
Abstract The regulation of gene expression by steroid

hormones plays an important role in the normal devel-

opment and function of many organs, as well in the

pathogenesis of endocrine-related cancers. Previous

experiments have shown that many kallikrein genes are

under steroid hormone regulation in breast cancer cell

lines. We here examine the coordinated expression of

multiple kallikrein genes in several breast cancer cell

lines after steroid hormone stimulation. Breast cancer

cell lines were treated with various steroid hormones

and kallikrein (KLK/hK) expression of hK3 (prostate-

specific antigen, PSA), hK5, hK6, hK7, hK8, hK10,

hK11, hK13, and hK14 was analyzed at the RNA level

via RT-PCR and at the protein level by immunoflu-

orometric ELISA assays. We identified several distinct

hK hormone-dependent and hormone-independent

expression patterns. Hormone-specific modulation of

expression was seen for several kallikreins in BT-474,

MCF-7, and T-47D cell lines. hK6 was specifically up-

regulated upon estradiol treatment in all three cell lines

whereas PSA expression was induced by dihydrotes-

tosterone (DHT) and norgestrel stimulation in BT-474

and T-47D. hK10, hK11, hK13, and hK14 were specifi-

cally up-regulated by DHT in T-47D and by estradiol in

BT-474 cells. Bioinformatic analysis of upstream prox-

imal promoter sequences for these hKs did not identify

any recognizable hormone-response elements (HREs),

suggesting that the coordinated activation of these four

hKs represents a unique expression ‘‘cassette’’, utilizing

a common hormone-dependent mechanism. We con-

clude that groups of human hKs are coordinately

expressed in a steroid hormone-dependent manner. Our

data supports clinical observations linking expression of

multiple hKs with breast cancer prognosis.

Keywords Kallikreins Æ Breast cancer Æ Gene

expression Æ Steroid hormones Æ Hormone-dependent

expression

Abbreviations

KLK Kallikrein gene

HK Kallikrein protein

HRE Hormone-response element

ELISA Enzyme-linked immunosorbent assay

PSA Prostate-specific antigen

AR Androgen receptor

PR Progesterone receptor

ER Estrogen receptor; bp, base pair

DHT Dihydrotestosterone

DFP Difunisal phosphate

ECM Extracellular matrix

IGF Insulin-like growth factor

IGFBP Insulin-like growth factor binding protein

FBS Fetal bovine serum
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Introduction1

Steroid hormones, in particular estrogens, play an

essential role in breast cancer development and their

involvement in breast cancer tumorigenesis is associ-

ated with an increase in breast epithelial cell prolifer-

ation, thus facilitating malignant transformation [2].

All 15 kallikrein genes show differential expression

patterns in many cancers at the mRNA and protein

levels and many kallikreins have been examined as

prognostic indicators in breast cancer. Previous studies

have found that there is a close association between

steroid hormone stimulation of cancer cell lines and

kallikrein gene expression [3, 4].

Steroid hormones exert their effect by binding to

their cognate hormone receptor. Upon binding to the

receptor, the hormone-receptor complex translocates

into the nucleus and activates gene transcription via

binding to specific DNA sequences known as hormone-

response elements (HREs) [5]. HREs are usually found

in upstream promoter regions and recruit coactivators/

corepressors to the general transcriptional machinery

to modulate transcriptional activation. Hormone

receptors, in particular the androgen and progesterone

receptors (AR and PR, respectively) recognize very

similar DNA cis-elements, however, the estrogen

receptor (ER) binds to a quite unique sequence [6, 7] .

Therefore, the sensitivity/expression of a particular

kallikrein in a cell line to any given steroid hormone is

dependent upon both the presence of the hormone

receptor and consensus HRE binding sites.

