 kDa fragment was also estimated to be Thr135–Arg178 (or Arg181) from its size. The rest of
the predicted fragments were not visible (panel b lane 3'). Chymotrypsin-like activity of KLK14 cleaved at Tyr143/Ser144, and trypsin-like activity of KLK14 cleaved at
Arg64/Glu65 (panel f, lane 3). No visible bands remained when 1.0 μg of KLK14 was added (panel f, lane 3'). The released peptides are Phe1–Tyr143 (or Arg134)
(∼12 kDa), a mix of Phe1–Arg64 and Glu65–Tyr143 (or Arg134) (∼6 kDa), and Ser144–Phe191 (∼4.5 kDa). Autolysis of KLKs 4, 5, 8 and 13 was minimal, while KLK6
and KLK14 were autolyzed by incubation at 37 °C for 24 h (panels a–c, e, lane 4). Non-proteolyzed hGH and the kallikreins are shown by arrows in all panels.
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SPINK5 protein proteolytic cascade pathway, which operates in
the skin, may also function similarly in the pituitary, controlling
hGH and other hormone processing in this tissue. The
objectives of this study were (a) to examine kallikrein and
SPINK5 gene and protein expression in the human pituitary,
(b) to investigate if serine proteases of the kallikrein family can
proteolytically digest hGH and characterize the cleavage sites,
(c) to examine if this proteolysis can be inhibited by SPINK5
protein fragments and (d) to develop a model for hGH
processing by multiple kallikrein enzymes.

2. Materials and methods

2.1. Reverse transcription-polymerase chain reaction

Normal human pituitary cDNA was purchased from Clontech (Palo Alto,
CA). One nanogram of cDNAwas used as template for PCR amplification. The
primers and PCR conditions for (mRNAs)KLK4 (amplification from exon 2 to
5), KLK5 (exon 2 to 5), KLK6 (exon 2 to 5), KLK7 (exon 2 to 5), KLK8 [non-
coding region (upstream of exon 1) to exon 5], KLK9 [exon 1 to non-coding
region (downstream of exon 5)], KLK11 (exon 3 to 4), KLK14 (exon 3 to 5),
SPINK5 and glutaraldehyde-3-phosphate dehydrogenase (GAPDH) mRNAs
were described elsewhere [28]. Our experiments have been performed under the
following conditions: 1) we followed the experimental procedures described in
detail in Ref. [42]. 2) All PCR products presented in Fig. 1 have been fully
confirmed by DNA sequencing. 3) PCR products for which we could not
confirm the DNA sequence were not included in our data. In addition, the
following primers were used for amplification of KLK10; Forward (F) 5'-
GGAAACAAGCCACTGTGGGC -3' (on exon 2), Reverse (R) 5'- GAG-
GATGCCTTGGAGGGTCTC -3' (on exon 5), annealing temperature at 60 °C,
product size 468 bp, KLK12; F 5'- TTGACCACAGGTGGGTCCTCA -3' (on
exon 2), R 5'- GTGTAGACTCCAGGGATGCCA -3' (on exon 5), 61 °C,
542 bp, KLK15; F 5'- CTACGGACCACGTCTCGGGTC -3' (on exon 3), R 5'-
GACACCAGGCTTGGTGGTGTTG -3' (on exon 5), 65 °C, 459 bp. Forty
amplification cycles were used for all (mRNA) KLKs and SPINK5 mRNA and
26 cycles for GAPDH mRNA.

2.2. Immunohistochemistry

Anti-KLK6 rabbit polyclonal antibody (Ab) was developed in-house, using
full-length recombinant protein as immunogen. No cross-reactivity of this Ab
against all other kallikreins (KLKs 3–15) [20], and (KLKs 1–2) (data not shown)
was observed by Western blotting. Since the specificity of Abs towards other
KLKs has not as yet been determined, immunohistochemistry was restricted to



Fig. 4. Inhibition of KLK activity by SPINK5 protein fragments. a; sp6/sp9: sp6 and sp9 (1.5 μg) incubated at either 37 °C or 4 °C for 24 h. No significant autolysis was
observed. b, c and d; KLK alone or GH/KLK mixtures were incubated at 37 °C for 24 h in the presence and absence of sp6 or sp9. According to the results of Fig. 3,
0.4 μg of KLK4 and KLK14, and 0.2 μg of KLK5 were applied, along with 1.0 μg of recombinant hGH. (••) and (•), 12 kDa Phe1–Arg134 and 5 kDa Thr135–Phe191

