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Abstract
Tissue kallikreins are members of the S1 family (clan SA)

of trypsin-like serine proteases and are present in at

least six mammalian orders. In humans, tissue kallikreins

(hK) are encoded by 15 structurally similar, steroid

hormone–regulated genes (KLK ) that colocalize to

chromosome 19q13.4, representing the largest cluster

of contiguous protease genes in the entire genome. hKs

are widely expressed in diverse tissues and implicated

in a range of normal physiologic functions from the

regulation of blood pressure and electrolyte balance to

tissue remodeling, prohormone processing, neural

plasticity, and skin desquamation. Several lines of

evidence suggest that hKs may be involved in cascade

reactions and that cross-talk may exist with proteases

of other catalytic classes. The proteolytic activity of

hKs is regulated in several ways including zymogen

activation, endogenous inhibitors, such as serpins,

and via internal (auto)cleavage leading to inactivation.

Dysregulated hK expression is associated with multiple

diseases, primarily cancer. As a consequence, many

kallikreins, in addition to hK3/PSA, have been identified

as promising diagnostic and/or prognostic biomarkers

for several cancer types, including ovarian, breast, and

prostate. Recent data also suggest that hKs may be

causally involved in carcinogenesis, particularly in tumor

metastasis and invasion, and, thus, may represent

attractive drug targets to consider for therapeutic

intervention. (Mol Cancer Res 2004;2(5):257–80)

Introduction
Proteases/peptidases, defined as enzymes that catalyze pep-

tide bond hydrolysis, perform fundamental functions in all

living organisms (1, 2). The ‘‘degradome’’ or complete set of

proteases expressed at a given time within a cell, tissue, or

organism (3) comprises f2% of all genes in many organisms.

The human genome contains at least 553 protease genes and

counting (4). Protease action is always irreversible and can

involve either indiscriminant and non-specific degradation of

protein substrates, as in apoptosis, or highly specific proteolytic

processing or limited hydrolysis of selected target proteins,

resulting in a functional change, as in prohormone activation.

Proteases are classified according to three major criteria:

location of the scissile peptide bond within the substrate

(terminal or internal), catalytic mechanism, and evolutionary

relationships, as revealed by structure. On the basis of the first

criterion, proteases are broadly categorized as either exo- or

endopeptidases, respectively. According to the second criterion,

endopeptidases are divided into the well-known cysteine, serine,

threonine, aspartic, and metalloprotease subgroups. Consistent

with the third criterion, proteases of each catalytic class are

clustered into several ‘‘clans,’’ which in turn include many

‘‘families’’ containing proteases that share significant sequence

similarities (5, 6).

Serine proteases were among the first enzymes to be studied

extensively (7). Their structural characteristics, catalytic mecha-

nism, and roles in normal physiologic processes (e.g., digestion,

coagulation, and cellular and humoral immunity) and in the

pathology of many diseases (e.g., cancer, neurodegenerative

disorders) have been previously reviewed (5, 8-12). With the

exception of a small class of membrane-bound serine proteases,

the vast majority are secreted. Furthermore, serine proteases have

been organized into 11 evolutionary clans, most of which reside

in clan SA of trypsin/chymotrypsin-like serine proteases (6).

Tissue kallikreins (EC 3.4.21) form a subgroup of secreted

serine proteases within the S1 family of clan SA. To date, tissue

kallikreins have been identified in a variety of species from

six mammalian orders including

1. Primates (e.g., human, chimpanzee, baboon, cynomolgus

monkey, rhesus monkey, orangutan, gorilla);

2. Rodentia (e.g., mouse, rat, guinea pig, mastomys);

3. Carnivora (e.g., dog, cat);

4. Proboscidea (e.g., elephant);

5. Perissodactyla (e.g., horse); and

6. Artiodactyla (e.g., pig, cow) (13-15).

The number of kallikreins varies among species from 2 in

the dog (16) to more than 25 in rodents (15, 17). For a more

thorough discussion of kallikreins in non-human species, please

refer to our recent review (14). In humans, the tissue kallikrein

(hK) family consists of 15 structurally homologous serine
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protease genes that colocalize in tandem to 19q13.4 (18). Of the
f176 serine protease genes within the human genome, this

family represents the largest contiguous cluster (4, 19). In fact,

the kallikrein gene family is the largest cluster of protease genes

of any catalytic class (4, 19).

The discovery of the complete hK family can be divided into

two eras. The first era (1930s to 1980s) witnessed the discovery

of the ‘‘classical’’ kallikreins. Although originally found in

human urine (20, 21), human kallikrein 1 was subsequently

identified at abundant levels in the pancreas (in Greek, the

‘‘kallikreas’’), from which its name was derived (22). However,

the gene for this kallikrein, now called KLK1 , was not dis-

covered until 1985 (23, 24). During the late 1980s, two genes

with high structural similarity to KLK1 , currently known as

KLK2 and KLK3 /PSA , were cloned and colocalized to the

same chromosomal region (19q13.4) with KLK1 (25-27). At

this time, it was concluded that the human kallikrein family

had only three members, a statement that would hold for
f10 years.

The second era (1994 to 2001) saw the expansion of the

kallikrein family to 15 genes and the complete description of

the human kallikrein locus. During the mid- to late 1990s,

independent researchers cloned several novel serine pro-

tease genes with significant similarities to the classical kalli-

krein genes. These included, human stratum corneum

chymotryptic enzyme (HSCCE)/KLK7 (28), normal epithelial

cell-specific gene 1 (NES1)/KLK10 (29), protease M /zyme /

neurosin/KLK6 (30-32), neuropsin /TADG-14 /KLK8 (33, 34),

and trypsin-like serine protease (TLSP)/hippostasin /KLK11

(35, 36) These genes were subsequently recognized as tissue

kallikrein genes and mapped to 19q13.4 by Diamandis and

colleagues (37-43). An additional seven kallikrein genes were

independently cloned by our group and others, namely: prostase /

KLK-L1/KLK4/ARM1 /PRSS17 (44-46), human stratum cor-

neum tryptic enzyme (HSCTE)/KLK-L2/KLK5 (47, 48), KLK-

L3/KLK9 (40), KLK-L4/KLK13 (49), KLK-L5/KLK12 (50),

KLK-L6/KLK14 (51, 52), and prostinogen /KLK15 (53, 54), as

well as the first kallikrein pseudogene, WKLK1.2 According to

the official nomenclature, kallikrein gene and protein symbols

are currently denoted ‘‘KLK’’ and ‘‘hK,’’ respectively (55). Gene

numbering starts from centromere to telomere on chromosome

19q13.4 with the exception of the three classical kallikreins,

for which the existing nomenclature was retained (56). Table 1

lists all official and alternative kallikrein gene and protein

names. [Please note that plasma kallikrein (18, 57, 58) is not

a member of the tissue kallikrein family.]

Locus Organization
Thus far, the topology of the KLK locus has only been

described in detail within the human (38, 59), chimpanzee,3

mouse (17), and rat (15) genomes (Fig. 1). In general,

mammalian KLK loci contain a single copy of KLK4-KLK15

genes and varying numbers of classical KLK genes and

pseudogenes, all of which presumably arose due to gene

duplication events. In humans, the KLK locus spans f300 kb

on the long arm of chromosome 19 in cytogenic region 13.3

to 13.4 and is bound centromerically by the testicular acid

phosphatase gene (ACPT; ref. 60), and telomerically by a

cancer-associated gene (CAG)4 and Siglec-9 , a member of the

sialic acid-binding Ig-like lectin (Siglec) family (61) (Fig. 1A).

The KLK genes are tightly clustered in a tandem array, and are

not intervened by any non-KLK genes. The three classical

human KLK genes (KLK1 , KLK2 , and KLK3) are clustered

within a 60-kb region with KLK15 , whereas KLK4-KLK14

and the WKLK1 pseudogene are all located telomeric to KLK2 .

The direction of transcription of all genes is from telomere

to centromere with the exception of KLK3 and KLK2 .

The syntenic relationship of KLK gene organization is

relatively conserved among human, chimpanzee, and rodent

genomes. The chimpanzee KLK locus is strikingly similar to

the human locus, spans f350 kb of genomic sequence on

chromosome 20, and contains orthologs to all 15 human KLK

genes, which share more than 99% sequence similarity at the

DNA and amino acid levels (Fig. 1B). Although the relative

location and direction of transcription of KLK1 and KLK4-

KLK14 is conserved among the human, chimpanzee, mouse,

and rat loci, discrepancies exist with respect to locus size and

number of KLK1 and KLK15 paralogs and pseudogenes within

the mouse and rat genomes, due to additional gene duplication

events. In the mouse, the KLK locus covers 590 kb within

cytogenic region B2 on chromosome 7 and comprises 26 genes

and 11 pseudogenes (Fig. 1C). In contrast to the human and

chimp, the mouse lacks KLK2 and KLK3 orthologs but

contains 23 KLK1 paralogs, 14 of which are functional. The

latter reside between KLK1 and KLK15 in a 290-kb region, an

area that is only 1.5 kb in length within the human locus.

Generally, mouse and human KLK orthologs share f77% to

80% sequence similarity (62). The rat KLK locus spans 580 kb

within cytogenic region q21 on chromosome 1, contains 22

genes and 19 pseudogenes, and is also devoid of KLK2 and

KLK3 orthologs (Fig. 1D). Interestingly, this locus contains

nine duplications of a f30-kb region harboring the KLK1 ,

KLK15 , and WKLK2 genes between WKLK2 and KLK4 ,

resulting in nine paralogs of each gene. However, only the

KLK1 paralogs are functional. Rat KLK genes share f80% to

85% sequence similarity with their human orthologs.

Phylogenetic analyses indicate that the classical KLKs of the

human, mouse, and rat represent a distinct monophyletic group

within the kallikrein family, separate from the more recently

discovered kallikreins, KLK4-KLK15 (15, 17, 54, 59, 63).