By far, the kallikrein whose regulation by steroid

hormones has been most thoroughly studied is KLK3

(PSA). Initially, two androgen response elements

(ARE-I and ARE-II) were identified in the upstream

promoter region (–170 and –400 bp), functionally tested

and found to be active in LNCaP, a prostate cancer cell

line [8, 9]. An additional ARE was found at –4316 bp,

which induced a dramatic increase in KLK3 transcrip-

tion, in comparison to ARE-I and ARE-II [10] . AREs

have also been identified in KLK2, including one at –

170 bp and another in an enhancer region approxi-

mately 3000 bp upstream from the transcriptional start

site, a similar organization of regulatory elements to

KLK3 [11, 12]. The androgen-dependent expression of

PSA and hK2 represents the ‘‘classical’’ regulatory

mechanism of members of the kallikrein gene family.

Along with androgen sensitivity in prostate cancer cell

lines, KLK2 and KLK3 expression is also up-regulated

by androgens and progestins in the breast cancer cell

lines BT-474, T-47D, and MFM 223 [13]. KLK4 was also

found to be up-regulated by androgens in the prostate

cancer cell line LNCaP [14]. Putative AREs have been

identified in the immediate upstream promoter region of

KLK4, however, they have not been functionally tested.

Such similarities could account for the shared expression

patterns seen between these three genes, especially in

the androgen sensitive organ, the prostate [15, 16].

Until now, hormone-dependent kallikrein gene

expression studies have either been limited to indi-

vidual kallikrein genes or to specific cancer cell lines.

There is now evidence indicating presence of multiple

kallikreins in breast-associated biological fluids and

tissue extracts (normal and cancerous) and expression

levels that correlate with steroid hormone receptors

[17–20]. Therefore, we selected several breast cancer

cell lines representing benign (BT-20), solid tumor

(BT-474, T-47D, and MCF-7) and metastatic variants

(MDA-MB-468 and MDA-MB-231) to investigate the

hormone-dependent regulation of multiple kallikrein

family members. Our results indicate that several kal-

likreins (PSA, KLK5, KLK6, and KLK8) are regulated

in a classical HRE-dependent manner. However, kal-

likreins 10, 11, 13, and 14, are up-regulated by different

hormones in BT-474, T-47D, and MCF-7 cell lines, but

always in a parallel fashion. This unique coordinated

expression of four kallikrein family members by

steroid hormones has not been reported before

and defines a new hormone-dependent regulatory

mechanism for the kallikrein locus.

Materials and methods

Cell lines

The following breast cancer cell lines were obtained

from the American type culture collection (ATCC),

Rockville MD: BT-20, BT-474, T-47D, MCF-7, MDA-

MB-468, and MDA-MB-231.

Steroids and inhibitor compounds

All steroid hormones and the steroid antagonist

cyproterone acetate were obtained from Sigma

Chemical Co., St. Louis, MO. The steroid hormone

antagonist ICI 182,780 was purchased from Tocris

Cookson, Inc., Ballwin MO, while Mifepristone (RU

486) and Nilutamide were gifts from Roussell UCLAF,

Paris, France. Steroid and inhibitor stock solutions and

dilutions were prepared in 100% ethanol.

1 In this article kallikrein genes are denoted as KLK1...KLK15
and kallikrein proteins as hK1...hK15, in accordance with the
current nomenclature [1]
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Cell culture: hormone stimulations and blocking

studies

All cell lines were cultured in phenol-red-free RPMI

1640 media supplemented with fetal calf serum (11%),

at 37�C, 5% CO2 in plastic culture flasks. Once con-

fluent, 1 · 106 cells were seeded into 6-well plates with

the same medium to allow the cells to adhere. Twenty-

four hours after plating the medium was changed to

RMPI supplemented with 10% charcoal-dextran

stripped FBS and incubated for an additional 24 h. The

following day, the medium was changed to fresh

RMPI/charcoal-dextran stripped FBS for stimulation

and inhibitor studies.

