
Plasma Protein Profiling for Diagnosis of Pancreatic Cancer

Reveals the Presence of Host Response Proteins

John M. Koomen,1 Lichen Nancy Shih,2

Kevin R. Coombes,3 Donghui Li,4 Lian-chun Xiao,3

Isaiah J. Fidler,2 James L. Abbruzzese,4 and

Ryuji Kobayashi1

Departments of 1Molecular Pathology, 2Cancer Biology, 3Biostatistics
and Applied Mathematics, and 4Gastrointestinal Medical Oncology,
University of Texas M.D. Anderson Cancer Center, Houston, Texas

ABSTRACT

Plasma protein profiling using separations coupled

to matrix-assisted laser desorption ionization mass

spectrometry (MALDI MS) has great potential in transla-

tional research; it can be used for biomarker discovery

and contribute to disease diagnosis and therapy. Previously

reported biomarker searches have been done solely by MS

protein profiling followed by bioinformatics analysis of the

data. To add to current methods, we tested an alternative

strategy for plasma protein profiling using pancreatic

cancer as the model. First, offline solid-phase extraction is

done with 96-well plates to fractionate and partially purify

the proteins. Then, multiple profiling and identification

experiments can be conducted on the same protein

fractions because only 5% of the fractions are used for

MALDI MS profiling. After MALDI MS analysis, the

mass spectra are normalized and subjected to a peak

detection algorithm. Over three sets of mass spectra

acquired using different instrument variables, f400

unique ion signals were detected. Classification schemes

employing as many as eight individual peaks were

developed using a training set with 123 members (82

cancer patients) and a blinded validation set with 125

members (57 cancer patients). The sensitivity of the study

was 88%, but the specificity was significantly lower, 75%.

The reason for the low specificity becomes apparent upon

protein identification of the ion signals used for the

classification. The identifications reveal only common

serum proteins and components of the acute phase

response, including serum amyloid A, A-1-antitrypsin,

A-1-antichymotrypsin, and inter-A-trypsin inhibitor.

INTRODUCTION

Disease marker discovery is one of the most promising

applications of biological mass spectrometry (MS; refs. 1–13).

In addition to structural analysis of proteins in biomedical

research, MS is now being used to search for biomarkers in

extremely complex mixtures (1–13), quantify changes in

protein abundance (14), and generate profiles for diagnosis of

different disease states by direct analysis of proteins extracted

from biological fluids (15, 16), cells (17, 18), and tissues

(19, 20). Surface-enhanced laser desorption ionization (SELDI),

the coupling of surface retentate chromatography with matrix-

assisted laser desorption ionization (MALDI) MS, is already

widely used for clinical and translational research, because of

the convenient packaging of a low resolution, automated

time-of-flight (TOF) mass spectrometer with ready-made

‘‘chips’’ modified with different functional groups for

performing surface retentate chromatography (21–23). Despite

limitations in sensitivity and difficulties associated with protein

identification, profiling still has great value. This technique

consists of three steps: separations, mass spectrometry detec-

tion, and bioinformatics analysis. In the first step, a population

of proteins is extracted from serum or plasma and fractionated

because it selectively binds to the SELDI chip. In the second

step, the MALDI matrix is added and the proteins are detected

using TOF mass spectrometry. In the third, bioinformatics

techniques are used to process the mass spectra and generate

patterns, which could be used for diagnosis. Because most

(f90%) of the ion signals observed in profiling experiments do

not correspond to full-length, unmodified proteins, measure-

ment of the intact molecular weights as well as sequence

determinations are critical for understanding the structures and

functions of these peptides and low molecular weight proteins.

Therefore, we have developed analogous methods using

96-well solid-phase extraction discs for offline parallel protein

fractionation followed by MALDI MS detection using any mass

spectrometry platform (see Fig. 1). Also, fractionated proteins

are retained for subsequent structural analysis.

In this paper, we report the initial use of this protocol on a

set of pancreatic cancer patients and corresponding controls. The

methods for analysis are described in detail. A classification

scheme developed by peak-based bioinformatics using several

ion signals observed in the mass spectra had 88% sensitivity and

75% specificity. Identification of the ion signals was done for

several of the potential biomarkers. The utility and limitations of

this method for patient diagnosis are discussed, particularly in

light of the proteins that are detected to be different in the

MALDI MS profiles.

