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Summary

Immunoassay is an established technique which has contributed enormously to
biomedical analysis. DNA hybridization (DNA probing) methodology is emerging
as the most promising new discipline of laboratory medicine with potential applica-
tions in areas such as genetics, pathology, microbiology and oncology. In this
review, immunoassay and DNA probing methodologies are considered together
because of their many similarities in assay design and labeling systems. Selected
labeling systems are described in this paper in order to stress strategies, general
principles and future trends. Special attention has been given to systems that
introduce linear or exponential amplification. In the author’s view, such systems will
dominate in future applications. It is anticipated that during the next decade,
immunoassay and DNA probing assays will be carried out on completely automated
systems.
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1. Introduction

Analytical methodologies usually rely on the reaction between the analyte of
interest and a specific reagent. The analyte concentration can then be determined by
measuring either the concentration of the analyte—reagent complex (product) or the
amount of residual reagent. In the immunoassay technique, the specific reagent used
is an antibody. In DNA probing *, the specific reagent is a complementary
nucleotide sequence. These reagents are characterized by two important advantages
over conventional analytical reagents, exceptional specificity and very high affinity
for the analyte of interest. These characteristics are mandatory for devising sensitive
and specific assays.

There is a large variety of analytical designs for immunoassays and DNA probing
assays. The labeling—detection systems that are used in these two areas are similar
and include radioactive nuclides, fluorescent or chemiluminescent labels, enzymes or
combinations of the above. In this review, I will describe a number of analytical
detection methodologies that are used for immunoassay and DNA probing. It is
anticipated that DNA probing will follow the growth pattern of immunoassay in the
last 30 years, with a major impact on clinical biochemistry, microbiology, pathology,
hematology and genetics [1-3]. Many believe that DNA-based testing will become

* Although the term DNA probing is used throughout this review, the methods described are equally
applicable to RNA probes.
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an important independent discipline in the area of laboratory medicine, with its own
cadre of trained professionals and technologists [2].

2. Principles, current status and future applications of analytical methods based on
immunoassays and DNA probes

2.1. Similarities and differences between immunoassay and DNA probing

These two techniques are suitable for the direct detection of targets of clinical
interest. Targets for immunoassay, using polyclonal or monoclonal [4] antibodies
include hormones, proteins, metabolites, drugs, tumor products, antigens and anti-
bodies to infectious agents. Targets for DNA probing are sequences of nucleic acids
complementary to a nucleic acid probe.

DNA probing is an emerging tool, but the techniques are slow and laborious in
comparison to immunoassay [5]. However, a number of commercial products are
already available and are discussed in a recent review [6].

It is important to realize the particular strengths of each of these two technolo-
gies. In Table I, a partial list of areas of applications of the two technologies is
shown and predictions for future developments are made [7]. Antibodies recognize
an epitope which consists of about 4-5 aminoacids, which may occur in closely
related targets leading to cross-reactivity. This is sometimes desirable; for example a
microbiological test may be designed to screen for all strains of a given organism. In
DNA-based assays the target is a complementary DNA and the hybridizing probe
can be synthesized to react with a unique sequence. Thus, the specificity can be
more easily manipulated according to the assay demands.

Current immunoassays detect down to 107'* mol/l of analyte and this is
sufficient for many applications involving drugs, metabolites or gene products. An
individual cell can produce great amounts of these products constituting an intrinsic
amplification of the DNA content. In the area of infectious disease, it is sometimes
easier to measure gene products of the infectious agent (e.g. hepatitis B surface
antigen) because they are produced in great excess. Alternatively, antibodies against

TABLE 1

Applications of immunoassay and DNA probing #

Immunoassay Immunoassay and DNA probing P
DNA probing
Endocrinology Infectious diseases Genetic disease:
Therapeutic Cancer Prenatal diagnosis,
drug monitoring Food testing carrier detection,
Cell typing Plant diagnostics susceptibility
Veterinary diagnostics Latent viral infections
Forensics

* Modified from ref. [7].
® In the areas listed, DNA-probing is likely to establish clear dominance over immunoassay but this does
not mean that immunoassay or other testing will not be used at all.
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infectious agents can be measured (e.g. hepatitis B surface antibody) because they
are also produced in great excess by the host. Exceptional sensitivity is usually
needed to directly detect specific genomic sequences of the infectious agent. A
useful assay may need sensitivities which are in the order of 10000-100 000 of target
molecules per assay. To solve this sensitivity problem, it is usually necessary to
apply a pre-enrichment step (culture), an in-vitro amplification step (polymerase
chain reaction) or measure targets that are present in thousands of copies in the
infectious agent (e.g. ribosomal or messenger RNA).

It is likely that immunoassay and DNA probing will complement each other.
Methods of DNA probing in diagnostic microbiology, pathology and genetics have
recently been reviewed [8—14]. DNA probing assays may have important advantages
over immunoassay in specific microbiological diagnostic problems such as detection
of viroids, which lack any protein component and the detection of certain viruses
e.g. cytomegalovirus (CMV) when propagation procedures are very slow and tedious
or the Epstein—Barr virus and some papillomaviruses which propagate with diffi-
culty or not all in vitro. In these instances, viral DNA amplification by the
polymerase chain reaction (PCR) and DNA probing is a practical tool. Probes can
be used to detect group-specific and type-specific viruses as with enteroviruses. An
important application of DNA probing is identification of specific gene sequences
in bacteria which are linked to pathogenicity. Once the hybridization assays become
automated [8], they can be applied to mass screening of samples (e.g. in blood
banking) not only for viral and bacterial nucleic acids but also for parasites [5].

2.2. Major labeling systems

Numerous labeling-detection systems have been proposed over the last 30 years
(Table II). Commercial systems are available in various formats for both immunoas-
say and DNA probing. Radioactive labels are gradually being replaced from
immunoassay as non-radioactive systems reach or even surpass the detectability of

TABLE II

Major labeling systems

Examples
1. Radioactive nuclides ]251, 32 P, 358, *H
2. Fluorescent labels Fluorescein, Rhodamines, Phycobiliproteins,

Rare-earth chelates, Ethidium

3. Luminescent labels Luminol derivatives, Acridinium esters,
Dioxetane derivatives, Bacterial or firefly
luciferace

4. Enzymes ‘ Alkaline phosphatase (ALP), Horseradish

peroxidase (HRP), beta-Galactosidase

5. Combinations Enzymes with substrates liberating
fluorescent, luminescent or radioactive
products, see text.
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TABLE 111

Possible future applications of ultrasensitive assays

Examples-comments

1. Measurement of certain analytes at Adrenocorticotropic (ACTH) and antidiuretic
sub-normal concentration ranges (ADH) hormone

2. Assay of more analytes in serum Hypothalamic releasing hormones, growth factors

3. Discovery of new analytes New markers of human disease

4. Detection of minute amounts of Early diagnosis and follow-up for relapse
tumor related products after surgery

5. Enumeration of receptor numbers Better understanding of receptor-mediated
in single cells events

6. Assay of nucleic acid sequences, Human immunodeficiency virus type 1 (HIV-1),
antigens, or antibodies to infectious Cytomegalovirus, Epstein—Barr virus. Early diagnosis
agents of infected asymptomatic individuals

radionuclides. In DNA probing, radionuclides are still dominant because alternative
systems are still less sensitive.