Stimulation experiments

The following steroid hormones were used for all

stimulations: dihydrotestosterone (DHT), Norgestrel,

17b-estradiol, aldosterone, and dexamethazone. Cells

were incubated with each hormone added once (10–8 M

final concentration) for 24 h for RNA analysis and for

7 days for measuring secreted kallikrein protein pro-

duction in cell supernatants. All stimulations were

performed in triplicate.

Blocking studies

The cell lines BT-474 and T-47D were cultured as

described in the stimulation experiments. To block

steroid hormone receptors, blockers for different hor-

mones (10–6 M final concentration) were added for 1 h

into the culture media, to which the cells were then

stimulated with either estradiol (BT-474) or DHT

(T-47D). After 24 h, the cells were harvested for total

mRNA extraction. Blocking experiments were

repeated at least twice.

RNA extraction and RT-PCR

Total RNA was extracted from breast cancer cells

using TRIZOL reagent (Invitrogen, Carlsbad, CA)

following the manufactures instructions. RNA con-

centration was determined spectrophotometrically and

5 lg of total RNA was reverse-transcribed into first

strand cDNA using the SuperscriptTM First Strand

Synthesis kit (Invitrogen) using an Oligo(dT) primer.

PCRs were carried out using Qiagen HotStar Taq

Polymerase (Qiagen, Valencia, CA) on first strand

cDNA for multiple kallikreins. Table 1 lists the prim-

ers and expected product size for each kallikrein PCR.

An equal amount of each PCR product was run out on

0.9% agarose gels and visualized by ethidium bromide

staining.

Quantification of hKs in cell culture supernatants

The concentration of each hK was measured with

specific and quantitative immunofluorometric ELISA

assays developed in our laboratory. In brief, 96 well

polystyrene plates were first coated with 500 ng/well of

an hK-specific capture antibody. After overnight

Table 1 Kallikrein primer sequences used for RT-PCR

Kallikrein Sequence Predicted size (bp)

PSA (hK3) Forward 5¢ CCCACTGCATCAGGAACAAAAGCG 3¢ 600
Reverse 5¢ GGTGCTCAGGGGTGGCCAC 3¢

KLK5 Forward 5¢ GTCACCAGTTTATGAATCTGGGC 3¢ 330
Reverse 5¢ GGCGCAGAACATGGTGTCATC 3¢

KLK6 Forward 5¢ GAAGCTGATGGTGGTGCTGAGTCTG 3¢ 450
Reverse 5¢ GTCAGGGAAATCACCATCTGCTGTC 3¢

KLK7 Forward 5¢ CCGCCCCACTGCAAGATGAATGAG 3¢ 450
Reverse 5¢ AGCGCACAGCATGGAATTTTCC 3¢

KLK8 Forward 5¢ GCCTTGTTCCAGGGCCAGC 3¢ 420
Reverse 5¢ GCATCCTCACACTTCTTCTGGG 3¢

KLK10 Forward 5¢ GGAAACAAGCCACTGTGGGC 3¢ 470
Reverse 5¢ GAGGATGCCTTGGAGGGTCTC 3¢

KLK11 Forward 5¢ CTCGGCAACAGGGCTTGTAGGG 3¢ 460
Reverse 5¢ GCATCGCAAGGTGTGAGGCAGG 3¢

KLK13 Forward 5¢ GGAGAAGCCCCACCCACCTG 3¢ 440
Reverse 5¢ CACGGATCCACAGGACGTATCTTG 3¢

KLK14 Forward 5¢ CACTGCGGCCGCCCGATC 3¢ 485
Reverse 5¢ GGCAGGGCGCAGCGCTCC 3¢

b-actin Forward 5¢ ATCTGGCACCACACCTTCTA 3¢ 850
Reverse 5¢ CGTCATACTCCTGCTTGCTG 3¢
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incubation, the plates were washed, 50 ll of culture

supernatant or standards and equal volume of assay

buffer were added and incubated at room temperature

for 2 h. Plates were washed and biotinylated antibodies

were subsequently added. Following incubation with

biotinylated antibodies, alkaline phosphatase-conju-

gated streptavidin was added. Finally, diflunisal phos-

phate (DFP) and terbium-based detection solutions

were added and fluorescence was measured with the

Cyberfluor 615 Immunoanalyzer (MDS Nordion, Ka-

nata, ON, Canada). The calibration and data reduction

were performed automatically. More details for the

ELISA assays used have been described elsewhere as

follows: PSA [21], hK5 [22], hK6 [23], hK7 [24], hK8

[25], hK10 [26], hK11 [27], hK13 [28], and hK14 [29].

