
Human kallikrein gene 13 (KLK13) expression by quantitative
RT – PCR: an independent indicator of favourable prognosis in
breast cancer

A Chang1,2, GM Yousef1,2, A Scorilas3, L Grass1, P Sismondi4, R Ponzone4 and EP Diamandis*,1,2

1Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; 2Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, Ontario, Canada; 3National Center of Scientific Research ‘Demokritos’, IPC, Athens, 153 10 Greece; 4Academic Division of
Gynecological Oncology, University of Turin, Mauriziano Umberto Hospital and Institute for Cancer Research and Treatment (IRCC) of Candiolo, Turin,
Italy

Kallikreins are a group of serine proteases with diverse physiological functions. KLK13 (previously known as KLK-L4) is a novel
kallikrein gene located on chromosome 19q13.4 and shares a high degree of homology with other kallikrein family members.
Many kallikrein genes were found to be differentially expressed in various malignancies, and their regulation is controlled by
steroid hormones in prostate and breast cancer cell lines. We studied the expression of KLK13 by quantitative reverse
transcriptase – polymerase chain reaction in 173 patients with epithelial breast carcinoma. An optimal cutoff point equal to the
40th percentile was defined, based on the ability of KLK13 to predict disease-free survival. KLK13 values were then associated
with other established prognostic factors and with disease-free survival and overall survival. Higher positivity for KLK13
expression was found in older, oestrogen receptor positive patients. In univariate analysis, KLK13 expression is a significant
predictor of improved disease-free survival and overall survival (P50.001 and P=0.009, respectively). Cox multivariate analysis
indicated that KLK13 was an independent prognostic variable in the subgroups of patients with Grade I – II tumours and in
patients who were oestrogen receptor and progesterone receptor positive, and node positive. Hazard ratios derived from
Cox analysis, related to disease-free survival and overall survival were 0.22 (P=0.001) and 0.24 (P=0.008), respectively, for the
Grade I – II group; 0.36 (P=0.008) and 0.44 (P=0.038), respectively, for the node positive group and 0.36 (P=0.008) and 0.18
(P=0.008), respectively, for the oestrogen receptor positive group. The adjusted hazard ratio for progesterone receptor
positive patients for disease-free survival was 0.25 (P=0.012). For patients in the node positive and oestrogen receptor
positive subgroup (n=51) the adjusted hazard ratio was 0.25 (P=0.006) and for the node positive and progesterone receptor
positive subgroup (n=46) the hazard ratio was 0.24 (P=0.008). Taken together, these data suggest that higher KLK13
expression in these subgroups of breast cancer patients is associated with an approximately 55 to 80% reduction in the risk of
relapse or death. We conclude that KLK13 expression, as assessed by quantitative reverse transcriptase – polymerase chain
reaction, is an independent favourable prognostic marker for breast carcinoma.
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Breast cancer is the most common malignancy affecting women. It
is estimated that in 2001, about 40 000 women will die from recur-
ring or metastatic breast cancer (Greenlee et al, 2001). Response to
treatment through the course of this disease varies greatly (Buzdar,
2001). Metastasis requires certain interactions among breast cells,
stroma and surrounding normal tissues, and it involves a variety
of growth factors and adhesion molecules (Teicher, 1995). As to
whether breast cancer is a disease that can spread systemically from
its earliest stages or whether tumours must mature in size before
metastasis is still controversial (Harris and Hellman, 1996). There
is a need for systemic hormonal therapy and chemotherapy, even

in local disease, to prevent progression to metastasis (Buzdar,
2001).