MATERIALS AND METHODS

Plasma Collection and Processing. Plasma samples came

from an ongoing case control study of pancreatic cancer

conducted at the University of Texas M.D. Anderson Cancer

Center (M.D. Anderson Cancer Center Institutional Review
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Board ID98-155). Cases were patients with a pathologically

confirmed ductal adenocarcinoma of the pancreas with no

restriction on age, sex, or race. Controls were cancer-free

individuals who were accompanying patients with variety types

of cancer seen at the Radiology Clinic of M.D. Anderson Cancer

Center. Cases and controls were matched by age (F5 years), sex,

and race. An informed consent was obtained from each study

participant for an interview and a blood sample. Information on

cigarette smoking, alcohol consumption, work history, family

history of cancer, and medical history was collected by personal

interview using a structured questionnaire. Information on the

current disease of the cases (i.e., stage, tumor differentiation,

treatment, and survival) was collected from the medical records

of the patients. The 274 samples used in the current study were

randomly selected from a total of 718 study subjects from the

molecular epidemiologic study. Some samples were dropped

from the analysis either because of missing clinical data or

because we were unable to obtain high quality MALDI spectra.

Table 1 contains a summary of the characteristics of the patient

samples used in the final analysis.

Blood samples (20 mL) were obtained from patients with

pancreatic cancer and control volunteers in heparinized tubes.

Plasma was prepared by centrifugation at 2,500 rpm for

10 minutes. Before the preparation of 20 AL aliquots used for

these experiments, the plasma samples (f250 AL) were

centrifuged again at 14,000 rpm for 10 minutes at 4jC to

remove particulates and lipids. The 274 samples used in this

study were run in four groups (60, 72, 72, and 70) over 4 days

because of limits on the number of samples that could be

fractionated in parallel (96) and spotted on a MALDI plate

(100). The first two groups were chosen for the training set.

The second two groups were used for validation. All samples

were blinded to the people performing the fractionation and

mass analysis.

Protein Extraction and Fractionation. Before protein

extraction, all samples were randomized. To increase binding

capacity when compared with SELDI or pipette tip–based

separations, proteins were extracted from plasma using

C1896-well solid-phase extraction discs (Empore, 3M,

St. Paul, MN) on a 96-well plate handling robot (Quadra96,

Tomtec, Hamden, CT) using the following solvent system for

washing: 2% acetonitrile and 0.1% formic acid. Aliquots of

plasma (20 AL) were diluted with 100 AL of the wash solvent.

After loading, the extraction discs were washed with six times

with 300 AL of aqueous 2% acetonitrile with 0.1% formic acid.

Two elution steps were done with 300 AL of aqueous 25%

acetonitrile with 0.1% formic acid and then 300 AL of aqueous

70% acetonitrile with 0.1% formic acid, referred to as the

25% fraction and 70% fraction, respectively. The eluted protein

fractions were concentrated back to the original plasma volume.

Matrix-Assisted Laser Desorption Ionization Mass

Spectrometry Protein Profiling. The eluted fractions were

randomized again before MALDI MS analysis. MALDI MS

analysis was done on dried droplet deposits made from mixing

1 AL of plasma protein extract with 1 AL of sinapinic acid at

30 mg/mL concentration in a solvent system of 50% methanol

and 50% acetonitrile. Spectra were acquired for positive ions in

linear mode using a Voyager DE-STR (Applied Biosystems,

Framingham, MA) with variables optimized for myoglobin and

bovine serum albumin. For the 25% acetonitrile elution, spectra

were acquired only with the myoglobin-optimized method;

spectra were acquired from the 70% acetonitrile fraction using

both methods.

Spectra were externally calibrated using a single matrix

deposit containing myoglobin and thioredoxin standards at the

center of the MALDI plate. All samples were analyzed using

this initial calibration to retain the same number of points

(time bins) per spectrum, simplifying bioinformatics process-

ing. Mass spectra were acquired manually, so that the

maximum dynamic range could be obtained without ion

signal saturation.