fragments, respectively. Arrowheads indicate other hGH fragments produced by each KLK. Panel b; KLK4 digested both sp6 and sp9 into at least 5 fragments (lanes
2–3). When hGH was incubated with KLK4 in the presence of sp6/sp9, fragments were derived only from sp6 and sp9, but not from hGH (lanes 5–6). Panel c; KLK5
proteolytic activity against hGH was completely suppressed by both sp6 and sp9 (lanes 5–6), although sp6 and sp9 were not cleaved by KLK5. Panel d; both sp6 and
sp9 were entirely digested by 0.4 μg of KLK14, while sp6 alone prevented autolysis of KLK14. In addition, sp6 alone partially inhibited hGH digestion by KLK14
(lanes 2 and 5).
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KLK6 only. Anti-SPINK5 protein mouse monoclonal antibody (clone 1C11G6)
was developed as described elsewhere [43]. Formalin-fixed paraffin-embedded
human pituitaries were sectioned. Anti-hGH Ab was purchased (Pituitary
hormones and antisera center, Harbor-UCLA Medical Center, Torrance, CA).
Staining procedures included deparaffinization in xylene and rehydration
through graded ethanols. Endogenous peroxidase activity was blocked with
0.3% H2O2 in methanol for 20 min, and the sections were pretreated with
10 mmol/l citrate buffer (pH 6.0) at 95 °C for 10 min. The primary Abs were
diluted in 0.1% bovine serum albumin/phosphate-buffered saline. The normal
serum blocking reagent, secondary biotinylated Ab and peroxidase-labeled
streptavidin complex were purchased from ID Labs (Ontario, Canada).
Samples were stained with 3,3'-diaminobenzidine substrate (DAB substrate
kit for peroxidase, Vector Laboratories, Inc., Burlingame, CA) for 5 min. The
sections were counterstained with hematoxylin for 1 min. Non-immune rabbit
or mouse serum was substituted as the primary antibody for negative control
staining.

2.3. hGH proteolytic processing by KLKs and inhibition by SPINK5
protein fragments

KLKs [20], SPINK5 protein fragment 6–9 (sp6) [44], and SPINK5 protein
fragment 9–12 (sp9) [38] were recombinantly expressed in insect cells and
purified. Recombinant hGH (HUMATROPE®) was purchased from Eli Lilly
Canada Inc. Each protein was diluted in 0.01% phosphosaline buffer (PBS)
solution. Equal volumes of samples in 0.01% PBS containing hGH, KLKs and/
or sp6/9 were incubated for 24 h at 37 °C or 4 °C, then samples were separated
on 4–12% Bis–Tris gels (Invitrogen) by sodium dodecyl sulphate–polyacryl-
amide gel electrophoresis. After electrophoresis, proteins were either stained
with Simply Blue™ SafeStain (Invitrogen) or electrotransferred to PVDF
transfer membranes (Hybond™-P, Amersham Pharmacia Biotech, Buckin-
ghamshire, England) at 30 V for 90 min for N-terminal amino acid sequencing.
N-terminal amino acid sequencing was performed by the University of Victoria
Proteomics Center (British Columbia, Canada).
3. Results

Reverse transcription-polymerase chain reaction (RT-PCR)
was performed to examine the expression of 12 (mRNA)KLKs
and SPINK5 mRNAs in normal human pituitary (Fig. 1).
mRNAs forKLKs 1–3 were previously identified in the pituitary
[16]. We detected classic forms of (mRNA)KLKs 5–7, 10–12,
and 14, as well as SPINK5mRNA. (mRNA)KLK8 splice variant
type 4 [45] and (mRNA)KLK13 type 3 [42] were also detected.
These splice variant forms are predicted to encode for truncated
proteins devoid of enzymatic activity [46]. These data may not
necessarily represent expression in disease states since the ratio
of splice forms may change in certain diseases [46–48].

Growth hormone-producing cells were identified by immu-
nohistochemistry. These cells seem to be randomly distributed
and have a small round nucleus and compact cytoplasm
(Fig. 2a). In contrast, non-hGH producing cells exhibit an
irregular (flattened) nuclear shape and a wider cytoplasm. Non-
hGH producing cells more frequently displayed a “lobular-like”
formation in which the nucleus was found in the outer periphery
(Fig. 2a). Staining with specific antibodies against KLK6 and
SPINK5 proteins revealed cells similar to those stained with
GH antibodies. Thus, hGH hormone-producing cells seem to