Since breast carcinomas show great variability in their biological
and clinical behaviour, the need for reliable prognostic parameters
is critical. Classical prognostic factors in primary breast carcinoma
include tumour size, nodal status, age, histopathology nuclear grad-
ing to steroid hormone receptors (Lopez-Otin and Diamandis,
1998). Ploidy and proliferative capacity (S phase fraction) are
two other well-characterised prognostic factors (Anbazhagan et al,
1991). All these prognostic factors have been shown to predict
disease-free survival (DFS) and overall survival (OS) in node-nega-
tive and node-positive breast cancer. Additional prognostic factors
such as oncogenes, growth factors and secretory proteins have been
investigated and appear to correlate with tumour behaviour with
respect to differentiation, growth rate and metastatic pattern.
However, there is still a need to identify more cellular and genetic
parameters that will help define the complex biological profile of a
breast tumour cell. More recently microarray analysis provides a
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tool for tumour subclassification (Perou et al, 2000) and neural
networks combine the available information to provide cumulative
and more informative predictions (De Laurentiis et al, 1999).

Among different biochemical markers that can be used for
monitoring cancer, serine proteases attracted particular interest
because of their role in degradation of the extracellular matrix
(Tryggvason et al, 1987; Duffy, 1991) and stimulation of cell
growth and angiogenesis. (Gottesman, 1990; Liotta et al,
1991). Accumulating data suggest that many members of the
expanded human tissue kallikrein gene family are associated
with malignancy (Diamandis et al, 2000a; Yousef and Diaman-
dis, 2001). Prostate specific antigen (PSA; encoded by the
KLK3 gene) is the best tumour marker for prostate cancer
(Diamandis, 1998. Other members of the kallikrein family
include human glandular kallikrein 2 (hK2), which is now an
emerging tumour marker for prostate cancer (Kwiatkowski et
al, 1998; Magklara et al, 1999). Among all other kallikreins,
the following has been reported: prognostic value of KLK4,
KLK7, KLK8 and KLK10 in ovarian cancer, diagnostic value

of hK6 and hK10 in ovarian cancer and association of
KLK10, KLK14 and KLK15 with testicular, breast and prostate
cancer (Tanimoto et al, 1999; Underwood et al, 1999; Diaman-
dis et al, 2000b; Yousef et al, 2000b, 2001a,b; Luo et al,
2001a,b; Magklara et al, 2001).

The human kallikrein gene 13 (KLK13), previously known as
KLK-L4, is a newly identified member of the human kallikrein gene
family that maps to chromosome 19q13. At the mRNA level, this
gene is mainly expressed in testis, breast, prostate and salivary
(Yousef et al, 2000a). The predicted protein structure has the
conserved catalytic triad of serine protease, like the other members
of this family. KLK13 was found to be down-regulated (at the
mRNA level) in a preliminary set of 19 breast tumours. The objec-
tive of this study was to further investigate the relationship between
KLK13 expression and other clinicopathological variables and DFS
and OS using, univariate and multivariate analysis for a group of
173 breast cancer patients. We hypothesised KLK13 may be differ-
entially expressed in breast cancer tissues and may have prognostic/
predictive value.
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Table 1 Relationships between KLK13 statusa and other variables

No. of patients (%)

Variable Total KLK13-negative KLK13-positive P value

Age (years)
545 33 19 (57.6) 14 (42.4)
45 – 55 40 17 (42.5) 23 (57.5) 0.041d

455 100 33 (33.0) 67 (67.0)

Menopausal status
Pre/peri 52 24 (46.2) 28 (53.8) 0.31e

Post 121 45 (37.2) 76 (62.8)

Tumour size (cm)
52 81 32 (39.5) 49 (60.5) 0.99e

52 92 37 (40.2) 55 (59.8)

Nodal status
Negative 77 29 (37.7) 48 (62.3) 0.52e

Positive 83 36 (43.4) 47 (56.6)
X 13

Stagec

I 78 32 (41.0) 46 (59.0)
II 68 24 (35.3) 44 (64.7) 0.30d

III – IV 16 9 (56.3) 7 (43.8)
X 11

Gradeb

I 69 29 (42.0) 40 (58.0)
II 61 23 (37.7) 38 (62.3) 0.87e

III 41 16 (39.0) 25 (61.0)
X 2

Histology
Ductal 106 43 (40.6) 63 (59.4)
Lobular 29 14 (48.3) 15 (51.7) 0.47d

Other 36 12 (33.3) 24 (66.7)
X 2

ER status
Negative 63 32 (50.8) 31 (49.2) 0.028e

Positive 107 37 (34.6) 70 (65.4)
X 3

PR status
Negative 78 37 (47.4) 41 (52.6) 0.072e

Positive 91 32 (35.2) 59 (64.8)
X 4

Adjuvant treatment
None 39 13 (33.3) 26 (66.7)
Tamoxifen 87 30 (34.5) 57 (65.5) 0.040d