Table 1 Distribution of diagnoses in training and validation sets

Stage Training Validation Total

No cancer 41 73 114
Pancreatitis 3 2 5
Stage I 9 3 12
Stage II 4 0 4
Stage III 12 9 21
Stage IVa 28 13 41
Stage IVb 28 31 59
Total 125 131 256

Fig. 1 Experimental flowchart for protein profiling. Proteins are
extracted from plasma and fractionated using SPE in 96-well plates.
MALDI MS analysis is done on the fractions. After visual inspection and
peak-based bioinformatics analysis, ion signals are targeted for
identification. Then, the samples are classified as cancer or control.
Based on the protein identification and classification results, potential
diagnostic tools can be formulated.
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Bioinformatics Analysis. Individual spectra were pro-

cessed using the simultaneous peak detection and baseline

correction (SPDBC) algorithm developed in-house (24). This

algorithm produces a separate list of peak locations, heights,

widths, and signal-to-noise ratios for each spectrum. For each

fraction (BSA70, MYO25, and MYO70), we aligned peaks

from distinct spectra using our MatchPeaks algorithm, which

first sorts the peaks in order of decreasing signal-to-noise

(S/N) ratio. Alignment starts with the first peak [whose mass-

to-charge ratio (m/z) is denoted by X] as an ‘‘anchor.’’ If

another peak has m/z = Y, we define the relative mass error to

be |X � Y |/X. The algorithm identifies two peaks if the relative

mass error is <0.15% or if the number of clock-ticks separating

the peak locations is at most 10; all peaks satisfying this

condition are formed into a single ‘‘peak class.’’ Next, the

peak with largest S/N that has not yet been assigned to a class

is used as a new anchor, and matching continues until all

peaks are assigned to a new peak class. The peak lists

produced by SPDBC and MatchPeaks are liberal about

including potential peaks with very small S /N ratios. To focus

on peak classes that are more likely to represent actual

proteins, we include an additional filtering step. We only

retained a peak class for further analysis if it satisfied at least

one of the following conditions:

1. S /N > 10 in at least one spectrum.

2. S /N > 5 in at least five spectra.

3. S /N > 3 in at least 20 spectra.

Heuristically, these numbers indicate that we have more

confidence in a peak if it occurs with large S /N or if it occurs in

many spectra.

We use two methods to reduce the number of peaks used

in the development of a model to predict whether plasma

profiles arise from pancreatic cancer patients or healthy

controls. First, we perform two-sample t tests on the log-

transformed heights of each peak. We compensate for multiple

testing by modeling the set of Ps as a h-uniform mixture (25).

The model is used to control the false discovery rate (26).

Second, we combined a genetic algorithm with Mahalanobis

distance (27). Mahalanobis distance is a measure of the

separation between two groups of samples; it is the main

computational idea underlying linear discriminant analysis (28).

As a computational tool, a genetic algorithm is a method for

conducting directed random searches in order to find an

(approximate) optimal solution to some problem (29, 30). In

the present case, we ran the genetic algorithm 100 times to

identify sets of five peaks that have large Mahalanobis distance

between plasma profiles in pancreatic cancer and in healthy

controls.

Peaks that were significant based on the t test or that were

included in a solution by the genetic algorithm were retained for

a final model-building step using an iterative, forward-selection,

greedy algorithm. We began with the peak P1 that had the largest

t statistic. Given a set of peaks {P1, P2, . . ., Pk}, we then

ordered all peak sets of the form {P1, P2, . . ., Pk , Q}, as Q

varies, by the Mahalanobis distance between healthy and cancer

samples. If the classification error on the training set was

decreased by one of the top 10 peak sets, we added this peak to

the working set and continued. We stopped when the training

classification error stabilized.

Protein Identification. Plasma proteins were identified in

three different ways. First, one-dimensional SDS-denatured

PAGE was done with 4% to 20% Criterion gels (Bio-Rad,

Hercules, CA) to separate the proteins. Bands of the appropriate

molecular weight were excised, digested with trypsin, and

sequenced using liquid chromatography (LC)-MS/MS on an

electrospray ion trap instrument (LCQ DecaXP or LTQ, Thermo,

San Jose, CA). Proteins from the same C18 fractions were also

separated with reverse phase high-performance liquid chroma-

tography using a 0.5-mm ID Vydac C4 column (Hesperia, CA),

followed by fraction collection, MALDI analysis to identify the

fractions containing target proteins, and then tryptic digestion

and LC-MS/MS of the appropriate fractions for protein

identification. LC-MS/MS results were searched against the

National Center for Biotechnology Information human database

using a licensed copy of SONAR (Genomic Solutions, Ann

Arbor, MI). Smaller proteins were also identified by direct

MALDI MS/MS. Samples were preconcentrated using C18

Ziptips (Millipore, Billerica, MA) and eluted with 4 mg/mL

a-cyano-4-hydroxycinnamic acid prepared in 50% aqueous

acetonitrile. Tandem mass spectrometry analysis was done using

a 1 kV MS/MS method on a TOF/TOF instrument (Applied

Biosystems, Framingham, MA) with collision gas on and off.