Results

Kallikrein gene regulation by steroid hormones

in human breast cancer cell lines

Previous studies have focused on individual kallikreins

and hormone responsiveness within one or two cell

lines [13, 19, 27, 30, 31]. However, such an approach

does not address the multi-parametric measurements

that are currently being undertaken to study the

prognostic and diagnostic value of multiple kallikreins

in various cancer types. We therefore extended the

previous studies on the hormonal regulation of human

kallikreins by including several breast cancer cell lines

and most members of this multigene family. Breast

cancer cell lines were chosen to be representative of

several origins (benign, solid tumor and metastatic).

From previous studies, it became clear that breast

cancer cell lines showed the greatest steroid hormone

sensitivity. Another aspect of kallikrein expression in

breast tumors was the correlation to hormone-receptor

expression. Shown in Table 2 are the relative levels of

three prominent receptors associated with endocrine-

related cancer progression and prognosis, the androgen

receptor (AR), estrogen receptor (ER) and proges-

terone receptor (PR).

All human tissue kallikreins were analyzed by

RT-PCR and by immunofluorometric ELISAs. We

first analyzed the expression of PSA in our breast

cancer cell lines upon steroid hormone stimulation. As

shown in Fig. 1, PSA shows specific DHT and Norge-

strel up-regulated expression patterns. This expression

pattern in T-47D and BT-474 cells has been previously

reported by our laboratory and highlights the stimu-

latory effect of DHT and the synthetic androgenic

progestin Norgestrel on PSA production [13). Other

cell lines, most notably MCF-7, which possess a func-

tional androgen receptor, did not show PSA expression

upon stimulation with either DHT or Norgestrel. The

failure for MCF-7 to express PSA after hormone

treatment may be due to other factors, as discussed

later.

KLK5, KLK6, and KLK8 were primarily up-regu-

lated by 17b-estradiol and, to a lesser degree, by other

steroid hormones in several cell lines (Fig. 2). KLK6

was up-regulated by 17b-estradiol in T-47D, BT-474,

and MCF-7. KLK5 also shows up-regulation after

estradiol stimulation but limited to BT-474 and MCF-7

cell lines. KLK8 is also up-regulated after estradiol

stimulation, but this is limited to the cell lines MCF-7

and T-47D. MCF-7 produces much higher concentra-

tions of hK5 and hK6 (Fig. 2B), which is most likely a

result of the higher levels of the estrogen receptor in

this cell line versus T-47D and BT-474 (Table 2).

However, the relative changes in the kallikrein levels

upon estradiol stimulation are similar. hK6 protein

shows an approximate 13-fold increase in BT-474, an

11-fold increase in MCF-7 and an 8-fold increase in

T-47D. hK5 protein levels in MCF-7 and BT-474 were

increased by 12 and 13-fold, respectively. Finally, hK8

levels show about a 5-fold increase in T-47D and a

4-fold increase in MCF-7. This kallikrein is not pro-

duced in BT-474 cells and hK5 is not produced in T-

47D cells, in accordance with the RT-PCR data

(Fig. 2A, B). The estrogen receptor-negative cell lines

BT-20 and MDA-MB-231 failed to show any expres-

sion of these three kallikreins and PSA upon hormone

stimulation (data not shown). The expression of

various kallikreins in the cell line MDA-MB-468 is

discussed separately later.