Chemotherapy+tamoxifen 47 26 (55.3) 21 (44.7)

aCutoff point: 40th percentage. bBloom-Scarff-Richardson grading system. cTNM system. dw2 test.
eFisher’s Exact Test. X: Status unknown.
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MATERIALS AND METHODS

Study population

Included in this study were tumour specimens from 173 consecu-
tive patients undergoing surgical treatment for primary breast
carcinoma at the Department of Gynecological Oncology at the
University of Turin, Turin, Italy. Diagnosis was confirmed by
histopathology in all cases. Tumour tissues had been frozen in
liquid nitrogen immediately after surgery. This study has been
approved by the Institutional Review Board of the University of
Turin. The patient ages ranged from 29 to 87 with a median of
58 years. Tumour sizes ranged from 0.1 to 15 cm with a median
of 2.15 cm. Follow-up information (median follow-up period 80
months) was available for 163 patients, among whom 48 (29%)
had relapsed and 42 (26%) died. The histological type and steroid
hormone receptor status of each tumour as well as the number of
positive axillary nodes were established at the time of surgery, as
shown in Table 1. Out of the 179 patients, 106 (61%) had ductal
carcinoma, 29 (17%), lobular carcinoma and 36 (21%) had other
histological types. Patients from all clinical stages (I – IV) were
included in the study, with clinical staging determined according
to the TNM classification system. Grading of tumours was done
according to the Bloom-Scarff-Richardson grading system (Bloom
and Richardson, 1957). Thirty-nine patients (24%) received no
adjuvant treatment, 87 (50%) received tamoxifen, and 47 (27%)
received chemotherapy with or without tamoxifen. Oestrogen
receptor (ER) and progesterone receptor (PR) status was estab-

lished as described by the European Organisation for Research
and Treatment of Cancer (EORTC, 1980).

Total RNA extraction and cDNA synthesis

Tumour tissues were minced with a scalpel, on dry ice, and trans-
ferred immediately to 2 ml polypropylene tubes. They were then
homogenised and total RNA was extracted using TrizolTM reagent
(Gibco – BRL) following the manufacturer’s instructions. The
concentration and purity of RNA were determined spectrophoto-
metrically. Two mg of total RNA were reverse-transcribed into
first strand cDNA using the SuperscriptTM preamplification system
(Gibco – BRL). The final volume was 20 ml.

Quantitative real-time PCR and continuous monitoring of
PCR products

Based on the published genomic sequence of KLK13 (GenBank
accession no. AF135024), two gene-specific primers were designed
(L4-LF2: 5’-TGT ATG GCA TCG TCT CCT GG-3’ and L4-LR2:
5’-AGG TGG TGA TCT GGG CTC AT-3’). These primers
spanned more than two exons to avoid contamination by geno-
mic DNA.

Real-time monitoring of PCR reaction was done using the Light-
CyclerTM system (Roche Molecular Systems, Indianapolis, IN,
USA) and the SYBR Green I dye, which binds preferentially to
double stranded DNA. Fluorescence signals are proportional to
the concentration of the product and are measured at the end of
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Figure 1 Quantification of KLK13 gene expression by real-time PCR. Top: A logarithmic plot of fluorescence signal above the noise level (horizontal line)
vs cycle number, during amplification. Serial dilutions of a total RNA preparation from breast tissue were prepared and an arbitrary copy number was as-
signed to each sample according to the dilution factor. Bottom: The crossing points (cycle number) plotted against the log of copy number to obtain a
standard curve. For details, see text.
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each cycle and immediately displayed on a computer screen,
permitting real time monitoring of the PCR reaction (Wittwer et
al, 1997). The reaction is characterised by the point during cycling
when amplification of PCR products is first detected, rather than
the amount of PCR product accumulated after a fixed number
of cycles. The higher the starting quantity of the template, the
earlier a significant increase in fluorescence is observed (Bieche et
al, 1999). The threshold cycle is defined as the fractional cycle
number at which fluorescence passes a fixed threshold above base-
line (Bieche et al, 1998).