Moreover, within the classical KLK branch itself, KLK1 genes

of the human, mouse, and rat form separate, species-specific

subgroups, in contrast to rodent WKLK2 genes and human

KLK2 and KLK3 that cluster into one subgroup. The latter

suggests that these genes shared a common ancestral KLK2

gene that was subsequently silenced in rodents and evolved

into KLK2 and KLK3 in primates (15). Taken together, the

2 Our data submitted for publication.
3 Our data submitted for publication.
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above evidence implies that the classical KLKs likely evolved

independently in the human, mouse, and rat after the diver-

gence of the lineages, in contrast to KLK4-KLK15 that proba-

bly diverged before their split. However, it is still not clear

whether the classical KLKs have evolved from the KLK4-

KLK15 group or if the two groups are monophyletic and share

a common ancestor. In any event, the strong conservation of

KLK4-KLK15 in these species suggests that the encoded

serine proteases perform essential functions in mammals. In

contrast, the ‘‘late-evolving’’ classical KLKs may encode

proteins possessing functions that are rather unique to the

primate and rodent orders (15).

FIGURE 1. Organization of the tissue kallikrein gene loci in human (A), chimpanzee (B), mouse (C), and rat (D) genomes. Arrowheads indicate the
location of genes and their direction of transcription. Green arrowheads , classical glandular kallikrein genes (KLK1 , KLK2 , and KLK3 ) and mouse and rat
KLK1 paralogs. Blue arrowheads , non-classical kallikrein genes, KLK4 – KLK15 . Kallikrein pseudogenes are represented by white arrowheads with the
exception of rat KLK15 paralogous pseudogenes that are shown as striped white arrowheads . Grey arrowheads , non-kallikrein genes (ACPT , CAG , and
Siglec-9 ). Official gene names are abbreviated to their numbers and indicated above each arrowhead . The nomenclature proposed by Olsson et al. (15) for
paralogs of the mouse and rat loci is beneath each arrowhead . A. Gene lengths are indicated below each gene in the human kallikrein locus only. Figure is
not drawn to scale. Modified from refs. (15, 17, 18) and our unpublished data (for chimpanzee).

Table 1. Official and Alternative Kallikrein Gene and Protein Names

Official Gene/Protein Other Names/Symbols GenBank Accessions References

KLK1 /hK1 Tissue/pancreatic/renal/urinary kallikrein, hPRK M25629, M33105 (24, 359)
KLK2 /hK2 Human glandular kallikrein 1, hGK-1 M18157 (25)
KLK3 /hK3 Prostate-specific antigen, PSA, APS X14810, M24543, M27274 (26, 360–362)
KLK4 /hK4 Prostase, KLK-L1 , EMSP1, PRSS17, ARM1 AF113141 (44–46, 100, 229)
KLK5 /hK5 KLK-L2 , HSCTE AF135028 (47–48)
KLK6 /hK6 Zyme, Protease M, Neurosin, PRSS9 D78203 (mRNA), AF149289 (Full gene) (30 –32, 41)
KLK7 /hK7 HSCCE, PRSS6 L33404 (mRNA), AF166330 (Full gene) (28, 42)
KLK8 /hK8 Neuropsin, Ovasin, TADG-14 , PRSS19, HNP AB009849 (33, 34)
KLK9 /hK9 KLK-L3 AF135026 (40)
KLK10 /hK10 NES1 , PRSSL1 NM_002776 (mRNA), AF055481 (Full gene) (29, 39)
KLK11 /hK11 TLSP/Hippostasin, PRSS20 AB012917 (mRNA), AF164623 (Full gene) (35, 43)
KLK12 /hK12 KLK-L5 AF135025 (50)
KLK13 /hK13 KLK-L4 AF135024 (49)
KLK14 /hK14 KLK-L6 AF161221 (52)
KLK15 /hK15 Prostinogen, HSRNASPH AF242195 (53, 54)

NOTE: Adapted from ref. (18) with permission from copyright owners.
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Structural Features of Kallikrein Genes and
Proteins

Members of the human kallikrein gene family generally

share 30% to 50% similarity at the DNA and amino acid lev-

els, exclusive of KLK2 and KLK3 that possess 80% similarity

and are, thus, considered the most closely related KLKs (18).

As expected, KLK genes and the encoded hK proteins share

several defining structural characteristics, illustrated and listed

in Fig. 2. All KLK genes colocalize to the same chromosomal

region (19q13.4) and code for serine proteases. KLK genes

typically range from 4 to 10 kb in length and their organization,

in terms of number and length of coding exons, intronic phase

pattern, and location of start, stop and catalytic histidine,

aspartate, and serine codons, is remarkably similar (18)

(Fig. 2A). Of the few structural differences that have been

found, all occur within non-coding regions. For instance, intron

length is variable among KLK genes, leading to different gene

lengths. Consensus GT-AG splice junctions are conserved

among all KLKs , with the exception of the KLK10 gene that

possesses a GC-AG splice site pair within intron 4 (39). The

majority of the recently discovered KLKs (KLK4-KLK15)

possess one or two non-coding exons within the 5Vuntranslated
region (UTR), whereas the classical KLKs (KLK1 , KLK2 , and

KLK3) do not. Furthermore, the 3VUTR beyond the stop codon

is quite variable in length among KLKs and contains either

a consensus (AATAAA) or variant polyadenylation signal f15

bp from the polyadenylic acid tail (18).

Kallikrein proteins are single-chain secreted serine prote-

ases translated as preproenzymes (Fig. 2B). Each contains a

signal peptide of 16 to 30 amino acids at their NH2 terminus,

followed by a pro-peptide of four to nine amino acids, and

catalytic domain, which comprises the mature, enzymatically

active, protein (18). Pro- and mature enzyme forms result

from the sequential cleavage of the signal and pro-peptides on

entry into the secretory pathway and on activation, respec-

tively. It is important to note, however, that the majority of

these cleavage sites are predicted; only a few have been ex-

perimentally verified (refs. 28, 36, 47, 64 and our unpublished

data).

The calculated molecular weight of the peptide moiety of

pro-hK proteins ranges from f23,000 to 26,000 (18). How-

ever, due to glycosylation, greater masses have been observed

for several kallikreins including native hK1 (65), hK3 (66), hK5

(47), and hK7 (28) as well as recombinant hK2 (67) hK5

(47, 68), hK6 (69), hK7 (28, 70), and hK13 (71). (It is im-

portant to note, however, that the presence, absence, or type of

glycosylation found in recombinant hKs produced in heterol-

ogous expression systems may not accurately reflect the status

and nature of glycosylation of the native protein.) With the

exception of hK1, in which O-linked glycosylation has been

observed (65), all other reported glycosylation events, thus far,

involve the addition of N-linked carbohydrates. Furthermore,

glycosylation site prediction programs (72) on the Center for

Biological Sequence Analysis website (http://www.cbs.dtu.dk)

FIGURE 2. Common structural features and schematic representation of a typical kallikrein gene (A) and protein (B). A. boxes , exons; lines , intervening
intron. Coding exons are shown in red , green , and blue . Shaded boxes , untranslated exons and regions. The numbers above the exons indicate coding exon
number and the Roman numerals below, the intron phase. Coding exon 1 harbors the start codon (indicated by #) and codes for the signal (red) and
propeptides (green ). Coding exons 2, 3, and 5 contain the histidine (H ), aspartic acid (D), and serine (S ) codons of the catalytic triad. Coding exon 5 harbors
the stop codon (*). B. red box , signal peptide; green box , pro-peptide; blue box , mature, enzymatically active protein. Pro- and mature enzyme forms result
from the sequential cleavage of the signal and pro-peptides on entry into the secretory pathway and on activation, respectively. It is important to note that the
majority of these cleavage sites are predicted; only a few have been experimentally verified. Figure is not drawn to scale.

Mol Cancer Res 2004;2(5). May 2004

Borgoño et al.260



indicate that most hK proteins harbor one or more putative

N-glycosylation sites or sequons, Asn-X-Ser/Thr (in which X

is any amino acid except Pro; ref. 73), whereas only a few

kallikreins have potential Ser/Thr residues involved in O-linked

glycosylation. Collectively, experimental and bioinformatic

data suggest that most, if not all, kallikreins are glycoproteins

in vivo. Glycosylation of many proteins is important for their

proper expression and function (74-77).

The amino acid of the S1 binding pocket, primarily re-

sponsible for substrate specificity in serine proteases (8), is

found six amino acids NH2-terminal of the catalytic serine

residue in all kallikrein enzymes at position 189, according to

chymotrypsin numbering (78). Multiple alignments of deduced

protein sequences indicate that 12 kallikreins possess an aspar-

tate or glutamate residue in this position and are expected to

cleave on the carboxyl side of basic amino acids such as argi-

nine or lysine, similar to trypsin. In contrast, the remaining three,

hK3, hK7, and hK9, have non-polar serine, asparagine, and

glycine residues, respectively, conferring a chymotrypsin-like

specificity (18) (Table 2). Thus far, experimental verification of

substrate specificity has been done for all kallikrein enzymes

with the exception of hK9, hK10, and hK12 (Table 2).