It is now clear that the most sensitive detection systems must rely on amplified
designs. Amplification can be chemical, enzymatic-linear or enzymatic-exponential.
Systems based on such designs will be described later in this review.

2.3. Usefulness of future more sensitive assay systems

The current practical sensitivity of immunoassay lies in the 107 *~10""* mol /1
concentration range which implies that with a typical sample volume of 100 pl,
about 107'7-10"'"® mol of substance (~ 6 X 10°-6 X 10° molecules) could be
measured. Such sensitivity is adequate for many clinical applications, e.g. in
endocrinology, because many hormones or other analytes can be measured directly
and without the need for preconcentration. Some possible applications of ultrasensi-
tive assays 1s shown in Table III. In DNA probing, the ultimate sensitivity would be
the detection of a single nucleotide sequence with or without the need of previous
amplification. When this is achieved, interpretation of results, in selected cases, may
be more confusing than useful because of the chance of finding minute amounts of,
for instance, infectious agent sequences in specimens from asymptomatic individu-
als. Questions then may arise of the importance of the findings and the possible
action to be taken. Nonetheless, ultrasensitive methodologies are likely to enrich
current knowledge and create novel applications in the field of biotechnology and
clinical medicine.

2.4. Current status of immunoassay and future projections

Hundreds of analytes can be measured by immunoassay techniques. Since the
original concept [15] developments have included homogeneous immunoassays [16],
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‘two-site’ non-competitive assays [17], novel solid-phases for the easy separation of
bound and free label [18], monoclonal antibodies [4] and replacement of 1 with
alternative labels [19]. Non-isotopic immunoassays based on fluorescent, chem-
iluminescent or enzyme labels are commercially available. Future developments in
immunoassay will focus on fully automated systems having random access capabil-
ity and throughputs similar to the well-established clinical chemistry analyzers,
enhanced sensitivity, simple assays independent on sample volume (i.e. immuno-
dipstics) [20], multi-analyte assay devices [21] and immunosensors suitable for real
time monitoring.

2.5. Current status of DNA probing and future projections

The principles of nucleotide probing methodology rely on the ability of labeled
DNA and RNA fragments (probes) to detect, by binding, complementary arrange-
ments of nucleotides (targets). Because such binding can be, under appropriate
conditions, extremely strong and specific, the resulting assays can demonstrate
excellent specificity and sensitivity. A unique property of nucleic acids is their
ability to multiply exponentially by enzymatic catalysis. After amplification by the
polymerase chain reaction, the starting material is available in great abundance for
further testing.

Although a relatively new technique, DNA probing has already been used in
many research applications and more recently for routine testing. It is anticipated
that DNA diagnostic laboratories will disseminate quickly during the next decade
and become an important part of hospital routine laboratory testing. Clearly, DNA
probing is emerging as the most promising new area in laboratory medicine and its
impact will be similar to that of immunodiagnostics. The technique is routinely
being used in detection of genetic disease [22,27-31] in infectious diseases in
humans, animals, food and the environment [9-14], in forensic sciences [23] and in
oncology [24-26].

Major efforts are now being concentrated on non-isotopic detection systems
because of the cost, short half-life and health hazards associated with the use of **P
and other radionuclides. The non-isotopic detection technologies that are now used
in the field of immunoassay (Table II) are also applicable to DNA probing.

2.6. Immunoassay designs

The vast majority of heterogeneous immunoassays, are now performed with three
general assay designs (Fig. 1) [32,33]. ‘Competitive type’ assays are performed with
either the immobilized antibody or the immobilized antigen approach. Non-compe-
titive type assays are performed by using the ‘two-site’ or ‘sandwich’ principle.
Whenever possible, the ‘sandwich’ type assay is preferred. Only when this principle
cannot be applied i.e. when the molecule is of low molecular weight and cannot
react simultaneously with two different antibodies, is the competitive assay per-
formed. The theoretical and practical sensitivities obtained with these principles will
be considered later.
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Fig. 1. Heterogeneous immunoassay designs. Upper panel: A ‘two-site’ non-competitive sandwich

methodology for thyroid stimulating hormone (TSH) using two antibodies. One of the antibodies is

immobilized on the solid-phase (capture antibody) and the other is labeled (detection antibody). The

label is represented by B. In indirect systems, B may be biotin. Excess reagent is removed by washing.

Middle panel: Competitive immunoassay using the immobilized antibody approach. B denotes the label

that is linked to the antigen, in this case thyroxine (T4). Lower panel: Competitive immunoassay for T4
using the immobilized antigen approach. Solid-phase antigen is a T4-protein conjugate.

In homogeneous immunoassay, one fraction of the label (bound or free) can be
quantified in the presence of the other by taking advantage of a physicochemical
difference usually associated with the presence of the antibody. Although homoge-
neous immunoassays are simple to perform and usually completely automated, they
suffer from the drawback of not being highly sensitive; the maximum attainable
sensitivity not usually exceeding 10~° mol/l. Homogeneous immunoassays are
mostly of the ‘competitive’ type.
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Fig. 2. See figure legend on facing page.
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2.7. DNA probing assay designs

Methods of preparing DNA probes are described elsewhere [6,34-36]. These
probes can then be labeled and used for hybridization. Two main labeling strategies
are used, either direct labeling, with the label covalently attached to DNA; or
indirect labeling with a hapten covalently bound to DNA in order to link the probe
with a detection system carried by either an antibody or a binding protein specific
for the hapten. A binding protein with specificity to double stranded DNA can also
be used as the carrier of the label (Fig. 2).

