
Searching for New Biomarkers of Renal Diseases
through Proteomics

Ana Konvalinka,1 James W. Scholey,1 and Eleftherios P. Diamandis2*

BACKGROUND: Technological advances have resulted
in a renaissance of proteomic studies directed at
finding markers of disease progression, diagnosis, or
responsiveness to therapy. Renal diseases are ideally
suited for such research, given that urine is an easily
accessible biofluid and its protein content is derived
mainly from the kidney. Current renal prognostic
markers have limited value, and renal biopsy remains the
sole method for establishing a diagnosis. Mass spec-
trometry instruments, which can detect thousands of
proteins at nanomolar (or even femtomolar) concen-
trations, may be expected to allow the discovery of im-
proved markers of progression, diagnosis, or treatment
responsiveness.

CONTENT: In this review we describe the strengths and
limitations of proteomic methods and the drawbacks
of existing biomarkers, and provide an overview of op-
portunities in the field. We also highlight several pro-
teomic studies of biomarkers of renal diseases selected
from the plethora of studies performed.

SUMMARY: It is clear that the field of proteomics has not
yet fulfilled its promise. However, ongoing efforts to
standardize sample collection and preparation, im-
prove study designs, perform multicenter validations,
and create joint industry–regulatory bodies offer
promise for the recognition of novel molecules that
could change clinical nephrology forever.
© 2011 American Association for Clinical Chemistry

The effectiveness of treatment for renal diseases is lim-
ited by the lack of diagnostic, prognostic, and thera-
peutic markers. A tissue biopsy is often necessary to
establish a diagnosis, particularly in the case of glomer-

ular diseases (GDs).3 Biopsy is considered the gold
standard diagnostic test, but it carries risks, including
hemorrhage, pain, and death (1 ). The most widely
used biochemical indicators of prognosis include se-
rum creatinine (SCr) and urine protein. SCr is a late
marker of renal dysfunction and its use has additional
drawbacks. Urine protein is the best prognostic marker
currently available, despite its shortcomings; it is non-
specific, and the levels associated with risk vary across
different diseases. For example, 1 g/day of proteinuria
portends a poor prognosis in IgA nephropathy (IgAN),
but seems to be favorable in membranous nephropathy
(MN) (2, 3 ). Treatment that reduces proteinuria has a
favorable effect on prognosis (4 –7 ), but it remains un-
clear to what degree proteinuria should be suppressed
and when to initiate treatment. Knowledge of more
specific protein perturbations might better inform the
management of renal diseases. The field of proteomics
is expanding daily, and it is of interest to clinicians and
scientists to understand its fundamentals. In this re-
view we describe studies in which renal disease bio-
markers were investigated by use of mass spectrometry
(MS) and outline a scheme for understanding the ba-
sics of proteomics.

Proteomics: Promises and Limitations

Proteomics is a large-scale study of proteins and their
function and structure. Proteome composition is con-
stantly changing and varies with physiological changes.
Although proteins are products of genes, multiple dis-
tinct protein isoforms can be created from the same
gene. Proteins are further susceptible to posttransla-
tional modifications (PTMs). Isoforms and PTMs are
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detectable only by studying the proteins directly and
can be indicative of diverse protein functions. Further-
more, there is evidence that only one third of proteins
with altered expression display a concomitant change
in mRNA expression (8 ). Thus proteomics seems to
reflect the actual cellular processes more accurately
than do genomics or transcriptomics.

Proteomic studies can be discovery based or tar-
geted. Discovery approaches, which predominate in re-
nal literature, can be either broad, when 2 types of sam-
ples are compared in a qualitative or quantitative sense,
or focused, such as with investigations of protein–
protein interactions. Broad approaches can involve
taking on a global examination of the entire proteome,
or evaluation of a specific subproteome, such as all pro-
teins with a particular PTM. Numerous renal bio-
marker studies are global; a concrete example of the
latter is a renal transplantation study that compared
plasma of patients with acute rejection to controls with
stable graft function (9 ). The entire proteomes of indi-
viduals in each group were compared, and 18 proteins
were found to be differentially expressed between the 2
groups. Three of these 18 proteins were subsequently
used in a longitudinal study and proved to be predic-
tors of early acute rejection. In an example of a “sub-
proteome” study, which was both qualitative and
quantitative, Rinschen and colleagues examined the
phosphoproteome of V2-receptor–mediated response
in cultured collecting-duct cells (10 ). The Rinschen et
al. study revealed some important signaling molecules
and processes that take place early after V2-receptor
stimulation. Broad approaches typically require exten-
sive fractionation of proteins and peptides, and the use
of high-accuracy, high-sensitivity MS analyzers. The
study of V2-receptor signaling, for example, involved
the use of phosphoprotein enrichment and an LTQ-
Orbitrap MS analyzer (10 ).