To date, X-ray crystallographic structures have been

resolved for two human kallikreins, namely mature hK1 (79)

Table 2. Specificity, Physiologic Substrates, and Post-translation Regulation of Human Kallikrein Proteins

hK Pro-
peptide
Cleavage
Site*

S1
aa

Specificity P1 Position Possible Physiologic
Substrates

Inhibitors Auto
Activation

Activation
by Other hK

Auto-/or
Degradation

hK1 R#I8 Asp Trypsin-like Arg, Met (363),
Phe (364-366)

Low MW kininogen
(367), preANF (368),
pro-insulin, LLP,
prorenin, VIP,
procollagenase,
angiotensinogen
(reviewed in ref. 191),
BK B2 (369)

Kallistatin
(187, 188),
PCI (370, 371),
AAT (372, 373),
placental
bikunin (374)

hK2 R#I8 Asp Trypsin-like Arg (174, 365, 375) Seminogelin I/II
(174, 204), IGFBP-3
(376), pro-uPA (243),
fibronectin (204)

PCI (174, 377), PI-6
(378), PAI-1 (379),
ATIII (380), a2AP
(381), ACT (185,
381), a2M (185,
377)

B (200, 201) B (173, 200)

hK3 R#I8 Ser Chymotrypsin-
like

Leu, Phe (382),
Tyr (203)

Seminogelin I/II,
fibronectin (205, 233),
laminin (233), lysozyme
(382), plasminogen (248),
IGFBP-3 (383, 384),
TGF-h (294), PTHrp
(385, 386)

ACT (387, 388), a2M
(387), PCI (389),
AAT (390),
ATIII (380)

hK2 (173, 202,
203), hK4
(242)c,
hK15 (53)

B (391)c

hK4 Q#I5 Asp Trypsin-like Arg (242)c,x,
Lys (242)c

pro-uPA, PAP (242)c B (242)c

hK5 R#I38 Asp Trypsin-like Arg > Lysx corneodesmosin (214),
ECM, fibrinogenx

a2AP, ATIII, a2M
x

hK6 K#L6 Asp Trypsin-like Arg > Lys
(69, 392)

ECM, fibrinogen, APP
(178)k, fibronectin,
laminin (69),
plasminogen{

ATIII, a2AP,
AAT (178),
ACT (178, 393)

B (31, 178)k B (69, 178)

hK7 K#I8 Asn Chymotrypsin-
like

Tyr (28) IL-1h (218),
corneodesmosin (214)

B (28)

hK8 K#V5 Asp Trypsin-like Argx MBP (394)
hK9 R#A4 Gly Chymotrypsin-

like
hK10 R#L10 Asp Trypsin-like
hK11 R#I4 Asp Trypsin-like Arg (36)x

hK12 K#I5 Asp Trypsin-like
hK13 K#V6 Asp Trypsin-like Arg > Lysx ECMx,

plasminogen (179)
a2M, a2AP,

ACT (71)
B (179) B (179)

hK14 K#I7 Asp Trypsin-like Arg > Lysx ECMx Bx

hK15 K#L6 Glu Trypsin-like Arg (53),
Lys (53, 175)

Abbreviations: AAT, a1-antitrypsin; a2AP, a2-antiplasmin; APP, amyloid precursor protein; ATIII, antithrombin III; BK B2, human bradykinin B2 receptor; LLP, low
density lipoprotein; MBP, myelin basic protein; PAI-1, plasminogen activator inhibitor-2; PAP, prostatic acid phosphatase; PCI, protein C inhibitor; PI-6, protease inhibitor-6;
preANF, precursor of atrial natriuretic factor; pro-uPA, pro-form of urokinase-type plasminogen activator; PTHrp, parathyroid hormone-related peptide; VIP, vasoactive
intestinal peptide.
*Arrows indicate the cleavage site and pro-hK numbering is shown.
cA chimeric form of hK4 (ch-hK4) was used.
bDegradation in vivo by unknown proteins.
xOur unpublished data.
kOur data submitted for publication.
{G. Sotiropoulou, personal communication.
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and mature and pro-hK6 (64, 69), as well as for several non-

human kallikreins, such as horse prostate kallikrein, an hK3

ortholog (80), mouse neuropsin/hK8 (81), mouse glandular

kallikrein-13 (82), and porcine pancreatic kallikrein A (83). As

members of the S1 family (clan SA) of serine proteases,

kallikreins possess the archetypal tertiary structure of trypsin/

chymotrypsin-like serine peptidases (6), which consist of two

juxtaposed six-stranded anti-parallel h-barrels and two

a-helices, with the active site [His57, Asp102, and Ser195,

chymotrypsin numbering (78)] bridging the barrels (84, 85).

The stereo ribbon plot for pro-hK6 is shown in Fig. 3.

Structural heterogeneity among kallikrein enzymes can be

attributed to the variable external surface loops surrounding the

substrate-binding site, which are known to control their activity,

define substrate and inhibitor specificity, and function in

autolytic regulation (8, 69, 86-89). Depending on the hK in

question, either five or six disulfide bonds serve to covalently

link the polypeptide chain and provide structural rigidity to

the surface loops surrounding the substrate-binding site. For

instance, the classical kallikreins possess a unique surface loop

named the ‘‘kallikrein loop,’’ not present in its entirety in any

other kallikrein and absent in other serine proteases. Glycosyl-

ation of the kallikrein loop, and others, may serve to regulate

kallikrein activity. For example, N-linked oligosaccharides

present on the kallikrein loop determine the size of the S2

pocket and affect the P2 specificity of recombinant mouse

hK8 (87). As well, the kallikrein loop, along with another

surface loop, may be required for the regulated secretion of

mouse hK8 (87). Within horse prostate kallikrein (hK3

ortholog), the kallikrein loop, seems to have a direct role in

enzymatic control and substrate selectivity, because it protrudes

over the catalytic region, blocking the entrance to the S1

specificity pocket (80). Furthermore, hK15 is unique in that it

possesses an eight-amino-acid surface loop not present in any

other kallikrein protein (54).

Alternative Messenger RNA Transcripts
In the post-genomic era, with the discovery of an un-

expectedly low number of genes (f32,000) within the human

genome sequence (90, 91), it has become clear that the gen-

eration of protein complexity occurs mainly via expansion of

the human transcriptome. One of the major and most well-

described mechanisms involved is alternative pre-mRNA splic-

ing, whereby a single primary gene transcript or pre-mRNA

gives rise to many mature mRNA transcripts, encoding many

structurally and functionally distinct proteins (92). Indeed,

recent genome-wide analyses indicate that 35% to 74% of

all human genes have at least one alternative splice form

(93, 94). The use of alternative promoters/transcriptional start

sites (95) and polyadenylation signals (96) comprise addi-

tional sources for increasing the informational content of the

genome.

Alternative pre-mRNA splicing, transcriptional start sites,

and polyadenylation signals are common events among

members of the kallikrein gene family. In addition to their

classical mRNA forms, each kallikrein gene possesses at least

one alternative transcript. In fact, a total of 70 alternative KLK

mRNA isoforms have been identified to date, exclusive of the

classical form (Table 3). Thus, a new dimension to the KLK

family exists. With respect to alternative splicing events among

KLK genes, the majority occur in coding regions and primarily

involve exon skipping, followed by exon extension/truncation

and intron retention, with only a few events occurring within

the 5V UTR. Consensus GT-AG splice sites are conserved in

almost all kallikrein splice variants, with a few exceptions. For

instance, a GC-AG splice site pair is present in a KLK5 variant

with alternative splicing in the 5VUTR (GenBank accession no.

AY279381). A TG-AG splice junction is found in a KLK15

variant, in which coding exon 3 is lengthened and exon 4 is

excluded (GenBank accession no. AY373374) and CC-AG

pairs are found in several KLK3 variants (97). Recognition of

FIGURE 3. Crystal structure of pro-hK6 as solved by Gomis-Ruth et al. (64). Stereo ribbon plot of pro-hK6 shown in the traditional serine proteinase
standard orientation (358) (i.e., looking into the active site cleft). The regular secondary structure elements are displayed as arrows (h-strands) and ribbons (a-
(a-helices ) and labeled (h1-h12 and a1-a2). The side chains of the residues of the catalytic triad (light gray) and the six disulfide bonds (dark gray ; SS1-SS6)
are also shown as stick models and labeled. The NH2 and COOH termini and the positions of characteristic structural loops (i.e., autolysis loop, Ca-binding
loop) are also indicated. (With dark gray coils are shown the poorly defined and undefined main-chain stretches.) Adapted with permission from ref. 64.
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these atypical splice sites by the spliceosome is possible in

association with a conserved splice site (98, 99). Additional

mRNA transcripts with alternative transcriptional start sites

have been identified for several kallikrein genes including

KLK3 , KLK4 , KLK5 , KLK6 , KLK7 , and KLK11 , and are likely

the products of alternative promoters (refs. 26, 100-102 and our

data submitted for publication). Furthermore, several transcripts

arising from alternative polyadenylation sites exist for KLK2

(103), KLK3 (97), and KLK7 (101). Many KLK transcripts

exhibit a combination of alternative splicing events coupled

with alternative transcription start site and polyadenylic acid

signal usage.

By open reading frame analysis, it has been predicted that

several alternatively spliced kallikrein transcripts will produce

unique protein isoforms mainly due to in-frame usage of alter-

native translation initiation and termination codons, in-frame

insertions or deletions in the middle of the protein sequence,

and to a lesser extent, due to frameshifts that introduce pre-

mature stop codons. In most cases, the sequence encoding the

signal peptide is retained, indicating that most kallikrein pro-

tein variants, on successful translation, are likely to be secreted

and present in biological fluids, which may have clinical

relevance in biomarker development. However, in the case of

KLK4 , one transcript isoform excludes the exon predicted to

code for the signal peptide leading to the production of an

intracellular protein (100), which may have unique functional

implications. In some instances, alternative splicing may com-

promise the serine protease activity of the kallikrein protein

due to exclusion of one or more residues of the conserved

catalytic triad (H, D, S). Generally, most of these putative

protein isoforms have not been isolated, with the exception of

a few proteins encoded by KLK3 variants (97, 104, 105).

Although the protein coding region is unaffected, variations in

the 5V or 3V UTRs may have an effect on post-transcriptional

regulation because these regions are known to be important in

post-transcriptional regulation including mRNA stability,

localization, and translational activation or repression (106,

107). Additional details on alternative kallikrein transcripts and

their predicted proteins can be found in the literature cited in

Table 3.

Tissue Expression and Cellular Localization
Kallikreins are expressed in a myriad of tissues at both the

mRNA and protein levels. As delineated by Northern blot,

reverse transcription-PCR, and ELISA methodologies collec-

tively, each kallikrein displays a relatively broad tissue

expression pattern, with highest expression levels within a

few major tissues and lower levels of expression in many others

(18, 63, 71, 108-116). Interestingly, kallikreins are often co-

expressed within the same tissues. The most notable example

is the concurrent and almost exclusive expression of KLK2 ,

KLK3 , KLK4 , KLK11 , and KLK15 in the prostate, at the mRNA

level. As well, almost every kallikrein is expressed in the sali-

vary gland, while subgroups reside in the skin (KLK1 , KLK4 ,

KLK5 , KLK6 , KLK7 , KLK8 , KLK9 , KLK10 , KLK11 , KLK13 ,

and KLK14), breast (KLK5 , KLK6 , KLK10 , KLK13), pancreas

(KLK1 , KLK6-KLK13), and the central nervous system (KLK6 ,

KLK7 , KLK8 , KLK9 , KLK14). The presence of kallikreins in

biological fluids, such as serum, seminal plasma, and the milk

of lactating women, confirms that they are secreted proteins

in vivo. The functional implications of kallikrein coexpression

are discussed in a later section.