Endogenous control

For each sample, the amount of the target and an endogenous
control (b-actin, a housekeeping gene) were determined using a
calibration curve (see below). The amount of the target molecule
was then divided by the amount of the endogenous reference, to
obtain a normalised target value.

Standard curve construction

Separate standard curves for actin and KLK13 were constructed
using serial dilutions of total cDNA from healthy human breast
tissue, purchased from Clontech, Palo Alto, CA, USA as described
by Bieche et al, 1998, 1999. The standard curve samples were
included in each run. The LightCyclerTM software automatically
calculates the standard curve by plotting the starting dilution of

each standard sample versus the threshold cycle, and the sample
concentrations were then calculated accordingly (Figure 1). Stan-
dards for both KLK13 and actin RNAs were defined to contain
an arbitrary starting concentration, since no primary preparations
exist. Hence, all calculated concentrations are relative to the
concentration of the selected standard.

PCR amplification

The PCR reaction was carried out on the LightCyclerTM system.
For each run, a master mixture was prepared on ice, containing
1 ml of cDNA, 2 ml of LC DNA Master SYBR Green 1 mix,
50 ng of primers and 1.2 ml of 25 mM MgCl2. After the reaction
mixture was loaded into the glass capillary tube, the cycling condi-
tions were carried out as follows: initial denaturation at 958C for
10 min, followed by 45 cycles of denaturation at 958C for 0 s,
annealing at 658C for 5 s, and extension at 728C for 25 s. The
temperature transition rate was set at 208C per second. Fluorescent
product was measured by a single acquisition mode at 848C after
each cycle.

Melting curve

For distinguishing specific from non-specific products and primer
dimers, a melting curve was obtained after amplification by holding
the temperature at 708C for 30 s followed by a gradual increase of
temperature to 988C at a rate of 0.28C/s, with the signal acquisitionM
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Table 2a Univariate analysis of KLK13 with regard to DFS and OS

Disease-free survival (DFS) Overall survival (OS)

Variable HRa 95% CIb P value HRa 95% CIb P value

KLK13
Negative 1.00 1.00
Positive 0.34 0.19 – 0.62 50.001 0.34 0.15 – 0.76 0.009
Continuous variable 0.99 0.98 – 1.01 0.70 0.99 0.98 – 1.01 0.65
Nodal status 5.11 2.58 – 10.1 50.001 7.01 2.98 – 16.5 50.001
Tumour size 1.41 1.26 – 1.57 50.001 1.35 1.22 – 1.50 50.001
Stagec (ordinal) 4.1 2.75 – 6.1 50.001 3.78 2.48 – 5.75 50.001
Grading (ordinal) 1.65 1.19 – 2.27 0.002 1.94 1.36 – 2.76 50.001

ER status 0.59 0.35 – 0.98 0.043 0.42 0.24 – 0.72 0.002

PR status 0.52 0.32 – 0.89 0.016 0.37 0.21 – 0.66 50.001

Histological typed 0.79 0.60 – 1.04 0.094 0.76 0.55 – 1.03 0.081

Age 0.98 0.96 – 1.01 0.15 0.99 0.97 – 1.01 0.46

aHazard ratio (HR) estimated from Cox proportional hazard regression model. bConfidence interval of
the estimated HR. cTNM system. dLobular and others vs ductal.