In a targeted approach the investigator has previ-
ous knowledge of the protein candidates of interest and
evaluates them in different types of samples using
single-reaction or multiple-reaction monitoring
(MRM). In this approach, MS analyzers with high sen-
sitivity and high dynamic range are required. As an
example, Quintana and colleagues searched for mark-
ers of interstitial fibrosis and tubular atrophy not oth-
erwise specified (IF/TA-NOS) (11 ). In this particular
study no enrichment was performed for low molecular
weight peptides. The authors compared the urine pep-
tidomes of patients with IF/TA-NOS, patients with
transplant glomerulopathy (TG), and controls, and
discovered peptides of uromodulin and kininogen that
enabled them to differentiate cases from controls. The
most promising peptides for distinguishing cases from
controls had molecular weights of 1890.09, 2569.2, and
2582.44 Da. Knowledge of these candidates allowed

subsequent use of MRM technology for verification of
uromodulin and kininogen peptides in a new patient
cohort.

Raw data generated by MS are processed by so-
phisticated computer algorithms leading to peptide
and protein identification and quantification. Owing
to the nature of peptide and protein assignment by da-
tabase searching, additional methodologies are used to
verify the candidates of interest. Verified candidates
should be subjected to testing in a new cohort of pa-
tients. Large-scale validations involving prospective
studies are the ultimate tests of biomarker adequacy.

Despite its promise, the translation of proteomic
biomarkers to the clinic from a plethora of studies has
been slow. Why? First, there is a lack of a unifying
method for sample collection or analysis. This is true of
all biosamples including urine, for which composition
is influenced by diet (12 ), timing of collection (13, 14 ),
exercise (15 ), sex (14 ), and age (16 ). Generation of a
universal protocol for urine collection is the focus of
international organizations (17, 18 ). Urine is a dilute
biofluid that requires protein concentration, particu-
larly in gel-based proteomics studies (19 ). Different
methods for urine concentration and protein isolation
will yield distinct proteins. Numerous methods have
been used for urine concentration, including precipi-
tation with organic solvent, centrifugal filtration, ultra-
centrifugation, and lyophilization (12, 20 ). Further-
more, it remains unclear which approaches are most
effective: addition of protease inhibitors, depletion of
high-abundance proteins, and collection of spot urine
vs collection of urine for a longer time period. Urine
spot collections can be dilute or concentrated depend-
ing on their water content, thus requiring adjustment
of biomarker concentrations. The most common ad-
justment factor is urine creatinine, although specific
gravity also has been used. Urine creatinine has been
validated as a normalization factor for urine albumin
and total protein. Specific gravity is a measure of the
weight of the solution compared to that of an equal
volume of distilled water and is determined by both the
number and size of particles in the solution. Specific
gravity can be problematic, particularly when larger
molecules are present in urine (21 ). Only a few studies
have compared biomarker normalization with either
urine creatinine or specific gravity (22–25 ), and their
conclusions have varied. Depending on the biomarker
tested either normalization method may be adequate.
If protein or peptide ratios are evaluated as biomarkers,
normalization may not be necessary. In acute kidney
injury (AKI), in which the steady state is lost, longer
collections may be preferred (26 ) over spot samples.

There are additional unresolved technical aspects
of proteomics. Blood and urine proteomic studies are
challenged by a wide dynamic range of protein concen-
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trations, spanning 5–10 orders of magnitude (27, 28 ).
This wide concentration range makes it impossible to
characterize all proteins in any given sample by any
technique available. Another problem relates to the ex-
pense and time of conducting large-scale biomarker
studies, and to biological variability of proteins uncov-
ered. Nagaraj and Mann addressed this problem by as-
sessing urine proteomes of healthy individuals to find
reference values for the most abundant proteins using
label-free quantification in a manner that overcomes
the need for exhaustive fractionation and can be trans-
lated to the clinic (29 ). Other efforts to simplify the
workflow and address technical aspects are emerging
(30, 31 ). Urine, despite its shortcomings, seems to be
an ideal source of biomarkers because it is collected
noninvasively, and only a few organs contribute to its
proteome.