For direct labeling, the most widely used labels are P, S, "H and '*’1, the
fluorescent compounds fluorescein, tetramethylrhodamine and ethidium and the
enzymes alkaline phosphatase, horseradish peroxidase and bacterial or firefly
luciferase. For indirect -labeling, antibodies to DNA:DNA or DNA:RNA are used
and second antibodies can be applied carrying a suitable reporter [37,38]. Alterna-
tively, histones or other proteins carrying a reporter can be used [39-42]. In one of
the most widely used procedures for indirect labeling, the vitamin biotin is cova-
lently attached to the probe. Avidin or streptavidin carrying enzymes, fluorescent
probes, or other labels are then used to link the probe to the reporter system
[43-59]. Alternatively, biotin antibodies are used carrying either the reporter or
other intermediate bridge systems (e.g. second antibody, protein A etc) to complete
a detectable complex [60]. Other haptens have been used instead of biotin with
anti-hapten antibodies carrying reporter molecules. Some of these haptens include
dinitrophenyl [61], ethidium [62], N-2-acetylaminofluorene [63-65], N-2-
acetylamino-7-iodofluorene, sulfone [66], S-bromodeoxyuridine [67] and digoxigenin
[68]. For more details see a recent review [69].

The solid-phases used in DNA-based assays are similar to those used in im-
munoassay and include nitrocellulose, polypropylene, polystyrene (microtiter plates),
cellulose [70], latex particles [71], magnetic spheres [72-74] and nylon [75]. The
‘sandwich’ type heterogeneous immunoassays (Fig. 1) are very similar to the
‘sandwich’ DNA hybridization assay as described in [76]. The competitive-type
heterogeneous immunoassays are very similar to the strand DNA probe displace-
ment assays [77,78]. The homogeneous DNA hybridization assays described in [79]

—

Fig. 2. The most widely used assay designs for DNA probing. A: After hybridization of the target
sequence (usually immobilized on a solid-matrix) with the probe, antibodies against DNA:DNA or
DNA:RNA duplexes are added. These antibodies can carry a reporter molecule (RM, —=) or the RM
can be carried by a second antibody (not shown). Instead of antibody, a histone (H) which carries a RM
can also be applied. In these and the assays described below, excess probe and excess reagents that are
added are washed out under carefully controlled conditions. The signal generated by the reporter can
either be visualized on films or measured by appropriate instrumentation. B: The specific probe is
directly labeled with the RM. A great variety of RM can be used as described in the text. The probe may
also carry a low molecular weight substance (hapten, ——o, right panel) or biotin, B (C, left panel)
which is then reacting with a specific antibody or a binding protein (e.g. streptavidin, SA) carrying RM.
Alternatively, (C, right panel) streptavidin can be used unlabeled and biotinylated RM are added which
link to the hybridized complex as shown.
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(energy transfer principle) are similar to the one used for immunoassay many years
ago [80]. The CEDIA homogeneous immunoassay system [81] has also been used
for DNA probing with appropriate modifications [82]. Also, the enzyme-channeling
principle has been applied successfully for DNA probing [83]. Because of its wide
utilization in immunoassay and DNA probing, the biotin-streptavidin system will
be described briefly under a separate heading.

3. Amplification strategies and background signal minimization

3.1. The biotin-streptavidin system

Among the known non-covalent molecular interactions, the avidin or streptavi-
din-biotin interaction is unique because of its specificity and exceptional affinity.
The affinity constant of the biotin—avidin interaction is around 10" 1/mol and is
among the highest values reported; the affinity constants for antigen-antibody
interactions is at best around 10''-10'? 1 /mol. The avidin-biotin system can be used
in the field of immunoassay and DNA probing in a number of different ways, based
on the principle that biotin can be easily covalently linked to proteins, DNA or
other molecules without altering their binding or other biological activity. Active
biotin analogs suitable for conjugation (biotinylation) having a variety of reactive
groups are commercially available [84]. The conjugation chemistries involved are
simple and efficient. In one variation of the possible assay designs, biotinylated
antibodies or probes are used (Fig. 2) and avidin or streptavidin is the carrier of the
reporter molecule. Alternatively, avidin or streptavidin is used unlabeled to link a
biotinylated reactant (antibody or probe) with a biotinylated reporter molecule (Fig.
2). This latter design takes advantage of the property of avidin or streptavidin to
bind more than one biotin molecule (theoretically up to four could be bound).

This versatile system has been used in many other different applications e.g. in
immunohistochemistry, flow-cytometry, protein blotting, protein purification,
nuclear medicine etc. [85-88]. The most serious limitation of this system is that
streptavidin and avidin show higher non-specific binding than antibodies. Aside
from this, a number of advantages are associated with the system (Table IV).
Streptavidin has advantages over avidin, in that it is not a glycoprotein and it has an
isoelectric point of 7 compared with 10 for avidin, both factors leading to reduced
non-specific binding.

TABLE IV

Advantages of the biotin—(Strept)avidin system

1. Universal detection system

2. Antibodies labeled easily and without inactivation with biotin
3. Amplification

4. Streptavidin very stable, not usually inactivated upon labeling
5. Biotin-streptavidin interaction very strong
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3.2. Other amplification schemes

On many occasions, the signal generated by a reporter is not enough to be
measured and an amplification step may prove efficient in solving the problem. In
general, there are at least, three ways of amplifying a system. a. Chemical. In this
approach, the density of labels per detection reagent can be greatly increased by
derivatizing the detection reagent with a tail carrying many reporters [89-91].
Alternatively, controlled polymerization of the reporter can be used and it has been
employed successfully with ALP [92,93]. The biotin-streptavidin interaction also
constitutes a versatile amplification system which was used in combination with the
“tail’ approach. We have added a tail on streptavidin which could carry as many as
450 fluorescent europium chelates [91]. This amplification, in combination with the
10-fold amplification of the biotin moieties that can be conjugated to an antibody,
could yield a total amplification factor of 10°-10%. b. Enzymatic amplification is
extremely powerful and under optimized conditions, detectabilities as low as 600
molecules per assay have been reported [94]. The only problem is that the amplifica-
tion is linear and in order to achieve high factors, the incubations need to be
prolonged to sometimes impractical levels. c. Exponential amplification. Systems
that offer either exponential amplification of analyte numbers before assay (poly-
merase chain reaction) [95-97] or exponential amplification of the signal after a
binding reaction occurs (replicase system) [98-100] have been proposed. The
advantage here is that in relatively short times, extremely high amplification factors
can be achieved.