Table 2b Multivariate analysis of KLK13 with regard to DFS and OS

Disease-free survival (DFS) Overall survival (OS)

Variable HRa 95% CIb P value HRa 95% CIb P value

KLK13
Negative 1.00 1.00
Positive 0.41 0.21 – 0.79 0.008 0.46 0.23 – 0.93 0.031
Nodal status 5.10 2.26 – 11.49 0.001 8.07 3.02 – 21.55 50.001
Tumour size 1.27 1.11 – 1.47 0.008 1.24 1.08 – 1.43 0.002
Grading (ordinal) 1.04 0.56 – 1.94 0.88 0.97 0.51 – 1.87 0.94

ER status 0.84 0.39 – 1.81 0.66 0.74 0.32 – 1.72 0.49

PR status 0.74 0.34 – 1.61 0.45 0.54 0.23 – 1.28 0.16

Histologic typec 0.90 0.49 – 1.63 0.73 0.87 0.46 – 1.67 0.69

Age 1.00 0.97 – 1.03 0.89 1.01 0.98 – 1.05 0.36

aHazard ratio (HR) estimated from Cox proportional hazard regression model. bConfidence interval of
the estimated HR. cLobular and others vs ductal.
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mode set at step, as described before (Woo et al, 1998). To verify
the melting curve results, representative samples of the PCR
products were run on 1.5% agarose gels, purified, and cloned into
the pCR 2.1-TOPO vector (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. The inserts were sequenced
from both directions using vector-specific primers, with an auto-
mated DNA sequencer.

Statistical analysis

Patients were subdivided into groups based on different clinical or
pathologic parameters and statistical analyses were performed
using SAS software (SAS Institute, Cary, NC, USA). A cutoff
point equal to the detection limit (40th percentile) was used based
on the ability of KLK13 to predict the DFS for the population
studied. According to this cutoff, KLK13 expression was classified
as positive or negative and associations between KLK13 status and
other qualitative variables were analysed using the chi-squared
(w2) or Fisher’s Exact Test, where appropriate. The analysis of
differences in KLK13 values between groups of patients was
performed with the nonparametric Mann – Whitney U-test or
Kruskal-Wallis tests. In this analysis, KLK13 was used as a contin-
uous variable. The cutoff value for tumour size was 2 cm. Lymph
node status was either positive (any positive number of nodes) or
negative. Age was categorised into three groups: less than 45 years,
45 to 55 years and greater than 55 years. Survival analyses were
performed by constructing Kaplan-Meier DFS and OS curves
(Kaplan and Meier, 1958) and differences between curves were
evaluated by the log-rank test, as well as by estimating the relative
risks for relapse and death using the Cox proportional hazards
regression model (Cox, 1972). Cox analysis was conducted at both
univariate and multivariate levels. Only patients for whom the
status of all variables was known were included in the multivariate
regression models, which incorporated KLK13 and all other vari-
ables for which the patients were characterised. The multivariate
models were adjusted for KLK13 expression in tumours, patient
age, nodal status, tumour size, grade, histological type and ER
and PR status.

RESULTS

KLK13 expression in relation to other variables

The KLK13 arbitary mRNA levels range from 0 to 255 with a
mean=14.1 s.e.=3.31 and median=0.22. An optimal cut-off point
equal to the 40th percentile was defined with w2 analysis based
on the ability of KLK13 to predict the DFS for the population
studied (data not shown). Table 1 depicts the distribution of
KLK13 expression in relation to other prognostic factors such as
menopausal status, tumour size, nodal status, tumour stage and
grade, histological type, receptor status, and adjuvant therapy.
The distribution of KLK13 values is right skew (data not shown).
Sixty per cent of the samples had detectable expression of
KLK13. KLK13 expression positivity was found more frequently
in oestrogen receptor (ER) positive patients (P=0.028). KLK13
positivity was significantly higher in patients over the age of 55
years (P=0.041). Associations with menopausal status, tumour size,
nodal status, histology and progesterone receptor (PR) status were
not observed (P40.05).