Several spectra consisting of 22,500 laser shots were acquired

and averaged. Peak lists were generated manually and searched

against the MSDB using MS-Tag with no enzyme and

methionine oxidation selected (http://prospector.ucsf.edu).

Quantitative Analysis of Human Serum Amyloid A by

ELISA. Serum amyloid A (SAA) levels in human plasma

samples were quantified using a human SAA Immunoassay kit

(BioSource International, Inc., Camarillo, CA), according to the

manufacturer’s instructions with minor modifications. Duplicate

plasma samples were diluted 1:1,000 with the sample diluent

buffer. Working conjugated anti-human SAA (1�, 50 AL) was
added to each assay well that contained monoclonal antibody

specific for human SAA, followed by 50 AL of either standards or

samples. The plates were covered and incubated at 37jC for

1 hour. The supernatants were aspirated thoroughly, and the wells

were washed thrice with 1� wash buffer. Then, working

p-nitrophenyl phosphate substrate solution (100 AL), prepared
just before use, was added and the plate was again covered and

incubated at 37jC for 1 hour. Then, stop solution (50 AL) was
added to each well. After incubating at room temperature for

30 minutes, the absorbance at 450 nm was measured for each well

on a CERE UV 900C plate reader (BioTek Instruments,

Winooski, VT) after zeroing with blank composed of working

p-nitrophenyl phosphate substrate solution and stop solution. All

samples with concentration of SAAhigher than the standards were

further diluted and reassayed at 1:4,000 and 1:10,000 dilutions.

The concentration of SAA in each sample well was reported

automatically by the instrument software built into the machine

and corrected by the dilution factor.

Quantitative Analysis of Human Haptoglobin by Per-

oxidase Activity Assay. Haptoglobin levels in human plasma

samples were quantified using a haptoglobin assay kit

(BioSource International) according to the manufacturer’s

MALDI Profiling Detects Acute-Phase Response Proteins1112



instructions with minor modifications. Human plasma samples

were diluted at least 10-fold with calibrator diluent prior to

assay. Equal volumes of hemoglobin and hemoglobin diluent

were mixed (reagent 1), as were chromogen and substrate in

the ratio of 9:5 (reagent 2). Calibrator standards (0-2 mg/mL)

were prepared as instructed. The calibrators and unknown

samples (7.5 AL) were transferred in duplicate to a 96-well

microtiter plate. Reagent 1 (100 AL) was added to each

well and mixed, then reagent 2 (140 AL) was added to each

well. After incubation for 5 minutes at room temperature, the

absorbance at 660 nm was measured on CERE UV 900C

plate reader (BioTek Instruments). All samples with concen-

trations of haptoglobin higher than the calibrator standards

were diluted further and reassayed. The concentration of

haptoglobin in each sample well was reported automatically

by the instrument software built into the machine and

corrected by the dilution factor.

Quantitative Analysis of Human CA19.9. Measure-

ments of the CA19.9 levels in the cancer patients’ plasma

samples were done in the M.D. Anderson Cancer Center clinical

chemistry laboratory.

RESULTS AND DISCUSSION

Almost all of the ion signals observed in the MALDI mass

spectra (see Fig. 2) were below m/z 30,000. A larger number

of small proteins and peptides is observed in the 25%

acetonitrile elution (Fig. 2A), and more large proteins are

observed in the 70% fraction (Fig. 2B and C). To determine

peak locations in the MALDI profiles, we applied the SPDBC

algorithm to all three fractions of all 124 samples in the

training set. In the BSA70 spectra, SPDBC detected between

102 and 152 peaks per spectrum, with a median of 129 peaks.

In the MYO25 spectra, SPDBC detected between 232 and 287

peaks per spectrum, with a median of 257 peaks. In the

MYO70 spectra, SPDBC detected between 231 and 290 peaks

per spectrum, with a median of 258 peaks. We then applied the

MatchPeaks algorithm to each fraction. We found 306 distinct

peaks among the BSA70 spectra, 522 distinct peaks among the

MYO25 spectra, and 514 distinct peaks among the MYO70

spectra. We next filtered the peaks based on S /N, as described

in MATERIALS AND METHODS. We ended up with 96

peaks in the BSA70 spectra, 185 peaks in the MYO25 spectra,

and 155 peaks in the MYO70 spectra, for a total of 436 peaks.

The SPDBC and MatchPeaks algorithms both produce lists of

peak locations and widths (i.e., intervals that contain the peak).