An interesting way of increasing the density of labels used in DNA probing has
been recently reported by Ureda et al. [101]. They formed a controlled network of
nucleic acid hybrids composed of the target fragment, several oligonucleotide
probes, branched DNA amplifiers and alkaline phosphatase (ALP)-labeled
oligonucleotides. The network could incorporate about 300 ALP molecules per
target sequence. Approximately 50000 molecules of double-stranded DNA could
then be detected. Another amplification strategy applied mostly in immunoassay 1s
based on the use of liposomes [102].

Although in theory, all these amplification schemes could reach the ultimate
detectability, the major problem is that once a non-specific effect occurs (e.g.
non-specific binding of labeled reagent), it also triggers the amplification loop thus
leading to amplification of noise at the same time. It is clear that new methods for
the removal of non-specific binding and better understanding of its nature are
needed before the full potential of amplifications can be realized. A new method for
background removal in DNA probing assays is discussed in some detail below.

3.3. Background signal rejection by reversible target capture

This technique was originally developed by Morrissey et al. [103] and works as
follows [103-106]. A biological sample is first dissolved in a guanidinium isothio-
cyanate (GuSCN) solution which lyses cells, and dissolves macromolecular com-
plexes. Nucleic acid probes are then added as described in the legend of Fig. 3 to
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A. Hybridization/Release

target(104)

. capture probe(10'')

label probe(109)

5
1.5 M GuSCN
(capture)
3.2 M GuSCN
(release)

B. Capture/Recapture

dT (10'3)

Magnetic
Bead

Fig. 3. Schematic of reversible target capture (RTC). Label probes and capture probes are mixed with
RNA or DNA targets. Label probe-target hybrids are formed during hybridization for 17-24 h in 4
mol /1 GuSCN at 37°C. Capture probes were then allowed to hybridize with the label probe-target
complexes during a 10 min incubation in 1.5 mol/l GuSCN at room temperature (22°C). The ternary
hybrid thus formed is shown in A. Beads coated with oligo(dT) are added and the hybrids captured
during an incubation of 10 min at 37°C in 1.5 mol/l1 GuSCN through (dA):(dT) interactions (B). The
bulk of unreacted label probe and cell debris is washed away and hybrids released from beads in 3.2
mol /1 GuSCN. The solution is diluted again to 1.5 mol/l GuSCN, and hybrids recaptured on fresh
beads. Numbers in parentheses indicate number of molecules of each nucleic acid species in the
hybridization mixture. Reprinted by permission from Reference 106.

form a ternary complex between target, label probe and capture probe. Beads
coated with oligo-deoxythimidine (dT) are then added to capture the ternary
complex which is washed to remove unreacted probes and cell debris. The ternary
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complex is then released from the beads and recaptured on new beads by adjusting
the GuSCN concentration. Every cycle, which involves washing and fresh bead
addition, achieves a 102-10°-fold reduction of background noise coming from
non-specifically bound label probe, with a recovery of specific signal of 50-90%.
Three cycles are enough to drive the noise to undetectable levels. This method was
used to measure as few as 4000-15000 target molecules [104,106]. It has general
applicability and shows promise of solving some of the background signal problems
which are associated with DNA probing.

4. Theoretical sensitivity and possibilities for detecting single analyte molecules
4.1. Theoretical sensitivity of immunoassay

There is a need for ultrasensitive immunoassay methodology which could be able
to detect routinely a few hundreds of molecules per assay (Table III). To devise such
techniques, the labels used to monitor the extend of the immunological reaction
must be detected at extremely low concentrations. One of the major problems of
radioisotopes is that their specific activity, defined as the number of detectable
events per unit time per number of labeled molecules, is much lower than the
specific activity of currently used non-isotopic labels. For example, in order to
detect one disintegration of 127 per sec (dps), one must have available 7.5 X 10°
labeled molecules. For *H, which has longer half-life, 5.6 X 10® labeled molecules
must be present in order to observe one dps.

In contrast, one detectable event can be generated shortly after triggering of a
single chemiluminescent label. Fluorescent labels can be utilized even more effi-
ciently because the excitation-emission cycle (generating 1 photon per molecule) can
be repeated many times during a very short period (e.g. 10% times per sec when
short-lived fluors are used). Enzymes are also attractive because, depending on their
turnover number, they can generate many product molecules per enzyme molecule.

Ekins et al. [107,108] have analyzed the differences between competitive and
non-competitive immunoassay designs and found that the non-competitive princi-
ples have potential for far better sensitivity. Competitive immunoassays are able to
reach detection limits of 10~ ' mol/1 or about 10™'® mol of analyte (~ 600000
molecules) per 100 ul sample. These limits are affected mainly by antibody affinity
and experimental errors rather than by the nature of the label. Non-competitive
immunoassays, using '>’I also have a detection limit of about 10~ '* mol/l. By
contrast with competitive assays, non-competitive assays using fluorescent, chem-
iluminescent or enzyme labels have a potential sensitivity 10°-fold lower allowing
detection of 600 molecules per assay (100 pl sample). This limit has been reported in
practice [94].

The limiting factor in sensitivity with non-competitive assays is background
noise. Background signal is that observed when analyte is not present in the assay
and may be due to signal arising from the label itself because of the non-specific
adsorption of the labeled reagent used or from other sources, €.g. the instrument, the
solid support (e.g. some solid-phases fluoresce), cuvettes or serum components. The
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magnitude of the background signal, the precision of its measurement and the slope
of the calibration curve are the factors determining sensitivity.

The conclusions mentioned above can be extended to the field of DNA probing.
The problems arising from background signals due to non-specific binding of the
labeled probes has been addressed repeatedly.

4.2. Detection of single analyte molecules

The ultimate analytical goal is to detect single analyte molecules [109-111]. The
approaches taken to achieve this goal will be considered below. Radioisotopes are
not suitable as labels for single molecule detection because of their low specific
activity i.e. very low frequency of ‘detectable events’. Two months are needed to
record 50 disintegrations that will be released by 100 I molecules. Similarly, other
labels that do not produce measurable number of events within short periods of
time are also not suitable. It appears that the most suitable labels for single
molecule detection are the fluorescent compounds. It is possible to generate 10®
photons per sec per fluorescein or phycoerythrin molecules by exciting them with
high energy lasers of the appropriate frequency. This happens because a measuring
cycle (excitation-emission) can be as short as 10 nsec and the fluorescence quantum
yield of these fluors is close to unity. This photon flux can be measured relatively
easily. However, during specific signal measurement, non-specific signal transduc-
tion (e.g. scattered light or signal originating from impurities in solvents) must be
meticulously minimized. On the other hand, it has to be kept in mind that after
prolonged excitation, many fluorescent molecules undergo photodestruction. Thus,
by increasing the number of measuring cycles, the emitted light diminishes exponen-
tially due to photodestruction [111]. An approach to solve this problem is to have a
measuring flowing stream that regenerates continuously the molecules exposed to
the excitation beam.