Survival analysis

Out of the 173 patients included in this study, follow-up informa-
tion was available for 163 patients, among whom 48 (29%) had
relapsed and 42 (26%) died. Table 2a illustrates the strength
between each clinicopathological variable and disease-free (DFS)
and overall survival (OS). In univariate Cox regression analysis,
positive KLK13 expression resulted in 66% increase in DFS and

OS (P50.01). As well, in multivariate Cox regression analysis,
KLK13 expression was found to be a predictor of DFS and OS
(with a hazard ratio (HR) of 0.41 and 0.46; P50.001 and
P=0.009, respectively). This regression model suggests there is
approximately a 55 – 60% reduction in either the risk of relapse
or death in patients with KLK13-positive tumours compared to
those who are KLK13-negative. Kaplan-Meier survival curves
(Figure 2) also demonstrate that patients with KLK13 positive
tumours have substantially higher DFS and OS (P50.001)
compared to those who are KLK13 negative.

In the multivariate analysis, Cox models were adjusted for nodal
status, tumour grade, ER and PR status, histological type and age.
In this analysis, KLK13 positivity, nodal status, and tumour size
were found to be the strongest independent factors for DFS and
OS (Table 2b). Tumour stage was not included in the multivariate
models because it is a function of tumour size and nodal status.
Table 3 illustrates Cox proportional hazard regression analysis for
subgroups of patients stratified for nodal status, tumour grade
and hormone receptor positivity. KLK13 was found to be a signifi-
cant prognostic factor in the subgroup of patients who are node
positive, oestrogen and progesterone receptor positive or those
with grade I and II cancer. After adjusting for other known prog-
nostic factors, KLK13 retained its independent prognostic value in
all these subgroups of patients. The adjusted hazard ratios derived
from this Cox regression analysis and related DFS and OS for these
subgroups were 0.36 (P50.001) and 0.18 (P=0.002), respectively,
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Figure 2 Kaplan-Meier analysis showing disease-free survival (DFS) and
overall survival (OS) for patients with KLK13 positive and KLK13 negative
tumours.
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for the oestrogen receptor positive group; 0.36 (P=0.008) and 0.44
(P=0.038), respectively, for the node positive group; 0.22 (P=0.001)
and 0.24 (P=0.008), respectively, for the Grade I – II group. The
adjusted hazard ratio (HR) for PR positive patients and related
DFS was 0.25 (P=0.012). For patients in the node positive and
ER positive subgroup (n=51) the adjusted HR was 0.25
(P=0.006) and for the node positive and PR positive subgroup
(n=46) the HR was 0.24 (P=0.008).

DISCUSSION

Breast cancer therapy is based on the presence or absence of
various clinical manifestations as well as a few biomarkers; there-
fore, identifying new prognostic and predictive markers will aid
in optimal patient treatment. The classical prognostic markers for
breast cancer, including lymph node status, tumour size and stage,
have proven clinical value (Fitzgibbons et al, 2000). Many other
potential prognostic markers have been identified, including steroid
receptors, epidermal growth factor receptor (EGFR), p53, c-erbB2,
Bcl-2, CEQ, CA15.3, CA27.29, cathepsin D and polyadeylate poly-
merase (ASCO, 1998, Fitzgibbons et al, 2000; Hamilton and
Piccart, 2000; Nicholson et al, 1993, 1994; Norberg et al, 1996;
Scorilas et al, 2000). However, only hormone receptor status is
recommended for routine use by the American Society of Clinical
Oncology and the College of American Pathologists Consensus

Statement (Fitzgibbons et al, 2000). None of the remaining
biomarkers have sufficient prognostic/predictive value by them-
selves. Some markers may have applications in particular cases,
e.g. overexpression of c-erbB2 is considered to be an unfavourable
prognostic indicator for both node-negative and node-positive
patients (Scorilas et al, 1995, 1999b), and HER-2/neu is useful
for patient selection for Herceptin therapy (Hamilton and Piccart,
2000). In this study, we demonstrate that KLK13 expression has an
independent, favourable prognostic value in breast cancer.