Peaks were quantified in both the training sets and the test sets

by taking the maximum value (if SPDBC found a peak in that

spectrum) or the median value (if SPDBC did not find a peak)

in the interval. These heights were transformed by computing

the base-two logarithm for further analyses.

To identify peaks that were differentially expressed in the

cancer samples compared with the normal samples, we

performed two-sample t tests on the log-transformed heights of

each peak, using h-uniform mixture to bound the false discovery

rate at 1%. There are 95 peaks that satisfy this criterion (listed in

Supplemental Table 1). The peaks are ordered by increasing P;

thus, the most believable differences are at the top of the list. In

the table, positive t statistics correspond to peaks that are

overexpressed in cancer, and negative t statistics correspond to

peaks that are underexpressed in cancer. The overall most

significant peak was found in the BSA70 fraction at m/z 51,534,

with a 6.62 t statistic. The most significant peak in the MYO70

fraction was observed at m/z 51,778, with a 5.02 t statistic.

Because peaks are fairly broad when the mass is that large, it is

possible that both of these peaks represent the same biological

substance. The most significant peak in the MYO25 fraction was

at m/z 17,240 with a t statistic equal to �5.63.

To identify sets of peaks that can be used to diagnose

pancreatic cancer, we also combined a genetic algorithm with

Mahalanobis distance. We used the genetic algorithm to identify

sets of five peaks, chosen out of the set of all 436 peaks, that

have large Mahalanobis distance between the pancreatic cancer

samples and the healthy controls. Because the genetic algorithm

uses randomness to locate approximate maxima, it may find

different answers each time it is run; therefore, 100 iterations

were run from different starting points. As expected, numerous

different combinations of five peaks separate normal samples

from cancer samples in the training set. Peaks that were

significant based on the t test with false discovery rate

<1% or that were included in a solution by the genetic algorithm

were used in a greedy algorithm to determine the best predictive

model. The algorithm stops adding peaks when the classification

error on the training set stops improving.

From the observed ion signals, eight were chosen for

patient classification based on the results of the genetic

Fig. 2 MALDI MS protein profiles. Proteins were extracted from
plasma using reverse phase (C18) solid-phase extraction; representative
protein profiles for elution with 25% acetonitrile (A) and 70%
acetonitrile (B and C). The spectra in A and B were acquired with
instrument variables optimized using apomyoglobin and in C with
settings for bovine serum albumin.
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algorithm and t tests (see Table 2). Zoomed views are shown

for six of the eight peaks in Fig. 3; the other two, m/z 19,064

and m/z 39,892, could not be visually distinguished in the

MALDI mass spectra. The sensitivity and specificity observed

in the validation set for these eight peaks were 95% (54 of 57)

and 70% (51 of 73), respectively. After removal of the ion

signals that could not be visually observed in the MALDI

profiles, the sensitivity and specificity observed in the

validation set for these eight peaks were 88% (50 of 57) and

75% (55 of 73), respectively. The sensitivity and specificity for

the six peaks with the addition of serum amyloid A were

88% (50 of 57) and 74% (54 of 73). These results are similar to

those of other similar studies reported in the literature. The

sensitivity is often quite high, but the specificity is poor with

25% to 30% false positives.

To understand the variability in our estimates of the

sensitivity and specificity, we used a Bayesian approach to

calculate 90% confidence intervals. We assumed that the number

of correct classifications (both for cancer and for normal) follows

a binomial distribution. We assigned independent b prior

distributions B(a ,b) to the sensitivity and specificity; these prior

distributions require us to specify two variables to control the

shape and the scale of the b distribution. It is a standard result in

Bayesian statistics that the posterior distribution for the

sensitivity or specificity, conditioned on correctly classifying

k out of n samples in the validation data, is given by another

b distribution, B(a + k , b + n � k). The 90% lower and upper

limits for sensitivity and specificity of the six-peak model using

different prior assumptions are summarized in Table 3. When

a = b = 1, we use a uniform prior, from which the 90%

confidence interval for sensitivity ranges from 79.5% to 93.7%,

and the 90% confidence interval for specificity ranges from

66.5% to 82.9%. We also considered alternative priors. Using

a = 0.2 and b = 1.8 is a skeptical prior, because it suggests that

we start the experiment expecting only 10% of the samples to be

correctly classified by the model. By contrast, the prior with

a = 1.6 and b = 0.4 is fairly aggressive, because it suggests that

we start the experiment expecting about 80% of the samples to

be correctly classified. In our case, the skeptical estimate yields a

lower limit of 87.8% for the sensitivity and a lower limit of

65.4% for the specificity. The more aggressive estimate yields

sensitivity between 80.7% and 94.4% and specificity between

67.4% and 83.6%.