Furthermore, in situ and/or immunohistochemistry studies

indicate that kallikreins, including hK3 (117, 118), hK4 (109,

119), hK6 (120-122), hK7 (123), hK9 (124), KLK10/hK10

(121, 122, 125), KLK11/hK11 (115, 126), hK13 (122, 127),

KLK14 /hK14 (51, 116), are localized predominantly in the cy-

toplasm of glandular epithelia, from which they are likely

secreted. The hK1, hK6, hK10, and hK13 proteins have also

been localized to the epithelium of the choroid plexus and other

cell types within the central and peripheral nervous systems

Table 3. Reported Human Kallikrein Variant Messenger RNA Transcripts

Kallikrein Reported No. of
Variant Transcripts*

GenBank Accession No. References

KLK1 3 NSc (two variants), AY429508 refs. 395, 396 and our unpublished data
KLK2 6 NS, AF188747, AF188746, AF188745, AY429510, AY429509 refs. 103, 139 and our unpublished data
KLK3 11 AJ459783, AF335477, AF335478, AJ512346, AJ459784, M21896,

AJ459782, AJ310937/M21897, AJ310938, NM_145864, NS
(26, 97, 104, 105, 132, 397)

KLK4 8 AF148532 (two variants), NS (two variants), AF228497, AF259964,
AF259971, AF259970

(45, 100, 229, 398)

KLK5 5 AY461805, AY279381, AY279380, AF435980, AF435981 ref. 101 and our unpublished data
KLK6 6 AY279383, AY318867, AY318869, AY318870, AY318868, AY457039 our unpublished data
KLK7 3 NM_19277, AF411215, AF411214 (42, 101)
KLK8 4 NM_144505, NM_144506, NM_144506, BC040877 (102, 267, 399)
KLK9 2 NS, AF135026 our unpublished data
KLK10 1 BC002710 (399)
KLK11 3 NM_144947, AB078780, BC022068/NM_006853 (36, 399, 400)
KLK12 3 NM_019598, NM_145895, AY358524 (50, 401)
KLK13 8 NS (five variants), AB108823, AB108824, AL050220 (108, 133)
KLK14 2 NS (51)
KLK15 5 AF242193 (three variants), AY373373, AY373374 ref. 54 and our unpublished data

*All mRNA transcripts (including splice variants, transcripts with alternative transcriptional start sites, and polyadenylation signals and combinations thereof) exclusive of
the classical transcript.
cNot submitted to GenBank.
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(120, 121, 127, 128). With respect to the skin, hK5 and hK7

expression was found to be restricted to the stratum granulosum

of the normal epidermis (129-131). A recent in situ hybridiza-

tion study indicates that several other KLKs are also

prominently expressed in the stratum granulosum as well as

in the inner root sheath of hair follicular epithelium and the

cytoplasm of cells within the eccrine sweat glands and

sebaceous glands (108).

Tissue-specific patterns of expression have also been

documented for many alternative mRNA transcripts of

kallikrein genes. For example, a KLK2 and KLK3 splice

variant, both with a partially retained intron, are exclusively

expressed in the prostatic epithelium (132). Splice variants of

KLK4 , KLK8 , and KLK13 gene transcripts were found to be the

predominant mRNA species in the skin (108). One variant of

the KLK8 gene is predominately expressed in the pancreas,

while another variant is preferentially expressed in adult brain

and hippocampus (102). The KLK11 gene has two tissue-

specific mRNA isoforms, known as the brain type and prostate

type, the former of which is expressed in the brain and prostate

and the latter that is expressed exclusively in the prostate (36).

Furthermore, several testis-specific splice variants of KLK13

have been identified (133). Hooper et al. (51) have discovered

a 1.5-kb transcript of KLK14 transcribed only in the prostate

and another 1.9-kb transcript expressed exclusively in skeletal

muscle. Furthermore, on transfection of a green fluorescent

protein (GFP)-tagged KLK4 transcript variant, lacking the

sequence coding for the signal peptide, into COS and HeLa

cells, the encoded protein was predominantly localized in

the nucleus (100). The physiologic and clinical relevance of

alternative kallikrein mRNA transcripts warrants further

investigation.

Regulation of Kallikrein Gene Expression and
Protein Function
Transcriptional Control of Gene Expression

Transcriptional regulation of eukaryotic genes is a

complex process that requires many basal transcription

factors for initiation and promoter-specific regulatory pro-

tein(s) (activators or repressors) that either enhance or repress

target gene expression depending on the nature of signaling

stimuli (134).

The regulation of gene expression by steroid hormones,

mediated on binding to their cognate receptors, plays an

important role in the normal development and function of many

organs as well as in the pathogenesis of endocrine-related

cancers (135-138). Numerous in vitro and in vivo studies

confirm that all human kallikrein genes are under steroid

hormone regulation in endocrine-related tissues and cell lines

(41, 42, 44, 48-50, 52, 54, 113, 139-147). The most notable

example is the classical up-regulation of KLK2 and KLK3

transcription in response to androgens and progestins in pros-

tate and breast cancer cell lines (139, 142, 143). Conversely,

other kallikreins such as KLK1 , KLK6 , and KLK10 are more

responsive to estrogens (41, 145, 148). An interesting ob-

servation is the differential pattern of hormonal regulation of

certain genes, for instance, KLK4 is up-regulated by androgens

in prostate and breast cancer cell lines (44, 46) and by estro-

gens in endometrial cancer cell lines (144) and KLK12 is up-

regulated by androgens and progestins in prostate cancer cell

lines and by estrogens and progestins in breast cancer cell

lines (50).

Functional characterization of kallikrein gene promoters and

enhancers may aid in delineating the mechanism of transcrip-

tional regulation by steroid hormone-receptor complexes. These

complexes can modulate transcription of target genes in a direct

or indirect fashion (149). In the former, the complex binds

directly to cis-acting DNA sequences known as hormone

response elements (HRE) in the promoter/enhancer regions of

regulated genes, thereby recruiting necessary cofactors that

interact with the basic transcription machinery to regulate gene

expression. In the indirect pathway, hormone-receptor com-

plexes do not bind to cognate hormone response elements and

indirectly modulate gene expression via interactions with trans-

acting transcription factors. Thus far, promoters have only been

characterized for KLK1-3 and KLK10 .

The KLK1 promoter harbors a putative estrogen response

element (ERE) thought to mediate estrogenic regulation, but

has not been functionally tested (150). Several androgen

responsive elements (ARE) within the proximal promoter and

enhancer regions of KLK2 and KLK3 genes have been

identified and believed to be primarily responsible for

transcriptional regulation by androgens. KLK2 has two AREs;

one at position �170 within its promoter (25, 141) and another

in the enhancer region �3819 to �3805 upstream from the

transcription start site (151). The KLK3 proximal promoter

harbors two functional AREs (ARE-I and ARE-II) at positions

�170 and �400 (140, 152) and an additional ARE (ARE-III)

in the far upstream enhancer region (�4,136), which has a

dramatic effect on KLK3 transcription, in comparison to ARE-I

and ARE-II (153-156). Furthermore, five additional low-

affinity AREs have been identified close to ARE-III (157).

Conversely, KLK10 promoter and enhancer regions do not

harbor functional hormone response elements directly involved

in mediating the apparent transcriptional regulation by steroid

hormone-receptor complexes (146). As is the case for other

genes and gene families, active hormone response elements

may be located within exons or UTRs of the KLK10 gene or

elsewhere in the kallikrein locus, respectively.

The promoter and enhancer regions of the 11 remaining

human kallikrein genes have not as yet been functionally

characterized. However, sequence analysis has identified

putative AREs in the promoter regions of KLK4 , KLK14 , and

KLK15 genes (45, 147, 158).

Accumulating reports indicate that the function of steroid

hormone receptors is regulated by many coactivators/repressors

that act as bridging molecules between hormone-receptor

complexes and the basal transcription machinery to either

activate or inhibit transcriptional regulation (159). For instance,

the relative levels of several coactivators/repressors might

differentially modulate the transcriptional activity within the

promoter/enhancer region of KLK2 and KLK3 of various breast

cancer cell lines (160).

Furthermore, several recent studies point to the possibility of

cross-talk between steroid hormone signaling with other signal

transduction pathways in the regulation of kallikrein gene

transcription. For instance, Sadar (161) suggests that cross-talk
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between androgen receptor (AR) and protein kinase A signal

transduction pathways contributes to the androgen-independent

induction of KLK3 gene expression. Transcription factors

activator protein and a Fos-containing protein complex distinct

from activator protein were also reported to regulate KLK2 and

KLK3 gene transcription (162, 163). As well, the KLK10 pro-

moter was found to harbor potential AP1-binding, SP1-binding,

and adenosine 3V,5V-monophosphate responsive element sequen-

ces (164). Wang et al. (165) have discovered that a novel

GAGATA transcription factor binds to a cis-regulatory element

located within the enhancer region of the KLK3 promoter

and is required for the maximum transcriptional response to

androgens. Conversely, a negative regulatory cis-element

named XBE was identified within the KLK3 enhancer region,

and was found to recruit both the AR and the p65 subunit of

nuclear factor (NF)-nB AR, leading to the down-regulation

of AR-mediated transcription of KLK3 (166). Thus, cross-talk

exists between AR and NF-nB p65 transcription factors and

was found to occur via novel mechanism through which the

factors compete for binding at a common DNA element.

Moreover, epigenetic control of gene expression such as

DNA methylation may also be implicated in regulation of

kallikrein gene transcription, particularly during carcinogenesis.