Protease involvement in the development and progression of
cancer has conventionally been considered to be unfavourable,
since it may promote tumour invasion and metastasis. (Mignatti
and Rifkin, 1993). Conversely, protease inhibitors are considered
to be beneficial in inhibiting tumour progression (Kennedy,
1998). However, a new paradigm is emerging for several serine
proteases in relation to prostate and testicular cancers. Human
kallikrein 4 or ‘prostase’, was found to be expressed in the normal
prostate but not in the prostate cancer cell lines DU-145 and PC-3
(Nelson et al, 1999). Testisin, a serine protease, was shown to be
lost in testicular cancer through either loss of a gene (Hooper et
al, 1999) or through promoter methylation (Boucaut et al, 2000).
As well, transfection of human testicular cancer cells with a testisin
cDNA reduced the tumour growth of xenografts of these cells in
nude mice, suggesting a tumour suppressor function for testisin
(Boucaut et al, 2000). Prostasin, another serine protease, has been
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Table 3 Cox proportional hazard regression analysis for subgroups of patients

Disease-free survival (DFS) Overall survival (OS)

Variable HRa 95% CIb P value HRa 95% CIb P value

Grade I – II (n=125)
KLK13 unadjusted 0.31 0.14 – 0.63 0.001 0.32 0.015 – 0.71 0.005
KLK13 adjustedd 0.22 0.088 – 0.56 0.001 0.24 0.085 – 0.68 0.008

Grade III (n=37)
KLK13 unadjusted 0.39 0.14 – 1.04 0.061 0.36 0.12 – 1.00 0.051
KLK13 adjustedd 0.58 0.15 – 2.21 0.43 0.51 0.12 – 2.09 0.35

Tumour size 42 cm (n=78)
KLK13 unadjusted 0.25 0.095 – 0.68 0.007 0.26 0.083 – 0.87 0.030
KLK13 adjustedc 0.42 0.12 – 1.39 0.15 0.34 0.079 – 1.47 0.16

Tumour size 42 cm (n=85)
KLK13 unadjusted 0.39 0.19 – 0.81 0.012 0.38 0.18 – 0.80 0.010
KLK13 adjustedc 0.51 0.23 – 1.42 0.13 0.49 0.20 – 1.16 0.11

Node negative (n=75)
KLK13 unadjusted 0.49 0.12 – 1.99 0.32 0.35 0.058 – 2.11 0.25
KLK13 adjustede 0.40 0.091 – 1.82 0.24 0.27 0.03 – 2.42 0.24

Node positive (n=78)
KLK13 unadjusted 0.35 0.17 – 0.70 0.003 0.42 0.21 – 0.85 0.017
KLK13 adjustede 0.36 0.17 – 0.77 0.008 0.44 0.21 – 0.95 0.038

ER positive (n=101)
KLK13 unadjusted 0.23 0.10 – 0.52 50.001 0.26 0.11 – 0.62 0.002
KLK13 adjustedf 0.36 0.17 – 0.77 0.008 0.18 0.05 – 0.64 0.008

ER negative (n=60)
KLK13 unadjusted 0.64 0.27 – 1.54 0.32 0.58 0.24 – 1.44 0.24
KLK13 adjustedf 0.71 0.26 – 1.85 0.47 0.56 0.19 – 1.63 0.29

PR positive (n=87)
KLK13 unadjusted 0.25 0.10 – 0.61 0.002 0.33 0.12 – 0.87 0.025
KLK13 adjustedg 0.25 0.09 – 0.75 0.012 0.25 0.06 – 1.06 0.061

PR negative (n=73)
KLK13 unadjusted 0.55 0.25 – 1.19 0.13 0.45 0.21 – 1.03 0.059
KLK13 adjustedg 0.61 0.26 – 1.44 0.26 0.54 0.22 – 1.31 0.17