Protein identification was attempted for all six peaks used

in the classification scheme. The peak at 4,284 was identified as

a fragment of inter-a-trypsin inhibitor heavy chain H4 (ITH4)

Fig. 3 Ion signals targeted by
bioinformatics analysis and vi-
sual inspection. Zoomed regions
of the mass spectra are shown
for several ion signals chosen for
protein identification and sam-
ple classification:m /z 4,284 (A),
m /z 8,204 (B), m /z 9,351 (C),
m /z 11,680 (D),m /z 15,863 (E),
m /z 17,240 (F ), and m /z
51,534(G). Ion signals are la-
beled with the SwissProt acces-
sion code for the corresponding
identified proteins.
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by direct MALDI MS/MS (see Fig. 4). The sequence was the

only possible match using MS-Tag and searching 14 fragment

ions. The prediction of the sequence from ITH4 was consistent

in mass accuracy and the cleavages were consistent with

expected fragment ion chemistry (i.e., preferential cleavage at

aspartic acid and proline). Additional fragment ions were

identified manually to verify the proper sequence was selected.

The peaks at m/z 17,240 and m/z 51,534 were identified by one-

dimensional SDS-PAGE separation, in-gel digestion, and

LC-MS/MS peptide sequencing. The peak at m/z 15,863 was

identified by C4 high-performance liquid chromatography,

fraction collection, MALDI monitoring, in-solution digestion

of the appropriate fraction, and LC-MS/MS as hemoglobin

h (eight peptides). The peak at 17,240 corresponds to a fragment

of apolipoprotein A-I or apolipoprotein glutamine-I (both

proteins have the same sequence). Because of the width of the

peak at m/z 51,534 in the MALDI profiles, it is likely to consist

of a combination of proteins. Based on in-gel digestion and LC-

MS/MS, a-1-antitrypsin (nine peptides), a-1-antichymotrypsin

(four peptides), and haptoglobin (five peptides) could all be

detected as components of this broad peak in the MALDI mass

spectra (Table 4). In addition to the eight peaks described above,

serum amyloid A (m/z 11,683) was identified by SDS-PAGE

separation, in-gel digestion and LC-MS/MS peptide sequencing

(three peptides) as well as C4 high-performance liquid

chromatography separation, MALDI detection, and LC-MS/

MS peptide sequencing (two peptides), after it was observed

primarily in cancer patients (one exception). The entire pattern

of peaks in Fig. 3D is consistent with the identification of serum

amyloid A. This cluster of peaks was consistently observed in

SAA+ patients. Two isoforms of SAA are observed at m/z

11,684 and m/z 11,629. The lower molecular weight peaks were

identified, not by their intact molecular weights, but by the mass

differences from the SAA ion signals. The molecular weights

could be accurately measured to within 0.5 Da using internal

calibration, the mass differences corresponding to arginine

residues (156) and serine residues (87) were measured

consistently and observed from both intact species. This

evidence was very convincing, especially in light of the fact

that this pattern of peaks was previously identified as SAA with

tandem mass spectrometry after immunoprecipitation coupled to

MALDI MS analysis (33).

Based on the protein identifications, both haptoglobin and

serum amyloid A levels were measured in different aliquots of

the same set of samples used for protein profiling to determine

whether either has diagnostic value for pancreatic cancer

patients. A two-sample t test of measurements of serum

haptoglobin showed no evidence of differential expression

between cancer patients and healthy individuals (t = 1.0265,

P = 0.31). However, serum amyloid A was significantly

differentially expressed (t = 3.82, P = 0.0002). Of the 113

healthy individuals, 112 had SAA levels below 100; the last

individual was an extreme outlier with an SAA level of 445.2.

Using SAA > 100 as our criterion, we are able to improve

Fig. 4 Inter-a-trypsin inhibitor H4 is identified by MALDI MS/MS of
m /z 4,284. The inset shows the high-resolution mass spectrum for the
parent ion before mass selection. The cleavages indicated occur
preferentially at either proline or aspartic acid residues, which is
consistent with the expected fragmentation pattern. Bottom, sequence
along with the neighboring residues.