The dramatic-down regulation of the KLK10 gene in breast

cancer and in acute lymphoblastic leukemia has been attrib-

uted primarily to hypermethylation of exon 3 with this gene

(167, 168). This mechanism is also thought to explain, in part,

KLK10 silencing in ovarian and prostate cancers.5

Another mechanism of transcriptional control involves locus

control regions, a class of cis-acting regulatory elements that

regulate the expression of linked genes in a tissue and copy

number-specific manner in a wide spectrum of mammalian

gene families (169, 170), including rodent kallikrein gene

families (171). Smith et al. (171) propose that a dominant locus

control region controls the tissue-specific expression of all rat

kallikrein genes in the salivary gland, in conjunction with gene-

associated regulatory elements within promoter and enhancer

regions. Given the above and the fact that all human KLK

genes, except KLK2 and KLK3 , are transcribed in the same

direction (from telomere to centromere) and that many are

coexpressed within tissues, locus control regions may also be

implicated in the coordinate regulation and expression of

human kallikrein genes.

Therefore, although steroid hormones play a major role, the

control of kallikrein gene transcription may involve integration

of a myriad of transcription factors and pathways, including

epigenetic mechanisms and locus control regions, which serve

to increase regulatory diversity and provide opportunities for

cell and tissue-specific responses.

Post-translational Control of Protein Function
One of the main characteristics of proteases is their ability

to catalyze reactions irreversibly. As a consequence, several

mechanisms have evolved to spatially and temporally regulate

serine protease activity to prevent unwanted protein degrada-

tion, including: (a) zymogen activation, (b) internal cleavage,

and (c) endogenous inhibitors. First, all known proteases are

synthesized as zymogens or inactive precursors, which possess

an inhibitory pro-peptide that sterically blocks the active site

and thereby prevents substrate binding. Zymogen conversion to

the active enzyme generally occurs by limited proteolysis of the

pro-peptide, via diverse mechanisms, including enzymatic or

non-enzymatic cofactors that trigger activation, to a simple pH

change resulting in autoactivation (reviewed in ref. 172) and

can occur intracellularly (within the secretory pathway) or

extracellularly. All pro-hKs, expect hK4, require the activity of

a trypsin-like serine protease for activation as shown in Table 2.

Thus, several studies have reported activation of pro-hKs by

trypsin, enterokinase, trypsin-like hKs, and via autoactivation,

in vitro (to be discussed in detail in the following section).

Once activated, serine proteases may be inactivated by

internal cleavage followed by degradation. Cleavage may be

autolytic or mediated by another protease. This mechanism has

been reported for six members of the kallikrein family. For

instance, degraded forms of hK2 with a major cleavage site

between residues R145-S146 and a minor site between R101-L102

have been isolated from seminal plasma and prostate tissues

(173, 174). As well, hK3 purified from the seminal plasma

(f30% of total hK3) and prostatic tissues contains internal

peptide bond cleavages at one major, K145-K146, and two minor,

R85-F86 and K182-S183 sites, leading to inactivation (175-177).

The enzyme(s) responsible for internal cleavage of hK2 or hK3

are still unknown; however, hK2 is likely autodegraded because

this enzyme possesses trypsin-like activity and the cleavage

sites (P1-Arg) require a trypsin-like specificity. Furthermore,

hK6 (178) and hK13 (179) are capable of autoinactivation

in vitro, between residues R76-E77 and R114-S115, respectively.

Self-digestion has also been reported for hK7 (28) and hK14,6

yet the cleavage sites have not been determined.

Many endogenous inhibitors are known to regulate the

activity of serine proteases. Laskowski et al. (180, 181).

Generally speaking, many specific inhibitors are capable of

inhibiting the same serine protease, and the same inhibitor may

inhibit several serine proteases (180). Many kallikreins form

complexes in vivo and/or in vitro with plasma inhibitors,

primarily serpins and a2-macroglobulin (a2M) (Table 2). The

interaction of serpins with serine proteases can occur via (a) the

inhibitory pathway, leading to complex formation that results in

the deformation and irreversible inactivation of the protease or

(b) the substrate pathway, in which the serpin is cleaved by the

protease and does not result in the inhibition of the protease

(182, 183). hK1, 2, 3, 5, 6, and 13 form complexes and are

inhibited in biological fluids such as serum, ascites fluid,

seminal plasma, cerebrospinal fluid, milk of lactating women,

by various serpins, including a1-antitrypsin (a.k.a. a1-protease

inhibitor), a1-antichymotrypsin (ACT), protein C inhibitor

(a.k.a. plasminogen activator inhibitor-3), plasminogen activa-

tor inhibitor-1, antithrombin III, and a2-antiplasmin. For

instance, the major fraction (70% to 90%) of total hK3 in

serum is complexed with ACT (184), whereas hK2 is

6 Our unpublished data.
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complexed with ACT and protein C inhibitor in serum but

at a much lower proportion (4% to 19%; refs. 185, 186)

Interestingly, kallistatin is a uniquely specific serpin for hK1

(187, 188). Some kallikreins also interact with serpins via the

substrate pathway, for example, hK3 with ACT (189) and hK5

and hK6 with a2AP (ref. 178 and our unpublished data). The

interaction of proteases with a2M involves a molecular trap

mechanism, which does not lead to inhibition of protease

activity but prevents proteases from interacting with large

substrates or inhibitors by steric hindrance (190). Human

kallikreins 2, 3, 5, and 13 interact with a2M in the serum.

Furthermore, it has been proposed that inhibitory peptides

derived from serine protease inhibitor Kazal-type 5 (SPINK5)

may regulate hK activity due to the colocalization of KLKs

and SPINK5 in the skin (108).

Physiologic Roles
Due to their presence in diverse tissues and cell types and by

virtue of their serine protease activity, kallikreins are implicated

in a wide range of normal physiologic processes, from the

regulation of cell growth to tissue remodeling (Table 2). To

date, several biological roles have been established for classical

kallikreins, hK1, hK2, and hK3. The primary activity of hK1

involves the cleavage of low molecular weight kininogen to

release lysyl-bradykinin (kallidin), which in turn binds to its

receptors, bradykinin B1 and B2, in target tissues and mediates

varied processes such as regulation of blood pressure, smooth

muscle contraction, neutrophil chemotaxis and pain induction,

vascular permeability, vascular cell growth, electrolyte balance,

and inflammatory cascades (191, 192). A role for the hK1-kinin

system in the establishment and maintenance of placental blood

flow through vasodilation, platelet antiaggregation, cell prolif-

eration, and trophoblast invasion during different stages of

pregnancy has also been suggested (193, 194). Apart from its

kininogenase activity, hK1 is implicated in other tissue and/or

cell-specific functions, including processing growth factors and

peptide hormones (listed in Table 2) in the pituitary, pancreas,

and other tissues (191, 195-198).

Unlike hK1, both hK2 and hK3 possess relatively low

kininogenase activity (199). Four in vitro studies have shown

that hK2 is able to activate itself (67, 173, 200, 201). A series

of contradictory studies has been published with respect to

the activation of pro-hK3 by hK2 (173, 201-203). In 1997,

three independent groups published that mature hK2 was able

to activate pro-hK3, at a slow rate (173, 202, 203). However, in

a subsequent experiment, Denmeade et al. (201) showed that

hK2 was unable to cleave the fluorogenic pro-hK3 peptide

substrate APLILSR-AMC, calling into question the previous

findings. Once enzymatically active, hK2 and hK3 contribute to

seminal clot liquefaction after ejaculation, which is integral to

sperm motility, through their hydrolysis of seminal vesicle

proteins, seminogelin I and II, and fibronectin (204, 205).

However, hK3 cleaves these substrates at a higher efficiency

and at different sites compared with hK2. As listed in Table 2,

many other potential substrates, including growth factor

binding proteins, peptide hormones, and components of the

basement membrane/extracellular matrix (ECM), have been

identified for hK2 and hK3.

Thus far, the physiologic roles of the remaining kallikreins,

hK4 through hK15, have not been fully elucidated. However,

putative functions have been proposed for several, based on

their sites of expression and/or on the activity of orthologous

proteins.

For instance, accumulating data suggest that several kalli-

kreins may be implicated in the processing of peptide hor-

mones in the endocrine pancreas. Immunohistochemical studies

indicate that hK1, 6, 10, and 13 are all strongly expressed in

the islets of Langerhans, within the specialized h, a, y and

pancreatic polypeptide cells that synthesize insulin, gluca-

gon, somatostatic, and pancreatic polypeptide, respectively

(120, 121, 127, 167, 206-208). Accordingly, these kallikreins

may participate in prohormone activation, possibly in cooper-

ation with other prohormone convertases, such as PC1 and

PC2, which also colocalize with kallikreins in similar cell types

of the endocrine pancreas (208). In fact, the activation of

proinsulin to mature insulin by hK1 has already been

documented (209).

Several reports suggest that kallikreins play a role in the

normal physiology of the skin, particularly in epidermal

homeostasis. Both hK5 (47) and hK7 (28) have been isolated

and cloned from the stratum corneum, the outermost layer

of the skin. They are proposed to function in the degrada-

tion of intercellular structures (131, 210), such as desmosomes

(211-214), connecting the corneocytes, thereby decreasing

cellular cohesiveness and facilitating cell shedding or desqua-

mation during the terminal stages of epidermal turnover.

However, because hK5 and hK7 preferentially cleave only a

subset of desmosomal proteins (214), additional trypsin and

chymotrypsin-like proteases are implicated in stratum corneum

desquamation (215), including many other members of the

kallikrein family (108). In addition to desquamation, hK7 may

also play a role in skin pathophysiology, including pathologic

keratinization (130), psoriasis (216), and in inflammatory

reactions, due to its ability to activate proinflammatory

cytokines, such as interleukin-1h (IL-1h; refs. 217, 218).
We have recently published a review discussing the

potential roles of kallikreins in the central nervous system

(219). Putative functions for hK6 and hK8 have been

extrapolated from the experimentally verified actions of their

rodent orthologs. Given the high amino acid sequence identity

among hK6 and hK8 and their rodent orthologs (f70%), it

is conceivable that the proteins exhibit similar activities. For

example, the rat ortholog of hK6, called myelencephalon-

specific protease (MSP), may play a role in the regulation

of central nervous system demyelinating disease (220-223),

including the development of multiple sclerosis lesions (221),

while the mouse ortholog may function in myelination and

myelin turnover (224). As well, human kallikrein 6 is impli-

cated in the development of Alzheimer’s disease partly due to

its ability to cleave amyloid precursor protein, in vitro, and

possibly generate h-amyloid peptides (31, 178), which are

known to aggregate and form one of the major pathologic

lesions characteristic of this disease. Several reports indicate

that mouse hK8/neuropsin might be involved in sy-

naptogenesis, neural development (225), regulation of long-

term potentiation (LTP; refs. 226, 227) and seizures in kindled

brain (228).