Coordinated multiple kallikrein expression

Hormonal stimulation of different breast cancer cell

lines revealed a unique expression pattern for kallik-

reins 10, 11, 13, and 14. The cell lines BT-474, T-47D,

and MCF-7 are all hormone-sensitive regarding

Table 2 Relative sex hormone receptor levels in breast cancer
cell lines used in this study

Cell line ER AR PR References

BT-20 – – – [32]
T-47D + + ++ [33]
BT-474 + + + [33]
MCF-7 ++ + + [33]
MDA-MB-468 – ND – [34]
MDA-MB-231 – – – [35, 36]
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expression of these kallikreins, however, by different

types of hormones (Fig. 3). Whereas, KLK10, KLK11,

KLK13, and KLK14 show mainly up-regulation by

estradiol in BT-474 cells, in T-47D, the same kallik-

reins are mainly up-regulated by DHT. Moreover,

whereas a single hormone up-regulated these four

kallikreins in BT-474 and T-47D, MCF-7 cells express

KLK10, KLK11, KLK13, and KLK14 almost equally

upon estradiol, DHT and Norgestrel stimulation. With

the exception of hK13, the kallikreins hK10, hK11, and

hK14 show roughly parallel protein expression patterns

to their RNA profiles (Fig. 3A, B). In BT-474 cells,

hK10 and hK11 show an approximate 18–20-fold

increase and hK14 an 8-fold increase upon estradiol

stimulation. Similarly, in T-47D cells, a 4–6-fold

increase of these three proteins was seen upon DHT

stimulation. hK13 protein levels were below the

detection limit of our ELISA method and are thus not

shown in Fig. 3B.

The specificity of estradiol to stimulate KLK10 and

KLK11 in BT-474 cells and of DHT in T-47D cells via

their respective hormone receptors was tested by per-

forming blocking experiments using antagonists of

estrogens (ICI 182,780), androgens (cyproterone ace-

tate) and progestins (mifepristone). The antagonists

were added alone or in concert with the stimulating

hormone, followed by RT-PCR for KLK10 and

KLK11, 24 h later. As illustrated in Fig. 4, the

expression of these kallikreins is dependent upon both

the hormone and their cognate receptor, as ICI 182,780

can specifically block KLK10 and KLK11 expression in

BT-474 cells in the presence of estradiol, but the other

antagonists cannot. Similar results are seen with DHT

stimulation of KLK10 and KLK11, with the androgen

antagonist cyproterone acetate in T-47D cells. These

results are consistent with the notion that these four

kallikreins are co-regulated in a hormone-dependent

manner, through their respective activating receptors,

in these cell lines.

Hormone-independent kallikrein expression

While some cell lines show hormone-dependent kal-

likrein gene expression (BT-474, MCF-7, and T-47D)

other cell lines do not produce any kallikreins regard-

less of hormone stimulation (BT-20 and MDA-MB-

231). However, the association of kallikreins and clin-

ical cancer manifestation is often linked to dysregu-

lated kallikrein expression [3, 37, 38]. Of particular

significance is the cell line MDA-MB-468 which

expresses several kallilkreins in a hormone-indepen-

dent manner.

Different from the other cell lines tested for

kallikrein expression, the MDA-MB-468 cell line,

although lacking any hormone receptors, expresses an

abundance of these kallikreins regardless of the pres-

ence of any steroid hormone (Fig. 5). KLK5 is most

strongly expressed in MDA-MB-468 followed by

KLK6, KLK10, KLK7, KLK8, and to a lesser degree

KLK11. Concordance between mRNA and protein

expression is seen in Fig. 5A, B. Of note is that MDA-

MB-468 is a metastatic cell line, suggesting that the

dysregulated expression of these kallikreins may be

correlated with tumor aggressiveness. The switch form

hormone-dependent kallikrein gene expression to

hormone-independent expression has been observed

Fig. 1 PSA expression profile in breast cancer cell lines. (A) RT-
PCR analysis of PSA expression in the hormone-responsive cell
lines T-47D, BT-474, and MCF-7. PSA shows specific DHT and
norgestrel sensitive up-regulation in T-47D and BT-474, but not
in MCF-7 cells. Actin expression was used as a control of RT-