Table 2 Ion signals chosen for sample classification and protein identification

No. m /z MALDI profile Mahalanobis distance T score False (�) False (+) Identification

1 51,534 BSA70 NA 6.62 8 22 a-1-Antitrypsin,
a-1-Antichymotrypsin,
Haptoglobin

2 17,240 MYO25 2.35 �5.63 8 14 Apolipoprotein A-I or Gln-I
3 15,863 MYO70 2.56 2.04 6 12 Hemoglobin h
4 19,064 MYO70 2.82 �3.78 6 8 Not observed
5 8,204 MYO70 3.08 2.27 6 6 None
6 4,284 MYO25 3.26 �2.43 5 6 Inter-a-trypsin inhibitor
7 39,892 MYO25 3.37 0.96 4 6 Not observed
8 9,351 MYO70 3.66 �3.60 4 5 None

NOTE. The coding for the mass spectra is as follows: MYO25 and MYO70 correspond to the 25% and 70% acetonitrile elutions analyzed the
instrument optimized using myoglobin; BSA70 corresponds to the 70% ACN fraction analyzed the instrument optimized using bovine serum albumin.

The Mahalanobis distance and T scores are reported for each peak; positive T scores indicate an increase in peak intensity in cancer patients’ sample
when compared to controls. Peaks are listed in the order they were added to the multivariate model by the greedy algorithm.

The number of misclassifications by the cumulative model in the validation set using all peaks selected is listed as false negatives and false
positives for each peak. Peaks 4 and 7 were not observed visually during manual inspection of the data: thus, no attempt was made to identify them.
Peaks 5 and 8 could not be identified.
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sensitivity for pancreatic cancer by adding an SAA screen

compared with using CA19.9 alone. Of the 23 cancer patients

that present with low CA19.9 levels, seven (2 stage III, 2

stage IVa, and 3 stage IVb) have high levels of SAA.

Furthermore, using the ELISA results for serum amyloid A,

a detection limit can be assessed for this MALDI profiling. We

could detect SAA in almost all samples above 50 Ag/mL, which

corresponds to 4.28 pmol/AL and a 4.28 Amol/L solution of the

SAA protein. The highest SAA concentration that the MALDI

could not detect was 61.6 Ag/mL (5.3 Amol/L) and the lowest it

could detect was 20.9 Ag/mL (1.8 Amol/L). These results

compare favorably to the practical limits of instrument

performance (protein detection at 100 fmol to 1 pmol),

considering the source of the protein, its presence in an

extremely complex mixture, and the fact that it is processed in

plasma and thus seems as multiple peaks in the MALDI mass

spectra (see Fig. 3D). This result is very important because it

links the MALDI data to concentration measurements and is

consistent with the claim that protein profiling using simple

fractionation coupled to direct MALDI MS analysis will not be

able to detect proteins which are low in abundance (31, 32).

CONCLUSIONS

The TOF MS instrument performance in both mass

resolution and mass measurement accuracy and the capacity

and reproducibility of the 96-well plate solid-phase extraction

fractionation are better than in SELDI experiments. For ion

signals between m/z 2,000 and m/z 30,000, the resolving power

for this linear TOF mass spectrometer ranges from 500 to 1,000

in these experiments, compared with 100 to 400 for SELDI

instruments. Even with a single external calibration at the center

of the plate, the deviation in mass measurement of apolipopro-

tein C1 at m/z 6,631 was less than +3 and the deviation in mass

measurement of hemoglobin a at m/z 15,127 was less than +6

across the entire sample set; both of these values are below a

mass measurement error of 0.05%. With internal calibration,

mass measurement error could be decreased to <0.01% (100

ppm) for these peptides and low molecular weight proteins.

Furthermore, we have established the detection limits of this

technique to be at the level of a 5 Amol/L protein concentration

by comparison of the MALDI mass spectra and ELISA

measurements of serum amyloid A. This value compares

favorably to the practical limits for detection of an individual

protein in a protein mixture with MALDI TOFMS (hundreds of

femtomoles to a few picomoles), because of the observation of

SAA as several peaks due to NH2-terminal modification (33) and

the complexity and contamination of the protein’s source,

plasma. In addition to improving the characteristics of the

protein profiling experiment, the utility of sequencing by direct

MALDI MS/MS was shown in the identification of the ion signal

at m/z 4,284 observed at higher intensity in controls as a

fragment of inter-a-trypsin inhibitor H4. A similar peak was

observed in a SELDI study of pancreatic cancer (m/z 4,277), but

the identity was not reported in that study (34). Direct MALDI

MS/MS is a useful tool for obtaining sequence information and

establishing validity for the ion signals observed in these protein

profiles.