Mol Cancer Res 2004;2(5). May 2004

Borgoño et al.266



Furthermore, based on the expression patterns and suggested

roles of its mouse and porcine orthologs, the human hK4

protein may likely be involved in tooth development via enamel

matrix protein degradation and/or processing during dental

enamel formation (229-232).

Moreover, in addition to hK3 (233) and hK6 (69, 178), our

preliminary data suggest that several other kallikreins, including

hK5, hK13, and hK14, are able to cleave components of the

ECM in vitro. Hence, kallikreins may also function in tissue

remodeling, similar to matrix metalloproteases (234).

Circumstantial evidence suggests that cross-talk likely exists

among members of the human kallikrein gene family and with

proteases of other catalytic classes. On the basis of the

colocalization of kallikrein genes to the same chromosomal

locus; their coordinated regulation by steroid hormones,

coexpression in tissues, and biological fluids; and the reported

ability of certain kallikreins to autoactivate and potentially

activate other kallikreins and proteases, it has been presumed

that this family may participate in a proteolytic cascade

pathway (235). The best examples of well-established enzy-

matic cascades involving serine proteases include the blood

coagulation, fibrinolytic, and digestive cascades (236, 237).

These cascades are characterized by a series of zymogen or pro-

enzyme activations, in which the activated form of one enzyme

catalyzes the activation of the following zymogen, and by the

rapid amplification of the initial signal during their progression.

As illustrated in Fig. 1, all 15 kallikrein genes colocalize to

19q13.4. The colocalization of genes encoding proteins that

take part in the same pathway is not uncommon in the human

genome. For example, several serine proteases involved in

sequential steps of the coagulation cascade are encoded by

tandemly colocalized genes and some may share a common

ancestor, similar to the kallikrein family (236, 238, 239).

Kallikrein genes are also coordinately regulated by steroid

hormones and coexpressed in similar tissues (e.g., skin, prostate,

breast, pancreas) and found in biological fluids (e.g., seminal

plasma, milk of lactating women) under normal conditions, as

discussed above. The parallel pattern of differential kallikrein

expression in malignancy, such as the concurrent up-regulation

of KLK5, KLK6 , KLK7 , KLK8 , KLK10 , KLK11 , and KLK14

in ovarian cancer (240), further substantiates the possible

existence of a steroid hormone-driven cascade.

As shown in Table 2, all hK pro-peptide cleavage sites

contain a P1 Arg or Lys residue, with the exception of hK4,

indicating that pro-hKs generally require the activity of a

trypsin-like serine protease for activation. For instance, it has

been shown that trypsin can convert pro-hK5, pro-hK6, pro-

hK7, and pro-hK15 into their active forms, while enterokinase

can activate pro-hK11 (28, 36, 47, 64, 167). Because most

kallikreins possess trypsin-like specificity, many are implicated

in autoactivation and the activation of other pro-hKs as well.

For instance, hK2 (174, 201), hK6 (31, 178), and hK13 (179)

are all capable of autoactivation and may, therefore, be involved

in the initiation and maintenance of a cascade, similar to factor

XI of the intrinsic coagulation pathway (241). As well,

experimental evidence has shown that recombinant hK2, hK4,

and hK15 can readily activate pro-PSA, in vitro (53, 173, 202,

203, 242). Brattsand and Egelrud (47) also hypothesize that

hK5 may potentially activate pro-hK7 in the skin.

Kallikreins may also be implicated in additional pathways

involving proteases of similar or different catalytic types. This

is evident from the reported ability of hK2 and hK4 to activate

the pro-form of uPA (242, 243), a serine protease that converts

the serine protease, plasminogen to plasmin, which in turn

degrades the ECM and activates members of the matrix

metalloprotease family (244). In addition to plasmin, kallikreins

may also be involved in the activation of pro-matrix metal-

loproteases, because matrix metalloproteases require the

activity of trypsin-like serine proteases for cleavage of their

pro-peptides (245, 246). Interestingly, porcine hK1 was found

to activate type IV collagenase, a matrix metalloprotease family

member (247). These findings implicate kallikreins in the

promotion of tumor invasion and metastasis (further discussed

below). Conversely, some members of the kallikrein family,

namely hK3 (248), hK13 (179), and hK67 are able to cleave

plasminogen, causing the release of biologically active

angiostatin-like fragments known to inhibit angiogenesis (249).

Protease-activated receptors (PAR) comprise a small sub-

family of G protein–coupled receptors, through which serine

proteases mediate their hormone-like effects on cells (250).

Unlike most receptors, PARs are stimulated by serine protease

cleavage of an extracellular NH2-terminal segment, generating

a new NH2-terminal sequence that acts as a tethered ligand and

interacts with the second extracellular loop (251). Thus, the

protease changes the conformational structure of the receptor,

such that it acts as its own activator. Due to the coupling of

PARs with several G protein family members, a complex

network of intracellular signaling pathways may be activated,

leading to changes in morphology, proliferation, survival, cell

mobility, and gene transcription, shown to be important in the

physiology of the vascular and nervous systems (252-254). Out

of the four human PARs identified to date, PAR-1 (250), -3

(255), and -4 (256) are relatively specific for thrombin, whereas

PAR-2 is not activated by thrombin and seems to have a broader

range of cognate proteases, including trypsin, tryptase, and

coagulation factors VIIa and Xa (257, 258). However, PAR-1

does not restrict activation by other proteases, because it may

also be activated by coagulation factor Xa (259), plasmin (260),

and the anticoagulant protein C (261). The absence of the

unique thrombin-complementary extracellular domain from

PAR-2 and PAR-4 leads to the concept of ‘‘generic PARs’’

and renders them as candidates for other serine proteases,

including human kallikreins. Recently, a trypsin-like serine

protease named P22, enzymatically similar to rat hK8, was

isolated from rat brain and shown to activate PAR-2 (262). The

potential involvement of human kallikreins in the activation of

PARs should be explored.

Involvement in Cancer
Carcinogenesis is a complex process that involves alterations

at the DNA, mRNA, and protein levels. The main goal of

cancer research is to identify these alterations and determine

their effects on the tumor phenotype. Accumulating reports

7 G. Sotiropoulou, personal communication.
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indicate that the human kallikrein family is implicated in

cancer. All 15 kallikrein genes are differentially expressed in

cancer, primarily in hormone-related malignancies, at the

mRNA and/or protein levels. For instance, numerous studies

have shown that kallikreins 4, 5, 6, 7, 8, 10, 11, 13, 14, and 15

are overexpressed in ovarian carcinoma tissues, serum, and/or

cell lines at the mRNA and/or protein levels (30, 34, 71, 110,

115, 116, 119, 123, 263-272). The up-regulation of kallikreins

5, 6, 7, 8, 10, 11, and 14 in ovarian cancer was further verified

in silico via digital differential display and X-profiler analyses

of kallikrein gene expression in normal and cancerous ovarian

tissues and cell lines by Yousef et al. (240). In contrast to

ovarian cancer, kallikrein genes 3, 10, 12, 13, and 14, are down-

regulated in breast cancer tissues and/or cell lines at the mRNA

level (29, 49, 50, 52, 125, 273-276), while the KLK6 gene

is down-regulated in metastatic breast cancer sites and up-

regulated in primary breast tumors (30). In silico analyses of

kallikrein mRNA expression levels in normal and cancerous

breast tissues and cell lines suggests that at least four kallikrein

genes, namely KLK5 , 6 , 8 , and 10 are down-regulated in breast

cancer (277), partially consistent with the previous findings.

Although human kallikrein 5 and 14 mRNA levels are reduced

in breast cancer, elevated serum levels of the hK5 and 14

proteins were observed in a subgroup of breast cancer patients

(110, 116). This discrepancy between kallikrein 5 and 14

mRNA and serum protein levels in breast cancer has also been

observed for hK3/PSA in prostate cancer. In these cases,

the elevation of hK proteins in the serum may be due to

angiogenesis and/or destruction of glandular architecture during

carcinogenesis, thereby facilitating the outflow of hKs into

the circulation. With respect to prostate cancer, KLK2 , KLK3 ,

KLK5 , KLK6 , KLK10 , and KLK13 are down-regulated

compared with normal adjacent tissue (117, 122, 278-282),

whereas KLK11 , KLK14 , and KLK15 are overexpressed (115,

283, 284). Additionally, the expression of KLK5 , KLK10 , and

KLK14 is markedly reduced in cancerous versus normal

testicular tissues at the mRNA level (52, 285, 286). (For a

recent review describing the association of kallikreins with

testicular cancer, see ref 287.)

In addition to hormone-related cancers discussed above,

kallikrein expression is dysregulated in several other malig-

nancies. A recent microarray analysis profiling the gene

expression patterns in human lung adenocarcinomas indicated

that KLK11 is uniquely overexpressed in a subgroup of neu-

roendocrine carcinomas (288). Another microarray study has

characterized differential transcription profiles in pancreatic

ductal adenocarcinomas and showed that KLK10 is one of the

most highly and specifically overexpressed genes in pancreatic

cancer compared with normal and benign pancreas tissues

(289). Furthermore, the KLK10 gene is down-regulated in acute

lymphblastic leukemia (168).

Emerging data indicate that many alternative kallikrein

transcripts are also differentially expressed in cancer and some

are even cancer-specific. Dong et al. (101) have recently

documented the overexpression of a KLK5 variant with a short

5V UTR and a KLK7 variant with a longer 3V UTR in ovarian

cancer cell lines, compared with normal ovarian epithelial cells.