When these precautions were taken, three molecules of fluor were measured
[111]. However, because of the regeneration, a more realistic claim would be about
26 000 fluorescent molecules detected per sec. Instead of using a flowing stream, it is
also possible to measure the total number of photons emitted by a fluor before
complete photodestruction. This is ~ 40000 or 100000 photons per molecule for
fluorescein or phycoerythrin, respectively [111]. Thus, the signal originating from
one molecule could be measured provided that the measuring efficiency is high
enough and background signal from scattering is successfully rejected.

To detect a single or a few labeled molecules using a fluorometric system the
following criteria must be met (a) the product of the emission rate of the label and
the detection efficiency of the instrument must be greater than the dark count rate
of the photomultiplier during the observation interval. In practice, this criterion is
only met when the excited-state lifetime of the fluor is less than 10 ps. For this
reason, long-lived fluorescence emitting labels (e.g. europium chelates) or chem-
iluminescent labels are not suitable for single molecule detection unless amplifica-
tion is introduced by other means (e.g. enzymes); (b) the fluorophores used must be
photostable otherwise the emission will diminish exponentially with time with loss
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of signal and (c¢) the fluorescence emitted by the single molecule should be greater
than the background fluorescence or the signal originating from scattered light.

In most efforts for measuring very low numbers of molecules by fluorometric
detection, lasers are the excitation sources of choice because of their very high
intensity and their ability to focus on very small volumes. It can be calculated that if
a substance can be detected at levels as low as 107210~ "> mol /1, then, use of
extremely low volumes, in the order of 107°-10"'2 1, is a way of measuring single
analyte molecules. Many such approaches have been reported [112-115] and find
application in flow cytometry and high performance liquid chromatography. How-
ever, for many other applications such small volumes are not useful. The usual
sample volumes applied in the field of biochemical sciences today lie between
107%-1073 1 (1-1000 pl). Methods with potential detectabilities down to 10~ '
10~ '® mol/1 could be very useful because analyte molecule numbers as low as
600—-60000 in 1 ml serum sample could then be measured.

Another way of measuring extremely low numbers of analytes in reasonable
volume sizes is to apply a reaction between the analyte and a labeled specific
reagent, e.g. an antibody or a DNA probe and then use a detection system which
can amplify the label signal e.g. an enzyme substrate. Alternatively, the number of
analytes of interest can first be amplified (nucleic acids are amenable to such
manipulation) and then measured with a binding assay. Such principles will be
outlined later in this review.

5. Selected highly sensitive detection systems for immunoassay and DNA probing

Below 1 will describe in some detail a number of detection systems that are
currently used with success or they show promise for the future. Special emphasis is
given to systems that offer exceptional sensitivity.

5.1. High-sensitivity enzyme-linked immunosorbent assay (HS-ELISA)

This detection technique was introduced in 1980 by Shalev et al. [116] and
represents a successful combination of enzymes and fluorogenic substrates. In
typical immunoassay designs, alkaline phosphatase acts as the primary label in
heterogeneous formats. It catalyzes the conversion of the substrate 4-methylumbel-
liferyl phosphate (non-fluorescent) to 4-methylumbelliferone (highly fluorescent;
excitation wavelength 365 nm, emission wavelength 455 nm). The reaction involved
is shown in Fig. 4. The use of the fluorogenic substrate increased sensitivity over
colorimetric detection by a factor of 16- to 39-fold. Further improvements in

(HO)ZOPO\Q:jO . H20 ALP Howo + HaPO,

H
CHg CHs

Fig. 4. 4-Methylumbelliferyl phosphate (4-MU-P) is hydrolysed by alkaline phosphatase to 4-methyl-
umbelliferone (highly fluorescent) and inorganic phosphate.



34

maximizing the antigen binding surface area and prolonging the incubation times
resulted in overall sensitivity improvements of the order of 10°— to 10°-fold. This
HS-ELISA assay was able to measure down to 24000 molecules of analyte in a
model system. The principles of HS-ELISA have been adapted to completely
automated immunoassay systems with success. Such systems include the IMx®
analyzer (Abbott Diagnostics, Abbott Park, IL, USA) and the Stratus® analyzer
(Baxter Healthcare Corp., Miami FL, USA).

5.2. Ultrasensitive enzyme radioimmunoassay (USERIA)

This assay was introduced by Harris et al. in 1979 [94]. The basic idea was to use
a radioactive enzyme substrate to take advantage of the enzymatic amplification.
The enzyme is alkaline phosphatase and the substrate *H-adenosine monophosphate
(CH-AMP) which is split to *H-adenosine and inorganic phosphate. Because both
’H-AMP and *H-adenosine are radioactive, a separation step is needed to remove
the unreacted substrate. In the cholera toxin assay, the method could detect down to
600 molecules per cuvette which is close to the theoretical limit of ‘non-competitive’
type assays. Under the same conditions, a classical ELISA methodology was
104-fold less sensitive. USERIA, although extremely sensitive, has not found com-
mercial application because it relies on radioactivity and needs a separation step.

5.3. Enzymatic cycling

This assay was originally proposed by Johannsson et al. [117]. In a typical
‘two-site’ immunoassay system, alkaline phosphatase (ALP) is used as the label
(Fig. 5). The substrate nicotinamide adenine dinucleotide phosphate (NADP™) is
dephosphorylated by bound ALP to produce NAD*. NAD™ activates a secondary

+
A B NADP
<>>-10
PAP E
y
Formazang _,NAD EtOH
Diaphorase Alcohol
Dehydrogenase
T ,
etrazolium NADH4 »CH CHO
Salt 3

Fig. 5. Schematic of the alkaline phosphatase (E) signal amplification. Formazan represents the coloured

end product. The assay configuration is a ‘two-site’ sandwich assay for prostatic acid phosphatase (PAP),

EtOH = ethanol; CH,CHO = acetaldehyde. Total amplification is 3.6 X 10® per min, derived from 60 000
molecules of NAD* per min per ALP molecule and 60 molecules of formazan per min per NAD*.
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enzyme system which comprises a redox cycle driven by alcohol dehydrogenase and
diaphorase. In this cycle, NAD™ is reduced to form NADH and ethanol is oxidized
to acetaldehyde. The NADH, in the presence of diaphorase, then reduces a
tetrazolium salt, iodonitrotetrazolium violet to form an intensely coloured soluble
formazan dye, and NAD™ is regenerated. The rate of reduction of the tetrazolium
salt is directly proportional to the concentration of NAD ™ originally formed by the
bound enzyme. This system is very sensitive even with spectrophotometric detection
because of the very high amplification introduced (amplification over 10° per min).
The practical application of this assay for TSH yielded a detection limit of 0.0013
mU /1 which is equivalent to ~ 280000 molecules per assay cuvette. Potentially, the
reagents are applicable for any assay where ALP is the primary label. The detection
reagents are now commercially available.