PCR analysis. (B) PSA protein production in T-47D and BT-474
cells was quantified by ELISA in tissue culture supernatants. Alc,
ethanol; Est, 17b-estradiol; Ald, aldosterone; DHT, 5a-dihyd-
rotestosterone; Dm, Dexamethazone; Nor, Norgestrel
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clinically for PSA (hK3) in prostate cancer. The con-

version from hormone-dependent to hormone-inde-

pendent expression has been correlated to several

mutations including constitutive MEK-ERK activity

and loss of the tumor suppressor protein phosphatase

and tensin homologue deleted from chromosome 10

(PTEN) [39, 40].

Discussion

We describe a detailed analysis of kallikrein expression

profiles in breast cancer cell lines. The characterization

of the hormone-dependent and hormone-independent

expression profiles of the tissue kallikreins in the breast

cancer cell lines studied are clinically relevant to the

progression, hormonal dependence and prognosis of

breast cancer. We have extensively published the

clinical significance of individual kallikreins as poten-

tial and viable biomarkers in a number of cancers [3, 4,

41], however multi-parametric kallikrein expression for

assessing prognosis is currently underway for several

endocrine-related malignancies, including breast,

ovarian and prostate cancers [42]. Clearly, the expres-

sion of several kallikreins is steroid hormone-depen-

dent, with sex hormones (estrogens, androgens and

Fig. 2 Estradiol-stimulated kallikrein expression. (A) RT-PCR
analysis of KLK5, KLK6, and KLK8 genes shows selective up-
regulation by estradiol in all three hormone sensitive breast
cancer cell lines. KLK6 is up-regulated in all three lines, but

KLK5 and KLK8 expression is increased in two cell lines, and
shown. (Actin control, see Fig. 1) (B) Protein production of hK5,
hK6, and hK8 as measured by ELISA assays in tissue culture
supernatants

Breast Cancer Res Treat

123



progestins) playing a major role, in comparison to

glucocorticoids (dexamethazone) and mineralocortic-

oids (aldosterone).

MCF-7, T-47D, and BT-474 show selected, estra-

diol-specific up-regulation of KLK5, KLK6, and

KLK8. This observation would suggest presence of

functional estrogen receptors in these cell lines.

Despite possessing functional hormone receptors, PSA

is not expressed or modulated by steroids in MCF-7

cells, KLK5 in T-47D cells and KLK8 in BT-474 cells.

This would suggest that either genetic or epigenetic

aberrations in the kallikrein locus are affecting the

expression of these kallikreins, or that these kallikreins

are expressed at such low abundance that our assays

cannot detect them. Overall, although hormone-

receptor levels frequently correlate with kallikrein

expression levels, as seen in MCF-7, which has high

levels of estrogen receptors and secretes much more

hK5 and hK6 than the other hormone responsive cell

lines, this observation does not hold true for the other

kallikreins. Altogether, this study underscores the need

to further characterize the underlying mechanisms by

Fig. 3 ‘‘Cassette-type’’ kallikrein expression. A. KLK10,
KLK11, KLK13 and KLK14 mRNAs are up-regulated by
different hormones in T-47D, BT-474 and MCF-7 cells. These
kallikreins are all up-regulated by DHT in T-47D, estradiol in

BT-474 and DHT, estradiol and Norgestrel in MCF-7 cells.
(Actin control, see Fig. 1) (B) Protein expression profiles, as
assessed by ELISAs on tissue culture supernatants
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which these kallikreins are transcriptionally regulated,

in order to understand their physiological significance

in cancer progression and their connection to

hormone-refractory cancer.