aHazard ratio (HR) estimated from Cox proportional hazard regression model. bConfidence interval of the
estimated HR. cMultivariate models were adjusted for tumour grade, nodal status, ER, PR, histologic type
and age. dMultivariate models were adjusted for tumour size, nodal status, ER, PR, histologic type and age.
eMultivariate models were adjusted for tumour size, grade, ER, PR, histologic type and age. fMultivariate
models were adjusted for tumour size, grade, nodal status, PR, histologic type and age. gMultivariate models
were adjusted for tumour size, grade, nodal status, ER, histologic type and age.
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implicated in normal prostate biology and is able to suppress pros-
tate cancer invasion in vitro using DU-145 and PC-3 cell lines
(Chen et al, 2001). Human kallikrein 10 (hK10) appears to inhibit
tumour formation and the tumorigenic potential of breast cancer
cell lines and is proposed to be a tumour suppressor (Goyal et
al, 1998). In our studies of prognostic value of various kallikrein
in cancer, we found down-regulation in breast cancer of KLK14
and in testicular cancer of KLK10. Furthermore, KLK8 and KLK9
expression are higher in ovarian cancer of better prognosis. Thus,
recent literature suggests that serine proteases may be either
favourable or unfavourable prognostic markers. When the
substrates and physiological pathways of these proteases are deli-
neated, a rational explanation of these findings may emerge.

Previously, KLK13 was found to be down-regulated in a subset
of 19 breast tumours (Yousef et al, 2000a). KLK13 positivity is
associated with a significantly large reduction in risk of relapse
and death. However, the mechanism to explain the role of
KLK13 in breast cancer aggressiveness is still unknown. KLK13
could mediate its role either by generating or activating breast
cancer inhibitory factor(s) or by terminating the action of unfa-
vourable factor(s). PSA has been well documented to be down-
regulated in both prostate and breast cancer tissues (Yu et al,
1995, 1996, 1998), suggesting that it may, too, act as a favourable
factor. Additional data suggest that PSA may be a tumour suppres-
sor (Balbay et al, 1999), an inducer of apoptosis (Balbay et al,
1999), a negative regulator of cell growth (Lai et al, 1996), and
an angiogenic inhibitor (Fortier et al, 1999). Human kallikrein
10, or the normal epithelial cell specific-1 (NES1), a serine
protease, is down-regulated in breast and prostate cancer cell lines,
and functions as a tumour suppressor (Goyal et al, 1998). Other
proteases, such as Pepsinogen C and matrix metalloproteinase-9,
have been found to be favourable indicators in breast cancer (Scor-
ilas et al, 1999a, 2001).

An important factor predicting response to endocrine therapy is
the presence of tumour cells with high ER and PR expression.
Patients with ER-positive tumours have longer survival than patients
with ER-negative tumours (2). Of patients whose tumours are posi-
tive for both ER and PR, 50 to 70% may benefit from endocrine
therapy, while patients who are positive for ER only (Sedlacek and
Horowitz, 1984), 40% will respond to endocrine therapy (Ravdin
et al, 1992). Because endocrine therapy is generally associated with
fewer side effects than chemotherapy, such as damage to the skeletal
system (Bundred, 2001), increasing amount of research into new
endocrine agents and drug development is rapidly growing (Buzdar,
2001). Since KLK13 is up-regulated by oestrogens and is a favourable
prognostic marker in patients who are ER positive, we predict that
KLK13 expression may have value for monitoring patients under-
going selective oestrogen receptor modulator (SERM) treatment.
As patients with positive KLK13 expression have a 55-80% reduction
in the risk of relapse or death, KLK13 may be used to monitor
patients undergoing endocrine therapy for favourable outcome. In
addition, we believe that patients who are ER positive but express
low levels of KLK13 may not be responsive to hormonal therapy.
Further experiments using different patient groups should be
conducted to determine if KLK13 expression is associated with the
response to endocrine therapy in breast cancer and to elucidate
the possible clinical utility in KLK13 expression.

This study is the first to describe KLK13 as an independent
favourable prognostic marker in breast cancer. Positive KLK13
expression is associated with a significantly larger increase in DFS
and OS in both univariate and multivariate analyses and patients
who are ER positive, node positive or have low grade tumours.
KLK13 may potentially be a biomarker for identifying patients
likely to benefit from hormonal treatment. Future studies should
examine such a possible role of KLK13 in the management of
patients with breast cancer.
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