5.4. Time-resolved fluorescence

This technique has been reviewed recently [118,119] and it will only be discussed
here briefly. The label in such systems is either Eu** or a europium chelator. A
fluorescent europium chelate can then be formed by adding either organic chelators
as in the DELFIA® (LKB-Pharmacia, Turku, Finland) or Eu®* in the FIAgen®
system (CyberFluor Inc., Toronto, Canada). The fluorescent europium chelates (and
some other lanthanide chelates) possess certain advantages in comparison to con-
ventional fluorescent labels like fluorescein, i.e. large Stokes shifts, narrow emission
bands and long fluorescence lifetimes. The fluorescence lifetimes of most conven-
tional fluorophores is 100 nsec or less; the lifetime of lanthanide chelates is
100-1000 wsec. Using a pulsed light source and a time-gated fluorometer, the
fluorescence of these compounds can be measured in a window of 200-600 psec
after each excitation (Fig. 6). This method decreases the background interference
from short-lived fluorescence of natural materials in the sample, cuvettes, optics etc.

Fluorescence

-%-cncnon at 340 nm New cycle

Q)

Counting 613nm

&

| |
g 400 800 1000
Time (ps)

Fig. 6. Measurement principle of time-resolved fluorescence. The cycle time is 1 ms and pulsed excitation
less than 1 us occurs at the beginning of each cycle. The delay time after the pulsed excitation is 400 us
and the actual counting time within the cycle has the same duration. The total measurement time per
cuvette is 1 s. Curve 1 presents the fluorescence of the europium chelate and curve 2 the background
fluorescence (actual decay time less than 1 ps). Reprinted by permission from ref. [118].
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Fig. 7. A ‘two-site’ immunoassay for alpha-fetoprotein (AFP) using biotinylated (¢) detection antibodies

(panels B, C, D) or BCPDA labeled antibodies (panel A). In panel B, streptavidin (SA) is directly labeled

with BCPDA (—e). In panel C, SA is covalently linked to thyroglobulin (TG) labeled with BCPDA. In

panel D, excess BCPDA-labeled TG is complexed to SA-conjugated TG through Eu®* ions. All assays
work with excess Eu®*.

The chelates used by the DELFIA system are complexes of the type
Eu(NTA),;(TOPO), where NTA is napthoyltrifluoroacetone and TOPO is triocyl-
phosphine oxide. The immunological label, Eu®*, is introduced into antibodies or
streptavidin by using a strong Eu’* chelator of the ethylenediaminetetraacetic acid
(EDTA) type. Similarly, Eu®* can be incorporated into DNA probes. Release of
Eu’* and recomplexing with NTA and TOPO can be achieved by lowering the pH
to around 3.0. DELFIA i1s well-established in the field of non-isotopic immunoassay
and 1s characterized by high sensitivity and broad dynamic range; it is vulnerable to
exogenous Eu** contamination. The label, Eu**, can be measured down to 10~ '3
mol /1 using time-resolved fluorescence and 10~ ' mol per cuvette can be detected
routinely. Analytes can also be measured down to these levels and in DNA
applications, the detection limit is around 10~ '*-107'® mol of probe. This com-
pares to 0.05-2 X 10~ '® mol of **P labeled probe [8].

The FIAgen system [118,89-91] uses the europium chelator 4,7-bis(chloro-
sulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA) as label and is not
subject to Eu®" contamination effects. This system works best when biotinylated
antibodies are used in combination with BCPDA-labeled streptavidin. Three strept-
avidin preparations have been produced so far (Fig. 7) which achieve different
detection limits as follows: streptavidin (SA) directly labeled with BCPDA
[SA(BCPDA),,] for assays with detection limits of 10~ '°-10~'" mol /1; streptavidin
covalently linked to thyroglobulin (TG) carrying ~ 160 BCPDA molecules
[SA(TG)BCPDA),,,] for assays with detection limits of 10~''-10"'? mol /1 and
the same streptavidin-thyroglobulin system activated by an empirical process for
assays with detection limits of 107 '>~10~'* mol /1. The best detection limit achieved
with the latter reagent for a model alpha-fetoprotein assay was ~ 300 000 molecules
per cuvette (5 nl sample volume).

A number of papers demonstrate the feasibility of using Eu’* as label in DNA
probing applications [119-122]. In one report [122], haptenized probes were used
and second antibodies labeled with Eu®*, directed against the anti-hapten antibod-
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ies were utilized. A detection limit of 20 pg of DNA (~ 5 X 10° molecules) was
obtained. In another report [120], biotinylated probes were used in combination
with Eu®*-labeled streptavidin. The sensitivity achieved was ~ 10 pg of DNA. Sund
et al. [121] used the ‘tail’ approach described under ‘Amplification Strategies’ to
synthesize DNA probes multiply labeled with Eu®*. The detection limit reported
was about 200 pg of DNA, an order of magnitude worse than with the indirect
techniques.

5.5. Enhanced luminescence

The phenomenon of luminescence (bioluminescence and chemiluminescence) has
been used to devise analytical systems in many different ways. In this review, only
chemiluminescence approaches that proved to be successful for practical applica-
tions will be described. For more information on bioluminescent and other chem-
iluminescent assay configurations, see refs. [123-125].