Fig. 5. A model for hGH proteolytic processing by KLKs and regulation by SPINK5 protein inhibitory fragments. a; The hGH single-chain form. Cys53–Cys164 form a
disulphide bond. b; The Arg134/Thr135 is the most preferred cleavage site by KLKs 4–6, 8 and 13. KLK14, with chymotrypsin-like activity cleaves at Tyr143/ Ser144.
With such proteolysis, hGH single-chain form is modified to a hGH 2-chain form. c; The identified minor cleavage sites by KLK5 and KLK14. d; When sp6 or sp9
fragments are mixed with KLKs and hGH, they can either act as competitive substrates to hGH, directly suppress KLK activities or the digested fragments of sp6 or sp9
could themselves suppress KLK activity. Only sp6 (but not sp9) was capable to suppress KLK14 activity; thus, sp6 may contain a domain that can specifically inhibit
KLK14 (⊥ indicates inhibition). Black arrows indicate digestion of sp6 or sp9 by the indicated kallikreins. For more details, see Figs. 3 and 4.
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produce KLK6 and SPINK5 proteins as well (Fig. 2b, c). In
addition, the intense KLK and SPINK5 protein staining in the
endothelial cells of pituitary small veins (Fig. 2d, e) suggests that
the released pituitary hormones could undergo proteolytic
processing during passage through pituitary veins, prior to
their appearance in the peripheral circulation.

To examine whether KLKs can cleave hGH in-vitro, the
recombinant 22 kDa hGH single-chain form was incubated
individually with each KLK or trypsin (Fig. 3). Approximately
12 and 5 kDa fragments were produced by trypsin (Fig. 3 lane
2). Judging from the size of the 2 fragments and by amino acid
sequencing, they were identified as N-terminal Phe1–Arg134

(••) and C-terminal Thr135–Phe191 (•) fragments (Fig. 3).
Arg134/Thr135 is known to be a site also cleaved by thrombin
and plasmin [5].

All KLKs examined here possess trypsin-like activity [12].
Thus, excluding KLK14, each KLK produced 12 kDa Phe1–
Arg134 (••) and 5 kDa Thr135–Phe191 (•) fragments (Fig. 3a–e
lane 3). In addition to identical cleavage of hGH by trypsin and
KLK5 (0.2μg) (Fig. 3b lane 3), 0.5 μg of KLK5 cleaved also at
Arg8/Leu9 and Arg94/Ser95 (Fig. 3b lane 3'; data confirmed by
N-terminal sequencing). These cleavages additionally yielded 6
and 3 kD hGH fragments. Although KLK14 has been predicted
to be a trypsin-like serine protease [12], in this assay, KLK14
(0.2 μg) acted as both chymotrypsin-like (Tyr143/Ser144) and
trypsin-like enzyme (Arg64/Glu65) (Fig. 3f lane 3). The trypsin
and chymotrypsin-like activity of KLK14 was recently
confirmed by using a substrate phage display library [49]. No
visible bands remained when 1.0 μg of KLK14 was added
(Fig. 3f lane 3'). The results of Fig. 3 show that many KLK
proteins are capable of proteolytically modifying hGH to the 2-
chain form and that an excess of KLKs can further digest hGH
to smaller fragments.

The inhibition of KLK activity by SPINK5 protein fragment
derivatives was examined by using the recombinant SPINK5
protein fragments, sp6 (SPINK5 protein domains 6–9) and sp9
(SPINK5 protein domains 9–12) [27,38,44], which are fre-
quently absent in Netherton syndrome patients (Fig. 4) [29].
KLK4 efficiently digested sp6/sp9, even when hGH was also
present, but hGH cleavage was significantly suppressed (Fig.
4b). KLK5 did not digest sp6 and sp9 nor hGH in the presence
of sp6 and sp9 (Fig. 4c). Despite the fact that sp6 and sp9 were
substrates for KLK4 but not for KLK5, they had a specific
inhibitory effect on hGH digestion by both KLK4 and KLK5.
Both sp6 and sp9 were entirely digested by KLK14, while sp6
alone prevented autolysis of KLK14 (Fig. 4d). In addition, sp6
alone partially inhibited hGH proteolysis by KLK14.