Scanning of up to 6 kbupstream proximal promoter

regions by bioinformatics (Signal Scan, http://www.

bimas.dcrt.nih.gov/molbio/signal/) failed to identify

estrogen response elements (EREs) in the estradiol-

up-regulated KLK5, KLK6, and KLK8 genes. For

KLK10, previous studies failed to identify either

androgen or estrogen-specific HREs that are necessary

for the differential expression patterns observed in

T-47D and BT-474 [43]. The difficulties arising from

traditional analysis of promoter deletion constructs

include the possibility that transcriptional gene acti-

vation may require the coordinated binding of a

number of co-transcription factors along with the

hormone receptor or be mediated indirectly via other

hormone-dependent trans-activating factors. Our data

suggests the latter, having identified a number of

transcription factors that are also required for the

hormone-dependent activation of a number of kallik-

reins (our upublished data).

Kallikrein regulation is further complicated by the

observed coordinated ‘‘cassette-type’’ expression of

multiple kallikreins by a number of different hor-

mones. These kallikreins include hK10, hK11, hK13,

and hK14. As observed in BT-474 cells, these kallik-

reins are under the regulation of estradiol, whereas in

T-47D they are up-regulated upon DHT stimulation,

and they are nearly equally up-regulated by estradiol,

DHT, and Norgestrel in MCF-7. The failure of BT-474

to show specific DHT-dependent expression of these

four kallikreins, as seen in T-47D (the same being said

for T-47D and estradiol stimulation), is not a result

non-functional androgen receptor, as BT-474 cells

clearly show androgen-dependent up-regulation of

PSA (Fig. 1). Moreover, although apparently lacking

proximal upstream HREs, these kallikreins are sensi-

tive to hormone-receptor antagonists such as cypro-

terone acetate in T-47D cells stimulated by DHT, and

ICI 182,780 in estradiol-treated BT-474 cells (Fig. 5).

The traditional understanding of kallikrein (e.g.

PSA) up-regulation involves the interaction of a hor-

mone receptor with an upstream HRE. It is not clear

whether the coordinated ‘‘cassette-type’’ expression of

KLK10, KLK11, KLK13, and KLK14 is regulated by

similar or different molecular mechanisms in each cell

line, and whether this phenomenon is linked to single

hormone-dependent trans-activating factors. Recently,

several studies suggest that signal transduction path-

ways may influence the hormonal regulation of kal-

likrein gene expression. The AR has been shown to be

activated by several pathways including MEK through

the RAS pathway, AKT kinases and PKC, which sen-

sitize the receptor to low circulating levels of androgen

[44–46]. Using RAS effector-loop gain-of-function

RAS mutant stable cell lines, it has been shown that

constitutive MEK activation can hyper-induce PSA

protein expression in LNCaP cells under normal levels

of androgen [47, 48]. Constitutive MEK activity was

also correlated with the switch of prostate cancer cells

lines from an androgen-dependent to an androgen-

independent state [39, 48].

It has been found that approximately 30% of all

breast cancers either have a deletion or mutation in the

gene encoding the tumor suppressor protein PTEN.

PTEN is a negative regulator of AKT function,

inducing in increases in cell growth and proliferation

[49]. The role of PI3K/AKT pathway in regulating

kallikrein expression has been studied in LNCaP

prostate cancer cell lines. LNCaP is a PTEN-deficient

Fig. 4 KLK10 and KLK11 expression decrease by respective
hormone antagonists in T-47D and BT-474 cells upon hormone
stimulation. RT-PCR performed on RNA extracted from
hormone plus antagonist-treated cells, reveals that the hormone
specific up-regulation of KLK10 and KLK11, can be effectively

suppressed. Left panel: Suppression of KLK10 and KLK11
expression by ICI 182,780 in estradiol-stimulated BT-474 cells.
Right panel: Suppression of KLK10 and KLK11 expression by
cyproterone acetate in DHT-stimulated T-47D cells
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cell line and it has been shown that either transient

PTEN expression activity or PI3K inhibitors can

repress PSA expression in the presence of DHT stim-

ulation, by regulating the transcriptional activity of the

androgen receptor [50]. Thus, the actions of single or

integrated signal transduction pathways may explain

how several hormones may activate the same kallikrein

genes. It is currently being investigated whether other

kallikreins are also influenced by the RAS-MEK-ERK

and PI3K/AKT signal transduction pathways, with

preliminary results suggesting that these pathways can

regulate the expression of kallikreins in breast cancer

cell lines that show both hormone sensitivity and

dysregulated expression.