Given the sensitivity of the proteome to a variety of
factors, design of proteomic studies is critically impor-
tant. It is virtually impossible to define a homogeneous
patient population for study. Even small variations in
patient selection, such as medications or age, may re-
sult in proteome differences that do not reflect the dis-
ease state, thus making it difficult to arrive at general
conclusions or translate candidate biomarkers into
clinical practice. Not surprisingly, validation studies
are lacking. To our knowledge, there have been no
large-scale efforts to validate markers of interest. This
situation is beginning to change, and we are now wit-
nessing first efforts to “qualify” markers of drug-
induced nephrotoxicity (32 ). A consortium of indus-
tries, nonprofit institutions, and regulators (Predictive
Safety Testing Consortium) represents a collaborative
effort to move markers from discovery to clinical
practice.

Urine Proteome Composition

Under normal physiologic conditions, urine contains
�20 mg of albumin and �150 mg of total protein per
day. Approximately 30% of the protein content derives
from plasma, whereas 70% is produced by the kidney
and lower urinary tract (33 ). Normal urine contains at
least 1500 proteins, most of which are extracellular and
membrane bound (34 ). To appear in urine, proteins or
their fragments must be filtered at the glomerulus and
bypass or otherwise avoid tubular reabsorption. Alter-
natively, they must be secreted by the kidney or lower
urinary tract directly into urine. During plasma filtra-
tion in the glomeruli, the glomerular capillary wall dis-
criminates among molecules of different size, charge,
and configuration. The filtration barrier consists of the
fenestrated endothelium, glomerular basement mem-
brane, and slit diaphragm. The latter 2 structures limit
the passage of macromolecules, and they contain gly-

cosaminoglycans that are highly negatively charged.
Small and positively charged molecules are thus most
likely to find their way into filtrate. Typically, proteins
�20 kDa are freely filtered, whereas those �60 kDa are
almost completely restricted. Despite this filtering, the
most abundant urine protein is albumin, a negatively
charged molecule with a molecular weight slightly
more than 66.4 kDa. It is thought that the relative
abundance of albumin in urine is a result of the pres-
ence of large pores able to filter albumin, immunoglob-
ulins, and other macromolecules (35 ). The actual
amount of albumin filtration is unknown, but is
thought to be in the order of 2– 4 g/day. Renal hemo-
dynamics and serum concentration of a particular pro-
tein also determine the extent of filtration. For exam-
ple, hyperfiltration states such as pregnancy result in
increased filtration of most proteins. Overproduction
diseases such as multiple myeloma result in filtration of
large amounts of immunoglobulin light chains. Injury
to any of the structures involved in the filtration barrier
results in leakage of large and negatively charged pro-
teins, and their increased presence in urine. For exam-
ple, in diabetic nephropathy (DN) and focal and seg-
mental glomerulosclerosis (FSGS), there is evidence of
decreased filtration of small molecules and increased
filtration of macromolecules, presumably due to for-
mation of an increased number of large pores (36 ).

Tubules reabsorb most of the filtered proteins.
Proximal tubules also catabolize proteins and excrete
their peptides in urine. Albumin is reabsorbed via en-
docytosis mediated by megalin and cubilin receptors in
proximal tubules. Tubules secrete proteins directly
into urine as a result of the normal maintenance pro-
cess or in response to injury. Tubular injury could re-
sult in decreased reabsorption or catabolism of the fil-
tered proteins and in secretion of tubular proteins in
response to the injury.

In addition to being an important source of pro-
teins, urine appears to be enriched with peptides of
�750 Da. A study of the normal urine peptidome eval-
uated polypeptides in multiple fractions segregated on
the basis of size (37 ). Using 2 separate approaches, the
authors demonstrated that in both normal urine and
urine from patients with Fanconi syndrome, a proto-
typical disease with preserved filtration and impaired
proximal tubular reabsorption, there was more than
100-fold enrichment for components �10 kDa. Fur-
thermore, these authors proposed that most peptides
originated from renal-derived proteins, whereas
plasma proteins were excreted unchanged. Their study
demonstrated that certain peptides of �5 Da may be
specific to Fanconi syndrome, a finding that may be
useful as a tool to inform diagnosis and disease patho-
physiology. A study by the same group similarly dem-
onstrated high concentrations of urine polypeptides
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and chemokines that could account for the mecha-
nisms of injury in Fanconi syndrome (38 ), further sup-
porting the usefulness of exploration of the urine
peptidome.