A KLK5 splice variant, denoted KLK5 splice variant 1, is up-

regulated in ovarian cancer tissues, but down-regulated in

prostate cancer tissues compared with normal.8 Two novel

mRNA splice variants of the KLK8 gene, missing either two or

three coding exons, are overexpressed at relatively high levels

in cancerous ovarian tissues, compared with normal ovarian

tissues, in which they were not detected (267). The KLK11 gene

has two transcript variants named the brain type and prostate

type (36), both of which are overexpressed in cancerous

prostate versus normal tissues (290). Moreover, the work of

Chang et al. (133) has revealed that the KLK13 gene possesses

at least five tissue-specific splice variants expressed exclusively

the testis, in contrast to classical KLK13 mRNA which is

predominately expressed in a variety of tissues including the

breast, prostate, testis, and salivary gland (49). These KLK13

splice variants are expressed in a fraction of morphologically

normal testicular tissues, but absent in the adjacent cancerous

tissues (133).

The mechanisms giving rise to the differential expression of

kallikrein genes in cancer have not been fully elucidated.

However, epigenetic modifications, specifically the hyper-

methylation of coding exon 3, are responsible for the down-

regulation of KLK10 in breast, prostate, and ovarian cancers

and acute lymphoblastic leukemia (refs. 167, 168) and our data

submitted for publication). This epigenetic mechanism is an

important cause of gene silencing in carcinogenesis (291). Also,

considering that steroid hormones are implicated in the etiology

of hormone-related malignancies, such as ovarian, breast,

prostate, and testicular cancers (138), and are also known to

regulate kallikrein gene expression, it may be possible that

kallikreins are part of a steroid hormone–driven (cascade)

pathway that is activated during the promotion and progression

of cancer.

With respect to their involvement in the pathogenesis of

cancer, kallikreins seem to have a dual role, because they can

either promote or inhibit carcinogenesis. For one, many kalli-

kreins are directly and/or indirectly involved in the degradation

of ECM proteins, which facilitates tumor invasion and

metastasis. As listed in Table 2, hK2, 3, 5, 6, 13, and 14 can

directly catalyze the hydrolysis of several ECM proteins (refs.

69, 178, 204, 205, 233 and our unpublished data). hK2 and

hK4 are indirectly involved via activation of uPA, leading to

plasminogen activation, ultimately resulting in ECM degrada-

tion (242, 243). Furthermore, a synthetic hK1 inhibitor was

recently found to suppress the invasiveness in human breast

cancer cell lines by 33% in matrigel invasion assays (292),

suggesting that it has a role in facilitating tumor cell migra-

tion, via ECM cleavage. These findings are further supported

by the numerous reports indicating that kallikrein overexpres-

sion is associated with poor prognosis in cancer patients

(Tables 4-6). As well, hK3 can also cleave insulin-like growth

factor binding protein 3 (IGFBF-3), thus, liberating insulin-like

growth factor, which is a mitogen for prostatic stromal and

epithelial cells (293) and activate transforming growth factor h,
thereby stimulating cell detachment and facilitating tumor

spread (294). hK1 is present in colon, breast, lung, stomach,

pituitary, uterine, and esophageal cancer cells and may be

8 Our data submitted for publication.
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involved in malignant transformation by stimulating prolif-

eration of tumor cells and increasing vascular permeability

(148, 198, 295-302). hK1, via kinin action, also enhances

vascularity, mitogenicity, metastasis, and regulates angiogenesis

(303-305).

Kallikreins may also inhibit carcinogenesis. KLK10 is

thought to be a tumor suppressor gene, by virtue of its

down-regulation in several cancers (29, 125, 168, 276) and

because transfection of this gene into the tumorigenic breast

cancer cell line MDA-MB-231 reduced its anchorage-

independent growth and the tumor formation of nude mice

inoculated with this KLK10-transfected cell line was sig-

nificantly reduced. hK3 may also act as a tumor suppressor,

an inducer of apoptosis (306), and as a negative regulator of

breast cancer cell growth (307). hK3, 6, and 13 are also

implicated in the inhibition of angiogenesis, via their release

of angiostatin-like fragments from plasminogen (refs. 179,

248, 308 and G. Sotiropoulou, personal communication).

These studies may help to explain, in part, why certain

kallikreins are markers of favorable prognosis for cancer

patients (Tables 4-6).

Clinical Applications
Cancer biomarkers are fundamental tools that aid in

evaluating cancer risk, screening, diagnosis, clinical staging, es-

timating tumor volume, monitoring, assessing prognosis,

evaluating success of treatment, detecting disease recurrence,

and predicting a likely response to therapy to improve patient

management and outcomes (309). Among all biomarkers to

date, hK3/PSA has had the greatest impact in clinical practice,

for the screening, diagnosis, staging, and monitoring of pros-

tate cancer (310). Most other biomarkers often lack the desired

sensitivity and specificity and, thus, the search for more in-

formative markers continues.

The tissue kallikrein family has proved to be a rich source of

cancer biomarkers (311-313). In addition to hK3, many other

kallikreins exhibit altered mRNA and/or protein expression

levels within the tissues and/or serum of cancer patients and

represent prospective biomarkers for early detection, prognosis,

or monitoring of certain hormone-dependent malignancies, as

summarized in Tables 4-6. For instance, serum hK2 may

function as an alternate or complementary biomarker to hK3 for

prostatic diseases (314, 315). Importantly, this kallikrein may

aid in the differential diagnosis between prostate cancer and

benign prostatic hyperplasia (316) as well as the identification

of organ-confined versus non-organ–confined disease (317).

With the recent developments of highly sensitive and specific

immunoassays for hK5, hK6, hK8, hK10, hK11, and hK14

proteins, elevated levels of these kallikreins were observed in

the tissues and/or serum of a proportion of ovarian cancer

patients (110, 113, 115, 116, 266, 270, 271, 318). Pre-surgical

serum hK6 and hK10 levels increase the diagnostic sensitivity

of CA125 in patients with early stage (I/II) ovarian cancer and

are associated with poor patient prognosis. Thus, serum hK6

and hK10 may complement CA125 for early detection of

ovarian cancer. Serum hK5 and hK14 levels are also increased

in f40% of women with breast cancer, whereas serum hK11 is

elevated in 60% of men with prostate cancer. The latest study

by Nakamura et al. (319) also shows that serum hK11 levels

and the hK11/total PSA ratio are both significantly lower in

patients with prostate cancer than in BPH patients, suggesting

Table 4. Human Kallikreins as Ovarian Cancer Biomarkers (Messenger RNA and/or Protein Level)

Kallikrein Gene (KLK )/
Protein (hK)

Samples Used Clinical Applications References

KLK4 mRNA from normal and cancerous ovarian tissues Unfavorable prognostic marker (119, 263)
KLK5 mRNA from normal and cancerous ovarian tissues Unfavorable prognostic marker (264)
KLK5 /hK5 mRNA and cytosolic extracts from normal and

cancerous ovarian tissues
Unfavorable prognostic marker (101)

hK5 ovarian cancer cytosols Unfavorable prognostic marker our data submitted for publication
serum and tissue Marker of diagnosis (110)

KLK6 /hK6 mRNA and extracts from normal, benign, and
cancerous ovarian tissues

Unfavorable prognostic marker (265)

hK6 ovarian cancer cytosols Unfavorable prognostic marker (323)
serum Marker of diagnosis, prognosis,

and monitoring
(266, 318)

KLK7 mRNA from cancerous ovarian tissue Unfavorable prognostic marker (324)
KLK7 /hK7 mRNA and extracts from normal and cancerous

ovarian tissues
Unfavorable prognostic marker (101, 123)

KLK8 mRNA from ovarian cancer tissues Favorable prognostic marker (267)
hK8 serum and tissue Marker of diagnosis, prognosis,

and monitoring
(268)

KLK9 mRNA from ovarian cancer tissues Favorable prognostic marker (124)
hK10 serum and tissue Marker of diagnosis, prognosis,

and monitoring
(270, 271)

normal, benign, and cancerous ovarian cytosols Unfavorable prognostic marker (269)
hK11 ovarian cancer cytosols Favorable prognostic marker (325)

serum Marker of diagnosis (115)
hK13 ovarian cancer cytosols Favorable prognostic marker (326)
KLK14 mRNA from normal, benign, and cancerous

ovarian tissues
Favorable prognostic marker (147)

hK14 serum and tissue Marker of diagnosis (116)
KLK15 mRNA from benign and cancerous ovarian tissues Unfavorable prognostic marker (272)
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that serum hK11/total PSA may aid in differential diagnosis.

Using the hK11/total PSA ratio at 90% sensitivity, it would be

possible to avoid f50% unnecessary prostatic biopsies not

evaded by the %free-PSA test (%free PSA <20). Furthermore,

complexed forms of hK2 and hK3 with various plasma inhib-

itors (320), degraded forms of hK2 and hK3 (321), and the

altered glycosylation patterns observed between hK3 produced

by normal and cancerous prostate tissues (322), may also have

clinical utility in prostate cancer diagnostics and prognostics.

In addition to their clinical value as serologic biomarkers,

kallikrein mRNA and protein levels within cancerous tissues

are often associated with patient prognosis. As listed in Table 4,

KLK4 , KLK5 /hK5, KLK6/hK6, KLK7 , hK10, and KLK15 are

markers of poor prognosis in ovarian cancer (263-265, 269,

271, 272, 323, 324). That is, higher kallikrein mRNA and/or

protein levels were found to correlate with more aggressive

forms of this disease and a decreased disease-free and overall

survival. Conversely, the remaining subset of kallikreins,

namely KLK8 , KLK9 , hK11, hK13, and KLK14 , are markers

of favorable prognosis (124, 147, 267, 325, 326). Higher levels

of their mRNA or protein levels predominate in earlier stage

disease and are associated with increased disease-free and

overall survival. The expression of these kallikreins in ovarian

cancer may also be clinically useful in determining the

prognosis in subgroups of patients. For instance, a subgroup

of kallikreins (kallikreins 4, 6, and 10) are highly expressed in

serous epithelial ovarian tumors, whereas higher expression of

another group (kallikreins 5, 11, and 13) is more frequently

found in non-serous tumors. These data suggest that certain

kallikreins may be used as determinants of prognosis in the

subgroups of ovarian cancer patients stratified by histotype as

well.