4. Discussion

Previously, it was reported that rat KLK2 proteolytically
cleaved rat prolactin [50], suggesting that rat KLK2 is a putative
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prolactin-processing protease [51]. Rat KLK1 catalyzes the
release of kinins, which are capable of stimulating prolactin and
GH secretion [52]. In human, KLK1 was co-localized with
prolactin in prolactin-secreting adenomas of the human anterior
pituitary [23]. KLK1 was associated with prolactin-secreting
cells within human GH-secreting adenomas [24]. To comple-
ment these preceding studies, our study demonstrates for the
Fig. 6. A model for regulation of growth hormone proteolysis in normal individuals an
pituitary SPINK5 proprotein is proteolytically processed to at least 14 individual bioa
4, and 6) motifs, which are repeatedly found in-between an inhibitory domain and
(SPCs), such as furin [29,30,58,59]. Since it has not been conclusively determined w
with a question mark. Cleaved domains may be further processed by carboxypeptidas
capable of inhibiting KLK serine protease activities, (blue circles with arrows), leavi
negative regulators of KLKs [29,41]. Bottom panel: KLKs may contribute to hGH pr
Netherton syndrome patients, all mutations in SPINK5 reported so far [29,54,55], le
Netherton syndrome patients possess fewer SPINK5 inhibitory domains. This leads to
may become biologically inactive. (For interpretation of the references to colour in
first time that many human tissue kallikrein enzymes are
expressed in the normal human pituitary gland, and that they are
able to generate various proteolytically modified hGH isoforms,
such as the 22 kDa 2-chain form and 15, 14, 6, 5 and 3 kDa
fragments. Based on these data, we developed a model describ-
ing the proteolytic processing of hGH by KLKs (Fig. 5). The
preferred cleavage site for most of the KLKs was Arg134/Thr135,
d Netherton syndrome patients (modified from [29]). (a) Upper panel: In normal
ctive domains. Cleavage occurs at Lys/Arg (K/R)–Xn–Lys/Arg (K/R)↓ (n=0, 2,
other domains of SPINK5 proprotein, by subtilisin-like proprotein convertases
hether KLKs are involved in SPINK5 proprotein processing KLKs are indicated
es (CPs) [29] to bioactive SPINK5 domains. Middle panel: SPINK5 domains are
ng some in active form (red circles). Thus, SPINK5 domains are believed to be
oteolytic processing, yielding a 2-chain form in pituitary and/or periphery. (b) In
ad to premature translation termination in and truncated protein. Consequently,
higher KLK enzymatic activity and higher proteolytic processing of GH which

this figure legend, the reader is referred to the web version of this article.)



Fig. 6 (continued ).
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or Tyr143/Ser144 for KLK14. Both cleavages convert hGH to the
2-chain form (Fig. 5b). Several other Arg residues are also
targeted, probably as a pathway that ultimately leads to hGH
degradation (Fig. 5c). Furthermore, SPINK5 protein fragments
can suppress KLK protease activity, leading to decreased hGH
proteolytic processing (Fig. 5d).

Our preliminary immunohistochemical data suggest that
human kallikreins are produced by cells that also produce hGH,
as well as by endothelial cells of pituitary small veins. It is thus
possible that hGH, and possibly other pituitary hormones, are
proteolytically modified by KLKs before entering the systemic
circulation. This proteolysis may be under the control of
inhibitors such as SPINK5 protein, which was also localized in
hGH-producing cells and endothelial cells (Fig. 2). These
preliminary data need confirmation with double-staining tech-
niques. We further demonstrated that excess KLKs can digest
hGH into smaller, and likely inactive fragments (Fig. 3), and
that SPINK5 protein fragments can inhibit this process (Fig. 4).

Groups of human kallikrein enzymes, their inhibitors, and
probably other proteases, may participate in cascade enzymatic
pathways, e.g., in the skin and cancer tissues [13,39,53]
(Fig. 6a). SPINK5 pro-protein may be proteolytically processed
by furin (and possibly some kallikreins) to generate at least 14
inhibitory domains [29,30]. SPINK5 inhibitory domains may
then control multiple kallikrein activities [37,38] (Figs. 4 and
6a). It is likely that similar pathways are operating in the
pituitary and/or the periphery, leading to hormone processing
and degradation (Fig.6a).
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In Netherton syndrome, all SPINK5 genemutations identified
so far lead to premature stop codons [29,54,55] (Fig. 6b). These
mutations result in the production of truncated SPINK5 proteins,
lacking inhibitory domains downstream of the mutations. The
reduction of SPINK5-derived inhibitory domains would explain
the elevated corneocyte trypsin-like activity in Netherton
syndrome and the clinical picture, which is associated with
increased desquamation [29,41]. We hypothesize that in the
same patients, proteolytic over-processing of hGH in the
pituitary may be responsible for the growth retardation [40],
which is a consistent finding in these patients (Fig. 6b).
Further examination of this hypothesis may lead to design of
rational therapies of Netherton syndrome, including develop-
ment of selective inhibitors for certain human kallikreins.
Strategies for designing such inhibitors have recently been
published [56].
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