In addition to soluble proteins and their peptides,
urine contains exosomes, specialized vesicles shed by
renal epithelia directly into urine (39, 40 ). Finally, dis-
tal organs of the lower urinary tract also contribute to
the urine proteome.

RENAL PROTEOMIC STUDIES

Currently used markers of renal dysfunction lack both
specificity and sensitivity. SCr is the most widely used
marker of renal dysfunction. However, it is a late
marker and highly nonspecific to the site or type of
injury. SCr can be used to predict glomerular filtration
rate (GFR) only in a steady state, varies with diet and
muscle mass, and tends to lead to overestimates of GFR
in advanced disease, in which creatinine undergoes in-
creased tubular secretion. Serum urea [blood urea ni-
trogen (BUN)] is another marker of renal dysfunction
that varies inversely with GFR. BUN is an inferior
marker to SCr because its production is not constant
and its variations could be a result of diseases unrelated
to kidney. BUN also undergoes extensive reabsorption
by the proximal tubules. Its main utility is in diagnosis
of prerenal insufficiency, in which the ratio of BUN to
SCr is increased, owing to the passive reabsorption of
BUN with sodium and water. A more promising
marker under current investigation is cystatin C. Cys-
tatin C is produced by all nucleated cells, and is freely
filtered at the glomerulus and completely metabolized
by the tubules. Cystatin C does not appear to be af-
fected by diet or muscle mass, although results of some
studies have demonstrated that cystatin C is affected by
factors independent of GFR, such as inflammation and
diabetes (41, 42 ). When compared to a gold standard
measurement of GFR, cystatin C performed just as well
as SCr for estimating GFR adjusted for age, sex, and
race (43 ). Cystatin C may have a special place in pop-
ulations with lower creatinine production such as el-
derly individuals, children, and patients with cirrhosis
(44, 45 ).

Urine albumin and urine total protein are addi-
tional markers of renal disease and prognosis. Albu-
minuria is defined as �30 mg/day of albumin excre-
tion, and is the first sign of diabetic nephropathy or
cardiovascular dysfunction. Suppression of albumin-
uria with renin–angiotensin–aldosterone system
(RAS) blockers is linked to delayed progression to ne-
phropathy (46 – 48 ). As mentioned above, proteinuria
is the best prognostic marker of renal disease, and its
reduction leads to more favorable outcomes. However,
it is a nonspecific marker, not informative with respect

to timing of treatment initiation or degree of reduction
needed.

Given all the described limitations of current
markers of renal disease, including a complete absence
of diagnostic markers, there is hope that novel markers
will be discovered that can be used for: (a) earlier diag-
nosis of renal dysfunction; (b) differentiation between
distinct pathologic entities, thus obviating the need for
biopsy; (c) selection of patients who would benefit
from immunosuppressive therapies; (d) selection of
patients who need more RAS blockade; and (e) deter-
mination of the degree of proteinuria reduction needed
in a particular patient.

Studies performed to search for novel renal bio-
markers are universally susceptible to some unresolved
issues. The large dynamic range of protein concentra-
tions is a major impediment in urine and blood pro-
teomics, considering that low-abundance proteins are
the main contenders for promising biomarkers (49 ).
High-abundance proteins are still the majority of bio-
markers discovered in studies to this point, and most of
these proteins are not specific to one condition, which
suggests they are products of systemic disturbances.
Recurrent appearance of similar species in various dis-
orders may suggest activation of a universal process; for
example, the RAS, known to be activated in most
chronic kidney diseases (CKDs). If this is true, directed
studies aimed at these systemic disturbances may have
higher yields of useful biomarkers. Nevertheless, stud-
ies to date have uncovered some promising biomark-
ers, which are presented in Table 1.