Many kallikreins have been assessed as prognostic

indicators in breast cancer [3]. As observed in the

metastatic cell line MDA-MB-468, several kallikreins

are expressed regardless of hormone stimulation. Such

Fig. 5 Hormone-independent kallikrein expression in MDA-
MB-468 cancer cells. (A) RT-PCR of kallikreins 5, 6, 7, 8, 10 and
11 indicates that kallikreins are not regulated by steroid

hormones. b-actin is used as a control. (B) ELISA assays of
these kallikreins in tissue culture supernatants correlate the with
RT-PCR data
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kallikrein dysregulation may be an indication of tumor

progression, transforming from a hormone-dependent

to hormone-independent state and to a more aggres-

sive phenotype. Therefore, the transition to hormone-

independent kallikrein expression could be explained

by a mechanism that incorporates components that are

required for hormone-dependent expression. As noted

in Table 2, MDA-MB-468, MDA-MB-231, and BT-20

are sex hormone receptor-negative, whereas MDA-

MB-468 highly overexpresses several kallikreins, but

BT-20 and MDA-MB-231 fail to express any. The

reason may be linked to specific mutations of MDA-

MB-468. This cell line is PTEN-negative and overex-

presses EGFR, common alterations found in more

aggressive breast cancer types [51, 52]. The metastatic

properties of MDA-MB-231, which does not express

KLKs, must therefore lie in other alterations that are

not related to kallikrein expression.

The application of phage-display technology has

identified several kallikrein substrates that may have

physiological relevance in tumorigenesis [53–55]. Many

of the identified substrates suggested that kallikreins

are able to cleave extracellular matrix (ECM) proteins

including, laminin a-5 chain precursor, matrilin-4, and

collagen IV [53]. In-vitro analysis has shown that hK5,

hK6, and hK13 are also able to hydrolyze a variety of

ECM proteins including, laminin, fibronectin and col-

lagen I, II, and III [56–57]. Prostate cancer cells over-

expressing PSA and hK4 showed both increases in cell

migration, linked to loss of E-cadherin [58]. There are

also several non-ECM-related proteins which are

hydrolyzed by kallikreins. hK2, PSA, and hK5 may be

regulators of the insulin-like growth factors (IGFs) in

prostate carcinogenesis. It has been shown that hK2,

PSA, and hK5 are IGFBP proteases that can collec-

tively degrade IGFBP2, IGFBP3, IGFBP4, and

IGFBP5, resulting in release of IGF1, which, in turn,

can interact with the IGF1 receptor, stimulating growth

of normal, stromal, and malignant prostate cells [32,

34]. Finally, another kallikrein substrate subgroup that

has been studied is the kallikreins themselves. hK5 can

activate pro-PSA and pro-hK2 [55]. Therefore, the

discovery that these kallikreins are able to hydrolyze a

number of different substrates, taken together with the

dysregulated expression of these proteins in breast,

prostate and ovarian cancer, raises the possibility that

kallikreins could contribute to the invasiveness and/or

progression of these cancers.

Characterization of the mechanisms mediating the

coordinated expression of kallikreins in specific tissues

and their dysregulation in several cancers will certainly

help to answer the above questions. Our observation of

coordinated kallikrein expression is an indication of

the existence of a complex regulatory mechanism that

not only controls the expression of these genes, but

also their downstream physiological function.
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