With respect to breast cancer (Table 5), the mRNA

expression levels of KLK5 , KLK7 , and KLK14 in breast

tumors are indicative of a poor patient prognosis (327-329),

while higher levels of KLK9 , KLK13 , and KLK15 mRNA and

the hK3 protein forecast a favorable disease outcome (158,

275, 330, 331). Furthermore, high levels of hK3 and hK10

proteins in breast carcinomas are significantly related to a poor

response to tamoxifen therapy (332, 333).

Several kallikreins also have prognostic/predictive value in

prostate carcinoma (Table 6). For example, lower tissue hK3

concentration is associated with more aggressive forms of this

cancer, such that tumors expressing high levels are associated

with a favorable prognosis (279, 334). Higher KLK5 and

KLK11 mRNA levels also indicate a favorable prognosis

(281, 290). Moreover, hypermethylation of the KLK10 gene in

coding exon 3 is an independent prognostic marker of decreased

disease-free survival in children and adults and in the separate

analysis of adults with acute lymphoblastic leukemia (168).

The discovery of cancer-specific mRNA transcript variants

that occur exclusively or with higher frequency in cancer cells

and which are detectable by biopsy or in body fluids, may serve

as useful diagnostic biomarkers. The most well-characterized

cancer-specific splice variant biomarkers include those of the

CD44 and Wilm’s tumor (WT1) genes (335, 336). As previ-

ously discussed, preliminary studies indicate that variant kal-

likrein transcripts are differentially expressed and/or expressed

specifically in cancer and may, therefore, constitute a new gen-

eration of cancer biomarkers within the kallikrein family.

For instance, Slawin et al. (337) have recently developed a

preoperative KLK2 splice variant–specific reverse transcrip-

tion-PCR that is useful for detecting prostate cancer metastasis

and helps predict pathologic lymph node positivity in men with

clinically localized prostate cancer. Tanaka et al. (105) have

reported the existence of an alternatively spliced form of the

KLK3 gene that is expressed in 13 of 18 (72.2%) noncancerous

and 4 of 5 (80.0%) cancerous prostate tissues, but in only 3 of

Table 6. Human Kallikreins as Prostate Cancer Biomarkers (Messenger RNA and/or Protein Level)

Kallikrein Gene (KLK )/
Protein (hK)

Samples Used Clinical Applications References

hK2 serum and tissue Marker of diagnosis, prognosis, and monitoring (315, 321, 403)
hK3 serum and tissue Marker of diagnosis, prognosis, and monitoring (321)
KLK5 mRNA from matched normal and prostate cancer tissues Favorable prognostic marker (281)
KLK11 mRNA from matched normal and prostate cancer tissues Favorable prognostic marker (290)
hK11 serum Diagnostic marker (319)

Table 5. Human Kallikreins as Breast Cancer Biomarkers (Messenger RNA and/or Protein Level)

Kallikrein Gene (KLK )/Protein (hK) Samples Used Clinical Applications References

hK3 serum and tissue Marker of diagnosis and prognosis reviewed in ref. 402
KLK5 mRNA from breast cancer tissues Unfavorable prognostic marker (158)
hK5 serum Diagnostic marker (110)
KLK7 mRNA from breast cancer tissues Unfavorable prognostic marker (328)
KLK9 mRNA from breast cancer tissues Favorable prognostic marker (330)
hK10 breast cancer cytosols Predictive value (333)
KLK13 mRNA from breast cancer tissues Favorable prognostic marker (331)
KLK14 mRNA from breast cancer tissues Unfavorable prognostic marker (329)
hK14 serum and tissue Diagnostic marker (116)
KLK15 mRNA from breast cancer tissues Favorable prognostic marker (158)
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12 (25.0%) blood samples from prostate cancer patients. The

difference in KLK3 variant expression levels between noncan-

cerous prostate tissues versus blood samples from cancer

patients was statistically significant (P = 0.011). David et al.

(132) have reported the identification of two splice variants

of the KLK2 and KLK3 genes that result from inclusion of

intronic sequences adjacent to the first exon, denoted K-LM

and PSA-LM, respectively. With the exception of the signal

peptide, K-LM and PSA-LM transcripts encode protein

isoforms that are entirely different than the classical hK2 and

hK3 proteins. As such, polyclonal antibodies were generated

against synthetic peptides derived from amino acid sequences

unique to each variant protein. Immunohistochemistry of pros-

tate sections using these polyclonal antibodies indicated that the

K-LM and PSA-LM proteins are detected only in the secreting

cells of the tubule lumen and Western blot analysis indicated

that the K-LM protein is present in seminal plasma, similar to

the classical forms of hK2 and hK3. Furthermore, a recent

study indicates that KLK3 may actually produce at least 15

transcripts, which can encode eight putative protein isoforms

(97). Reverse transcription-PCR analysis indicates that at least

five splicing isoforms are expressed in normal, benign prostatic

hyperplastic, and cancerous tissues. Collectively, these KLK2

and KLK3 variants may supplement hK3/PSA diagnostics.

Using quantitative reverse transcription-PCR, Nakamura et al.

(290) compared the expression of the prostate and brain-type

KLK11 isoforms in matched normal and cancerous prostatic

tissues. Both variants were overexpressed in cancerous prostate

versus normal tissues and lower expression of prostate-type

KLK11 was associated with higher tumor stage, grade and

Gleason score. No such association was seen with the brain-

type isoform. These data suggest that KLK11 splice variants

may have clinical value as biomarkers for prostate cancer

diagnosis and prognosis. Variant transcripts of KLK5 , 8 , and 13

are also differentially expressed in cancer, as discussed in

a previous section. The biological and clinical significance of

these variant kallikrein transcripts/proteins remains to be

elucidated.

Recently, it has become possible to combine the diagnostic,

prognostic, and predictive value of multiple biomarkers into

models, which have the ability to discriminate better than single

biomarkers alone (338-342). For example, the use of logistic

regression, decision tress, discriminant analysis, and artificial

neural networks can outperform single biomarker analysis in

diagnostic, prognostic, and predictive applications. Therefore,

the combination of a subset of classical and/or variant kallikreins

into a multiparametric panel may provide superior diagnostic/

prognostic information than that of the single analytes alone.

Further studies are warranted to evaluate this hypothesis.

Single-nucleotide polymorphism (SNP) within candidate

genes can affect coding sequences, transcriptional regulation,

and splicing and may confer increased susceptibility or

resistance to complex diseases, such as cancer. As such, SNPs

are considered potential markers of cancer risk and progression

and can help to define resistance to therapeutic regimens.

Several SNPs have been reported in the human kallikrein

locus, within KLK1 (343), KLK2 (344), and KLK10 (345)

genes and the KLK3 (155, 346, 347) promoter region. The

KLK2 SNP (C!T) in exon 5 changes the amino acid from

Arg226 to Trp266, leading to an active (C allele; Arg226) and

inactive (T allele; Trp266) form of hK2 (344). A recent study has

found a strong positive relationship between this polymorphism

with serum hK2 levels and prostate cancer risk, that is, the T

allele is associated with lower hK2 levels, but a higher risk of

cancer (348). Regarding KLK3 , three SNPs are in the proximal

promoter at positions �158, �205, and �252, which may be

implicated in breast and/or prostate cancer susceptibility. For

example, concerning the SNP at position �158 (G!A),

individuals homozygous for the G allele showed higher hK3

tumor concentrations and an increased overall survival than

those homozygous for the A allele (349). Depending on the

study, either the G or A allele of SNP �158 was also shown to

be associated with the risk of advanced prostate cancer or an

earlier onset of prostate cancer in Caucasian men (350-352), an

association not found in a study involving Japanese men (353).

The polymorphisms at positions �205 and �252 may be

associated with mRNA expression levels of KLK3 (354),

whereas the �252 SNP was not linked to prostate cancer risk

and progression in two separate Japanese studies (353, 355).

Lastly, Bharaj et al. (345) have identified a few SNPs within

exons 3 and 4 and intron 5 of the KLK10 gene. The most

significant SNP is in codon 50 within exon 3 (C!T) and

changes the amino acid in this position from Ala to Ser. The

prevalence of the T allele was significantly higher in prostate

cancer patients in comparison to control subjects, and may,

therefore, be associated with prostate cancer risk (345).

Kallikreins may also constitute potential drug targets, ther-

apeutic agents, and candidates for passive or active immuno-

therapy, once their biological pathways are delineated. For

instance, the identification of CD4 positive T cells specific for

naturally processed KLK4-derived epitopes within the T-cell

repertoire of normal males support the use of KLK4 as a target

for whole gene-, protein-, or peptide-based vaccine strategies

against prostate cancer (356). This kallikrein may also represent

a target for immunotherapy because anti-hK4 antibodies were

only present in the serum of males with prostate cancer (357).

Conclusions and Future Directions
With the discovery of the complete hK family, comprising

a total of 15 serine protease genes on 19q13.4, the genomic era

of kallikrein research is nearing its end. On the basis of tis-

sue expression patterns and putative substrates, tissue kalli-

kreins are implicated in diverse physiologic processes, from the

regulation of cell growth to tissue remodeling, where they

may act individually or in cascade pathway(s). Countless re-

ports have also indicated an association between dysregulated

kallikrein expression and cancer and the carcinogenic process

and the potential use of kallikreins as diagnostic/prognostic

biomarkers for cancer. However, many questions remain un-

answered with respect to the exact role of many tissue kal-

likreins in normal and pathophysiology. The future must

encompass the identification of physiologic substrates, delin-

eation of the functional intersections between kallikreins and

other proteolytic systems including those involved in cell sig-

naling, a better understanding of modes of regulation, and un-

veiling the relevance of the complete kallikrein transcriptome

and proteome including variant mRNA transcripts and proteins.
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With respect to cancer biomarker and drug discovery, the

tissue kallikrein family is a gold mine waiting to be fully un-

earthed. Therefore, another important goal for the future will

involve further defining the clinical utility of kallikreins as bio-

markers for cancer, as single analytes or in combination with

several suitable molecules in a multiparametric model. Thus,

the post-genomic era poses a new set of challenges for re-

search in this subgroup of the human degradome.
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