Luminol and isoluminol have been tried as luminescent labels for immunoassays
but only with limited success because the light output was generally poor and the
duration of the light output very short. Recently, a series of compounds was
discovered that enhance the light output from the oxidation of luminol and allow
optimization of the reaction to give a prolonged output of light (many minutes) of
high intensity [126,127]. This discovery was commercialized under the name ‘Amer-
lite® for immunoassays and under the name ‘ECL gene detection system’ for DNA
applications [128,129] (Amersham International, Arlington Heights, IL, USA). This
enhanced luminescence detection system works as follows (Fig. 8). The primary
label is horseradish peroxidase and is conjugated to either an antibody (as shown in
Fig. 1) for ‘non-competitive’ immunoassays or the analyte of interest for ‘competi-
tive’ immunoassays. The label is then detected by adding the substrate (luminol), the
oxidant (H,O,) and an enhancer (e.g. firefly luciferin or benzothiazoles). The
emitted light is measured with a luminometer. For DNA applications, the system

2H,0, 2H,0

Coated \ /
well 45"8'“{'-—‘ Peroxidase

substrate + enhancer

—-LIGHT

Oxidized substrate

Fig. 8. Application of enhanced luminescence for immunoassay (shown in Figure) or DNA probing. The

antibody or probe is labeled with horseradish peroxidase. In DNA probing, hybridization takes place to a

target sequence immobilized on a solid support. The detection reagent contains hydrogen peroxide,

luminol (substrate) and an enhancer. In DNA probing, the light emitted is detected on a special film in
less than 1 h. In immunoassay, the light emitted is quantified by using a luminometer.
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can be used with Southern, Northern, Western colony plaque and dot blots.
Horseradish peroxidase can be introduced into DNA probes by using glutaralde-
hyde. After hybridization, the HRP-labeled probe can be detected exactly as
described for immunoassay (Fig. 8). A special photographic film is used to obtain a
hardcopy in a manner similar to that of autoradiography. This system combines
ease of labeling, stability of probes, detection within 1 h and excellent sensitivity. It
is claimed that this system is suitable for single copy gene detection in Southern
blots. As little as 1 pg of DNA can be detected.

5.6. Chemiluminescence using acridinium esters

Acridinium esters produce a flash of light when oxidized in alkaline conditions
with hydrogen peroxide (Fig. 9). When used as labels, they can be detected at levels
of 10~ '® mol / cuvette [130]. The advantages of acridinium esters (AE) over luminol
and isoluminol derivatives [131] are that AE have a higher quantum efficiency, they
do not suffer from serious quenching effects when linked to proteins or haptens,
they do not need an enzyme during the oxidation process and the step of releasing
the label before the final measurement is taken is not needed. Activated acridinium
esters, N-hydrosuccinimide derivatives, are commercially available and they are
used to produce labeled immunoreactants, e.g. antibodies, antigens and DNA
probes. Acridinium ester-based luminescent immunoassays are now commercially

ROH
CH3
|
0 —
(Acridone)
+
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Fig. 9. Chemiluminescent reaction mechanism for methyl acridinium esters. The chemiluminescent

reaction begins with attack by hydroperoxy anions on the 9 position of the acridinium ring. Under

alkaline conditions, a cyclooxetane ring intermediate is formed, followed by rapid conversion to an

excited N-methylacridone, which emits light upon relaxation to the ground state. (Reprinted by
permission from ref. [134].)
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available [132,133]. These assays are either of the ‘competitive’ or ‘non-competitive’
design and they use either plastic or magnetic particles for solid-phase separation.
In one of the most sensitive immunoassays for TSH that has been reported [132],
the label is an acridinium ester. This assay can measure TSH down to 0.002 mU /1.
Established and novel procedures for further improving the applications of
acridinium esters in immunoassay by using liposomes have been reported [102].
Liposomes offer very high amplification factors but leakage is still a problem.
Acridinium esters are now entering the DNA probing field with excellent prospects
[134,135]). Some technical advances are: the development of methodology to intro-
duces protected alkylamine linker arms at any location within synthetic DNA
probes; the preparation of N-hydroxysuccinimide (NHS) derivatives of acridinium
esters which can be used to easily label an -NH, containing probe and methodology
that is analogous to the ‘homogeneous immunoassay’ design and does not require
separation of free and bound probe before the final analysis. A homogeneous DNA
probing assay using an acridinium ester as label depends on elimination of unhy-
bridized excess probe by selective hydrolysis so that the products released do not
chemiluminesce. The hybridized probe is protected from hydrolysis and this assay 1s
called ‘hybridization protection assay’. With this method, which has the advantages
of simplicity and speed, target sequences in the 10~ '-10~'" mol range (~ 6 X 10°-
6 X 10" molecules) can be detected. In a heterogeneous assay design, with the same
reagents and excess probe removal after hybrid adsorption to magnetic particles, the
sensitivity was further improved, due to more effective background reduction. This
sensitivity was equal to ~ 6 X 107 '® mol of target sequences (~ 3.6 X 10° mole-
cules). The maximum sensitivity of the labeled probe itself, is around 5 X 10~ ' mol
(~ 3 X 10° molecules).

5.7. Chemiluminescent enzyme substrates

It has already been mentioned that radioactive and fluorogenic enzyme substrates
have been used very successfully. Enzyme substrates yielding chemiluminescent
products have also great potential. A chemiluminescent enzyme substrate for
alkaline phosphatase or B-galactosidase has recently drawn much attention [136-
139]. This substrate (with either phosphate or galactose at the hydroxyl present on
the benzene ring) releases a chemiluminescent product in the presence of either ALP
or B-galactosidase, as shown in Fig. 10. This chemical system has been used to
devise a number of highly sensitive immunoassays [137]. An even more sensitive
detection system results after the addition of fluorescent micelles formed from
cetyltrimethylammonium bromide and a fluorescein derivative (Fig. 11). The en-
hanced system reportedly detects < 1000 molecules of ALP [140,141].

The application of the system for DNA probing is straightforward. ALP-con-
jugated probes are used in a conventional way or indirect labeling is used under the
principles described in Fig. 2. These systems can detect single copy genes in
Southern blots of human genomic DNA [142]. The signal can be quantitated by a
luminometer or visualized on photographic films. In one report the detection limit
was improved by a factor of 25- to 100-fold in comparison to colorimetric ALP
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Fig. 10 Adamandyl-1,2-dioxetane phosphate (AMPPD) is a substrate for ALP. The intermediate product
of hydrolysis fragments into adamantanone and the excited state of methyl meta-oxybenzoate anion
which is the light emitter.

detection. In this report, after 4 h hybridization, ~ 1.4 X 10* copies of Herpes
Simplex virus I were detected with the chemiluminescent substrate [139]. Ureda et
al. used a modified system which allowed the incorporation of 60—300 molecules of
ALP per probe [101]. This was achieved by using single stranded probes which
could hybridize and branch with each other in a controlled fashion. After the
branching, an alkaline phosphatase containing probe is hybridized to multiple sites
thus incorporating many ALP moieties. ALP could then be detected with AMPPD
as shown in Fig. 10. This assay principle was applied to measure as few as 50000
molecules of double-stranded DNA. This assay is performed in microtiter plates in
a way similar to ELISA and is amenable to automation.
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Fig. 11. Enhanced system based on the substrate AMPPD (see Figure 10) in the presence of fluorescent
micelles formed from cetyltrimethylammonium bromide and 5-( N-tetradecanoyl-aminofluorescein [4].
(Reprinted by permission from ref. [141].)