Acute and Drug-Induced Kidney Injury

Improved markers of early kidney injury would allow
identification of individuals at risk for kidney disease,
timely diagnosis of AKI, avoidance of nephrotoxic
drugs, and better understanding of the nephron seg-
ment(s) involved. Ability to predict nephrotoxicity
would be useful in the process of drug development.
These important goals motivated the development of
the Nephrotoxicity Working Group of the Predictive
Safety Testing Consortium (50, 51 ), which selected 23
previously discovered urinary biomarkers and evalu-
ated them in rat models of AKI. Sensitivity and speci-
ficity testing was accomplished by histologic scoring
and analysis employing area under the ROC curve.
Seven markers were selected for further preclinical
studies, including: kidney injury molecule-1 (kim-1),
albumin, total protein, �2-microglobulin, cystatin C,
clusterin, and trefoil factor-3. Clusterin was better than
SCr and BUN for detection of proximal tubular injury,
and total protein, cystatin C, and �2-microglobulin
each outperformed SCr and BUN in detecting glomer-
ular injury (52 ). Urine albumin was superior to either
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traditional marker, and trefoil factor-3 complemented
them in detecting tubular damage (53 ). Changes in
kim-1 outperformed changes in SCr, BUN or N-acetyl-
�-D-glucosaminidase for detecting kidney injury due
to multiple nephrotoxins (54 ). In addition, an ex-
tended panel of urinary biomarkers (55 ) was found to
be useful for monitoring recovery from nephrotoxins.

Additional markers uncovered by direct pro-
teomic studies deserve attention. Urine markers in
children undergoing cardiopulmonary bypass were
evaluated by use of SELDI-TOF-MS to predict AKI
(56 ). After surgery 3 peaks changed significantly in pa-
tients with AKI. Tandem MS (MS/MS) of gel
bands containing proteins of interest identified �1-
microglobulin, �1-acid-glycoprotein, and albumin
(57 ). These candidates were subsequently measured by
nephelometry in 365 children. All 3 biomarkers peaked
earlier than SCr, and their concentrations correlated
with severity of AKI. All 3 proteins are abundant in
human urine (29 ), so it is plausible that total protein
would have been just as good. The selected study pop-
ulation makes this finding relevant to only a few clinical
settings.

In another study in which the same technology
was used, urine markers of AKI in adults undergoing
cardiopulmonary bypass were evaluated (58 ). The in-
vestigators discovered hepcidin-25 in patients who
were not developing AKI. Hepcidin is involved in iron
sequestration and was recognized as a biomarker of
lupus nephritis (LN) (59 ), suggesting a common un-
derlying mechanism. Fetuin-A (also known as �2-HS-
glycoprotein) was discovered and subsequently veri-
fied as a marker of AKI in rats given cisplatin and in
critically ill patients (60 ). Fetuin-A may be a novel bio-
marker, but its usefulness must be confirmed in addi-
tional studies.

Glomerular Diseases

GDs are challenging to diagnose and treat, and have
poorly defined etiology. Within each histopathologic
entity there is great heterogeneity. Introduction of
novel biomarkers to assist with diagnosis or inform
prognosis and select patients likely to benefit from
treatment would revolutionize the field.

Several focused proteomic studies have led to new
insights. Beck et al. (61 ) blotted normal glomeruli with
sera from patients with idiopathic MN (IMN) and iso-
lated a band, which was subjected to MS analysis and
identified as M-type phospholipase A2 receptor
(PLA2R). This receptor is expressed in podocytes and
was bound by an antibody from sera of 70% of patients
with IMN, but none with secondary MN, FSGS, or DN
or healthy controls. An independent group subse-
quently suggested that genetic polymorphisms that af-
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fect PLA2R may be the underlying cause of IMN (62 ).
In an analogous study antibodies to aldolase reductase
and manganese-superoxide dismutase (SOD2) were
found in sera of patients with IMN (63 ). High titers of
anti–aldolase reductase and anti-SOD2 antibodies
were present in glomeruli of IMN patients but not in
patients with LN or membranoproliferative glomeru-
lonephritis (MPGN). Oxidative stress was linked with
upregulation of SOD2 in podocytes. These studies un-
covered novel biomarkers, which appear to differenti-
ate IMN from other GDs, and led to new insights into
pathophysiology of MN.

Sethi et al. (64 ) took advantage of focused protem-
ics in the analysis of biopsy tissue (65 ). These investi-
gators isolated glomeruli of patients with MPGN-type
II (MPGN-II). These glomeruli were analyzed by liquid
chromatography (LC)-MS/MS (LTQ-Orbitrap) and
compared to glomeruli from patients with immune-
complex–mediated MPGN and from healthy controls.
Surprisingly, MPGN-II deposits contained terminal com-
plement pathway components and apolipoprotein-E.
The former finding indicates likely excessive fluid-phase
complement production. Apolipoprotein-E may indicate
a novel biomarker of MPGN-II, although it was described
in association with DN (66, 67). These well-designed ex-
periments demonstrate how focused proteomic studies
can yield insights into previously unappreciated proteins.