Despite significant improvements in the protein fraction-

ation and mass spectrometry, the classification results are similar

to those of other plasma or serum protein profiling studies

reported in the literature. The sensitivity is often quite high

(>90%), but the specificity is not sufficient (70-75%). A test with

these characteristics gives too many false positives, perhaps

leading clinicians to give unnecessary treatment. The low

specificity is consistent with the protein identifications: the

proteins do not have specific roles in pancreatic cancer, but

rather in host response. SAA and haptoglobin are constituents of

the acute phase response. Despite prior reports which link these

proteins to cancer (35–43), we believe that these proteins will

not be specific enough for cancer diagnosis, because they are

also observed in other diseases involving inflammation,

including coronary disease and bacterial infection (44–48).

Indeed, measurements of plasma haptoglobin were not useful for

diagnosis of pancreatic cancer in the population studied here.

Based on the increased levels of SAA in a subset of cancer

patients (f30%), 7 of 137 (f5%) pancreatic cancer patients

were diagnosed that could have been missed by CA19.9

measurements; therefore, SAA may have some value as a

supplement to conventional tests. Unlike SAA and haptoglobin,

increased expression of plasma protease inhibitors is consistent

Table 3 The 90% lower and upper limits for sensitivity and specificity
of the six-peak model

a b Lower Upper

Sensitivity
0.2 1.8 0.778 0.926
1 1 0.795 0.937
1.6 0.4 0.807 0.944
Specificity
0.2 1.8 0.654 0.820
1 1 0.665 0.829
1.6 0.4 0.674 0.836

Table 4 Peptide sequences and the target proteins identified by LC-MS/MS

Protein Profile m /z Peptide sequences

Serum amyloid A 11,684 SFFSFLGEAFDGAR LTGHGAEDSLADQAANK FFGHGAEDSLADQAANEWGR
Hemoglobin h 15,863 VHLTPEEK SAVTALWGK VNVDEVGGEALGR LLVVYPWTQR

VVAGVANALAHK EFTPPVQAAYQK KFTPPVQAAYQK
FFESFGDLSTPDAVMGNPK KVLGAFSDGLAHLDNLK

Apolipoprotein A-I (Gln I) 17,240 QGLLPVLESFK THLAPYSDELR DYVSQFQSALGK VKDLATVYVDVLK DSGRDYVSQFQGSALGK
a-1-Antitrypsin 51,534 WERPFEVK LSITGTYDLK LVDKFLEDVKK LQHLENELTHDIITK VFSNGADLSGVTEEAPLK

LYHSEAFTVNFGDTEEAK(K) TLNQPDSQLQLTTGNGLFLSEGLK
GTEAAGAMFLEAIPMSIPPEVK WERPFEVKDTEEEDFHVDQVTTVK

a-1-Antichymotrypsin 51,534 EIGELYLPK LYGSEAFATDFQDSAAAK AVLDVFEEGTEASAATAVK HPNSPLDEENLTQENQDR
Haptoglobin 51,534 GSFPWQAK DIAPTLTLYVGK VTSIQDWVQK TEGDGVYTLNDK(K) LRTEGDGVYTLNNEK
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with and seems more specific for pancreatic cancer. Furthermore,

the serpins, a-1-antitrypsin and a-1-antichymotrypsin, have

been directly linked to pancreatic cancer (49–54). However, the

important caveat is that these proteins also play a role in the

acute phase response, so we can not conclusively state that a

specific diagnostic marker is being observed. Based on these

protein identities and the previous literature (49–54), it is

unlikely that these markers are specific for diagnosis of

pancreatic cancer. The unidentified peaks (m/z 8,204 and

m/z 9,351) are too high in m/z for direct MALDI MS/MS and

they have proven to be difficult to isolate chromatographically.
Although improvements were made to the fractionation

and mass analysis and differences could be detected between
cancer patients and corresponding controls, critical limitations
still exist for this technology. The sensitivity of MALDI protein
profiling remains poor when compared with antibody-based
methods, as previously pointed out by Diamandis (31, 32).
Furthermore, protein profiling experiments are restricted to the
limited mass range for protein detection with MALDI TOF MS
(most ion signals between m/z 2,000 and m/z 30,000). In the
future, we will pursue other analytic methods, including
profiling enzymatic digests of plasma proteins, which not only
increase the sensitivity and widen the accessible mass range for
the protein detection, but also enable direct identification using
tandem mass spectrometry peptide sequencing.
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