5.8. Exponential amplification systems

Analytical methodologies having exceptional sensitivity using immunoreactants
or DNA probes will undoubtedly become available during the next decade. One of
the measuring approaches that should have success in solving sensitivity problems is
amplification. Chemical amplifications similar to the one described by our group
[89-91] or Ureda et al. [101] have potential but such amplification usually does not
exceed a factor of 10*. Enzymatic amplification can afford higher factors but the
amplification introduced varies linearly with time, thus, the practicality of an assay
is limited if exceptionally long incubation times are used for each measurement. An
alternative strategy has been introduced recently and i1s based on exponential rather
than linear amplification. This technique can afford amplification factors of 10° or
more within minutes to hours. In the classical polymerase chain reaction approach
[95-97], a target sequence of nucleic acid is amplified by the enzyme Taq poly-
merase using a repeating cycle protocol. At the end of the cycling protocol (usually
~ 20-40 cycles are used), the target sequence is accumulated and can be used for a
variety of purposes. In a different but related system, the template is a specific RNA
piece, about 218 nucleotides long (Fig. 12), which can be exponentially replicated by
an RNA polymerase (called QB replicase) isolated from QB phage infected
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Fig. 12. A replicable human immunodeficiency virus (HIV-1) hybridization probe. Bold letters represent

the 30-nucleotide long probe sequence that is complementary to nucleotides 4622-4651 in the pol gene of

HIV-1 genomic RNA. This sequence was inserted into a replicatable RNA piece to obtain a product

(shown above) that can serve two functions: to hybridize specifically to complementary target sequences

and retain the ability to be exponentially amplified by QB replicase. (Reprinted by permission from ref.
[100].)

Escherichia coli. The latter system has been proposed as a potentially powerful
detection technique for both immunoassay and DNA probing applications [98-99].
Amplification as high as 10° can be achieved within 30 min. The system works as
follows (Fig. 13) [100]: The specific RNA piece could be used as a reporter on a
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Fig. 13. Hybridization assay. The target molecule is shown bound to specific probe carrying a
replicatable sequence (as shown in Fig. 12) and to another probe which in non-covalently linked to a
paramagnetic particle (solid-phase). After excess probe is removed by washing, the hybrid is detected as
described in the text. The above system can be used in combination with the ‘reversible target capture’
technique for background signal minimization. (Reprinted by permission from ref. [100].)

specific antibody or DNA probe. More specifically, the probe could be embedded
within the sequence of a replicable RNA [99]. After the binding reaction with the
ligand or target sequence takes place and excess reagent containing the reporter is
washed away, Qf replicase is added along with excess nucleotides and appropriate
buffers and salts to exponentially amplify the reporter which could then be
conveniently quantified by a classical technique (e.g. absorption or fluorescence
spectroscopy). This approach is very attractive and has the potential for single
molecule detection. The approach is limited by non-specific binding of the molecule
carrying the reporter, since this binding is also amplified. Methods to remove
non-specific binding must be devised if the benefit from such amplifications is to be
realized.

The practical demonstration of the abilities of this technique have been published
recently [100]. A recombinant replicatable RNA containing an inserted HIV-1 probe
sequence was synthesized and used as shown in Fig. 13. The method of reversible
target capture was used to reduce background. The detection limit achieved was
~ 10000 target molecules of HIV-1 mRNA. Novel methods to further reduce the
background signal of the replicase system and to devise homogeneous assays have
also been proposed recently [143].
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6. Conclusions

In the field of immunoassay, non-isotopic systems are steadily replacing the
tradional radioactive labels. The current challenge is successful automation, espe-
cially on analyzers that have random access capabilities. Another objective is to
further improve the current detection limits so that more analytes will become
accessible. In DNA probing, radioisotopes are still dominant because they offer
better sensitivity. The ultimate sensitivity for detection of specific sequences, is one
target molecule [8,101]. This is theoretically possible using an exponential amplifica-
tion step prior to hybridization. Currently, the best procedures detect a few
thousand molecules without the need for amplification.

It 1s difficult to objectively compare current detection techniques in the field of
DNA probing. Many investigators report sensitivities in conventional units (ng or
pg of target) and not in molar units. There is no universal target sequence for
checking detection limits in DNA probing experiments independent of the detection
system used and other factors e.g. nature of target, probe, conjugation chemistries,
hybridization conditions, solid-phases etc. become the limiting factor. Many investi-
gators report the ultimate detection limit of a system under conditions of zero
non-specific binding. In a recent publication, a number of detection techniques were
critically compared [144] and it was shown that the detection limit of a label often
deteriorates when the label is introduced to the probe or used in actual hybridiza-
tion assays.

DNA will become the ultimate marker of many human diseases and DNA
diagnostics will come to dominate in genetic, malignant and infectious disease, as
well as in forensic applications and agriculture. Currently, many DNA based assays
are slow and cumbersome and progress to simplify and automate these assays is
needed. Radioisotopic detection should give way to accurate, rapid, sensitive and
economical non-isotopic detection systems. Currently, many problems can be solved
by following amplification with the polymerase chain reaction with a non-radioac-
tive detection technique. It is anticipated that with the evolution of extremely
sensitive systems, PCR amplification may become less necessary thus simplifying
and shortening procedures.

One of the limitations for devising ultrasensitive methodologies is the back-
ground signals observed during measurements. Concentrated efforts to understand
and solve the non-specific binding problems of the labeled reagents used will
contribute to the development of more sensitive techniques. The challenge of
measuring single or a few analyte molecules still exists. However, progress in this
field i1s evident [109-111] and successful reports on visualizing molecules with
microscopic techniques are not infrequent [145-146]. It is anticipated that our
ability to visualize and manipulate single molecules will contribute significantly in
diverse areas including DNA sequencing [147].

Progress in the areas mentioned above will undoubtedly lead to more economical,
safe and efficient use of the current immunological techniques and to the wide
dissemination of DNA-based assays which will help diagnose, monitor and under-
stand the nature of infectious, malignant and genetic disease.
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