Urine of patients with GDs is difficult to study be-
cause it contains massively increased numbers of
highly abundant proteins, which overwhelm the spec-
trum. The problem of highly abundant proteins was
evident in a study in which investigators compared sera
of children with genetic and idiopathic FSGS (68 ).
Sample pooling and 2-dimensional electrophoresis fol-
lowed by MALDI-TOF or electrospray ionization
(ESI)-MS/MS were employed. Albumin fragments dif-
ferentiated the 2 conditions, suggesting a distinct form
of albumin in FSGS or, more likely, that these frag-
ments are artifacts of endoproteolytic/exoproteolytic
serum activity (69 ). In another study investigators took
advantage of albumin abundance and used LC-ESI-
MS/MS to compare plasma albumin from patients
with FSGS to plasma albumin from patients with IMN
and healthy controls (70 ). Massive albumin oxidation
was linked to active FSGS but not to any of the other
conditions; thus the investigators identified a bio-
marker to follow disease activity and assist with
diagnosis.

Enrichment for low-abundance peptides was ex-
plored in a discovery study of sera in which IgAN pa-
tients were compared with controls (71 ). The authors
used magnetic-bead–assisted peptide capture coupled
to MALDI-TOF/TOF. Five peptides (fragments of fi-
brinogen, C3f, and kininogen-1 light chain) discrimi-

nated between untreated IgAN patients and healthy
controls.

In another discovery study capillary electrophore-
sis (CE)-MS was used to identify urinary biomarkers of
IgAN (72 ). Twenty-two polypeptides distinguished
IgAN from healthy controls with 100% sensitivity and
90% specificity, and 28 polypeptides differentiated
IgAN and MN with 77% sensitivity and 100% speci-
ficity. Promising results were also seen when IgAN
was compared to FSGS, DN, or minimal-change dis-
ease. Unfortunately, the polypeptides were not
characterized.

Finally, in an ambitious study investigators exam-
ined urine markers of responsiveness to angiotensin-
converting enzyme inhibitor (ACEI) in IgAN (73 ).
Urine of IgAN patients on ACEIs was subjected to
2-dimensional PAGE coupled to nano-HPLC-ESI-MS/
MS. Three proteins (kininogen, transthyretin, and
inter-�-trypsin-inhibitor heavy chain-4) differentiated
responders from nonresponders to ACEI. Responsive-
ness was defined as �50% reduction in proteinuria and
stable GFR. Decreased kininogen concentration pre-
dicted nonresponsiveness 6 months after ACEI intro-
duction in a new IgAN cohort. Kininogen is converted
by tissue kallikrein to bradykinin, the half-life of which
is prolonged by ACEI. Bradykinin results in vasodila-
tation and regulates renal injury (74, 75 ). RAS block-
ade forms the basis of treatment for all GDs. Studies to
define responders and to determine how much block-
ade to use and with which agents would guide thera-
peutic decisions.

LN is a group of renal diseases for which treatment
would be improved by the availability of noninvasive
predictors of impending relapse, relapse severity, and
recovery. The urine proteome of LN patients at differ-
ent stages of relapse was analyzed by use of a 30-kDa
cutoff filter, to focus on low molecular weight proteins,
followed by SELDI-TOF-MS (59 ). Of the 27 proteins
differentially expressed between flare intervals, 2 iso-
forms of hepcidin predicted flare onset and recovery.
As noted above, hepcidin is not disease specific and
may indicate inflammation. In another study of the
urine proteome of children with LN (76 ), investigators
used SELDI-TOF-MS and identified 8 peaks that en-
abled them to differentiate patients with active nephri-
tis from remitters and controls. These peaks had an
area under the ROC of �0.9 for diagnosis of active
nephritis; thus this approach appeared promising for
this particular group of patients.

DN does not often display a predictable course
from microalbuminuria to macroalbuminuria and re-
nal failure, and markers are needed that can be used to
predict disease progression. In a study of patients with
type I diabetes mellitus who had various degrees of ne-
phropathy, plasma and SELDI-TOF-MS were used to
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define 4 differentially expressed proteins between
groups: apolipoprotein-A1, apolipoprotein-C1, tran-
sthyretin, and cystatin C (77 ). In a reanalysis that used
LC-MS/MS by LTQ-Orbitrap and iTRAQ for quantifi-
cation (78 ), upregulation of several apolipoproteins
differentiated macroalbuminuric from normoalbu-
minuric patients. Apolipoprotein measurement with
multiplex immunoassays failed to differentiate be-
tween rapid and slow progressors.

A nested case-control study had a 10-year
follow-up of patients with type II diabetes (79 ). The
authors of this study performed SELDI-TOF-MS and
uncovered a 12-peak urine proteomic signature that
enabled them to differentiate DN patients from other
diabetes patients and controls. With the use of this sig-
nature the investigators correctly predicted DN in 74%
of the validation set.

In a study in which investigators employed CE-
MS, 112 urine polypeptides segregating macroalbu-
minuric from normo- and microalbuminuric
patients were identified (80 ). Importantly, 15 poly-
peptides normalized following treatment with can-
desartan. Not surprisingly, some of these polypep-
tides were albumin fragments, which decreased with
the use of candesartan. An unpredicted finding was
that some uromodulin fragments increased follow-
ing treatment, mimicking conditions found in
healthy controls.

Urine E-cadherin, implicated in epithelial-to-
mesenchymal transformation, distinguished diabetics
with albuminuria from diabetics with normoalbumin-
uria and from healthy controls (81 ). Another extracel-
lular matrix marker, collagen-I, differentiated DN, di-
abetes type II without nephropathy, and nondiabetic
CKD (82 ). The urine proteome was evaluated by CE-
MS. Candidates that enabled investigators to distin-
guish DN from other groups achieved sensitivity and
specificity of approximately 90%. Urine fragments of
collagen-I appeared to be decreased in DN, suggesting
that decreased clearance might lead to their accumula-
tion. This study served as the basis for a multicenter
pilot validation (83 ), for which recruited study partici-
pants included 148 patients with DN and normoalbu-
minuric patients with diabetes. Sixty-five biomarkers
were selected, and 60 of 65 significantly differentiated
cases from controls and correlated this finding with
albuminuria and creatinine clearance. Collagen frag-
ments were identified as top biomarker candidates.
The shortcomings of the study included lack of biopsy-
confirmed diagnosis of DN and focus on high-
abundance molecules. Nonetheless, this investigation
was an important effort to translate biomarkers to clin-
ical practice.

Transplantation

Noninvasive biomarkers useful for identifying causes
of acute and chronic allograft dysfunction in transplan-
tation are also being sought. Given the frequent evi-
dence of subclinical rejection in routine allograft biop-
sies (84 ), biomarkers indicative of early rejection are
needed. In a recent study investigators used LC-
MS/MS and spectral counting to compare urine pro-
teomes of patients with kidney transplantation with
biopsy-proven rejection [acute rejection (AR)] with
patients with normal protocol biopsy results, patients
with nonspecific proteinuria, and healthy controls
(85 ). Of 1446 identified proteins, some were specifi-
cally altered in AR. Uromodulin, SERPINF1 (serpin
peptidase inhibitor, clade F, �-2 antiplasmin, pigment
epithelium derived factor, member 1), and CD44 were
verified in an independent cohort and shown to differ-
entiate patients with AR from other groups.

Plasma biomarkers of early AR were evaluated by
iTRAQ (isobaric tags for relative and absolute quanti-
fication)-MALDI-TOF/TOF by comparison of metic-
ulously selected patients with biopsy-proven AR and
stable controls (9 ). Plasma was depleted of 14 highly
abundant proteins, and 18 proteins differentiated the
groups, although with a �2-fold change in each case.
Longitudinal monitoring of titin, kininogen-1, and
lipopolysaccharide-binding protein distinguished co-
horts at the time of AR.

SELDI-TOF-MS of urine differentiated patients
with biopsy-confirmed AR from healthy controls and
patients with several other pathologies (14 ). Major
peaks that were found to differ between groups be-
longed to �2-microglobulin, likely indicating tubular
or glomerular dysfunction. Subsequent study of �2-
microglobulin and several other markers measured by
ELISA failed to distinguish between patients with and
without subclinical rejection (86 ).

In a comprehensive study investigators performed
urine peptidomic analysis to define biomarkers of AR
(87 ). Peptides of collagen, uromodulin, and extracel-
lular matrix components predicted AR with high sen-
sitivity and specificity. Increased expression of corre-
sponding genes was confirmed, and results were
verified by MRM.

IF/TA-NOS is a common cause of graft loss, but
this process, characterized by renal allograft dysfunc-
tion in the absence of an identifiable cause, is poorly
understood. Given the absence of diagnostic criteria
and incomplete understanding of the phenotype, it is
impossible to define a homogenous population ideally
suited to proteomic comparisons. Nonetheless, pro-
teomic studies of IF/TA-NOS are emerging (11, 87–
90 ). Quintana and colleagues (11 ) differentiated be-
tween patients with IF/TA-NOS, controls, and patients
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with TG. These investigators performed LC-MS/MS
and extracted ion chromatograms of urinary peptides,
and they discovered that peptides of uromodulin and
kininogen could differentiate cases from controls. Two
other peptides differentiated IF/TA-NOS from TG. Hi-
erarchical clustering segregated patients according to
their histopathology. Finally, MRM verified candidates
in a separate patient-set.

LC-MS/MS was used in a proteogenomic study to
compare allograft biopsy samples of different stages of
IF/TA-NOS with samples from healthy controls (88 ).
Proteins differentiating stages of IF/TA-NOS were ver-
ified by using single-reaction monitoring. Gene and
protein expression showed low correlation. Pathway
analysis uncovered new mechanistic insights, includ-
ing alternative complement activation and actin-
cytoskeleton regulation.

CKD and Dialysis

Encouraging initiatives to standardize urine proteom-
ics and arrive at universal biomarkers of CKD are
emerging. A multicenter study was performed to define
the naturally occurring urine peptidome (91 ) and bio-
markers of CKD. Urine peptides ranging from 800 to
17 000 Da were analyzed by using CE-TOF-MS, fol-
lowed by verification of a subset of samples with CE-
Fourier transform ion cyclotron resonance MS. All re-
sults were deposited in a public database to serve as
potential classifiers. These data were then used for
comparison with the CKD urine peptidome, in which
diverse CKD etiologies were taken into account.
Disease-specific biomarkers were defined with 85%
sensitivity and 100% specificity in an independent
patient-set. Once again, biomarkers of CKD were
mainly comprised of high-abundance proteins. A new
technology based on aptamers, single-stranded oligo-
nucleotides that fold into diverse molecular structures
that bind proteins, peptides, and small molecules with
high affinity and specificity (92 ), allowed binding and
identification/quantification of any protein target with
a low detection limit, high dynamic range, and high
reproducibility. Authors applied this technology to
identification of biomarkers of CKD. Sixty plasma bio-
markers were found to distinguish early and late stages
of CKD. Many were low-abundance molecules, and 4
had previously been associated with CKD. Aptamers
coupled to proteomics is a promising new technology
for biomarker discovery.

The main focus of proteomics in dialysis has been
identification of proteins involved in uremia. As an ex-
ample, SELDI-TOF-MS was used to compare high-
and low-flux filters in hemodialysis patients, and dif-
ferences were found in the proteins removed (93 ).

Many of these proteins had been recognized as toxic
middle-molecules. Vanholder and colleagues have
published an in-depth discussion on uremic toxins that
accumulate in patients with renal failure (94 ). In pa-
tients undergoing peritoneal dialysis, it is unclear
whether the difference in peritoneal membrane trans-
port characteristics is associated with different proteins
cleared. This question was addressed by comparing di-
alysis effluent among different transporters (95 ). Two-
dimensional PAGE coupled to MALDI-TOF-MS and
MS/MS were employed. Five proteins differentiated
the transporter types. Apolipoprotein-A1, a major con-
stituent of HDL, was higher in high-transporters,
which suggests that its loss in effluent may contribute
to atherosclerosis in high-transporters (96 ). High con-
centrations of immunoglobulin �-light chains pre-
dicted development of peritonitis in the year following
the study. For complete discussion of dialysis-related
proteomic studies readers are directed to a recent re-
view (97 ).

Conclusions

Nephrology is in need of improved diagnostic and
therapeutic markers. The most promising biomarkers
seem to be found in well-designed studies guided by
specific research questions. Discovery-based ap-
proaches from biofluids may also be useful once
sample-preparation methods become standardized
and more reliable techniques are available for examin-
ing the low-abundance proteome. Other indirect ap-
proaches, such as cell cultures, may be more effective
for the discovery of potential biomarker candidates
that could be subsequently targeted in biofluids. Tech-
nological improvements and the use of validation stud-
ies promise to define a place for proteomics in clinical
practice.
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