
J O U R N A L O F P R O T E O M I C S 7 5 ( 2 0 1 2 ) 1 3 0 3 – 1 3 1 7

Ava i l ab l e on l i ne a t www.sc i enced i r ec t . com

www.e l sev i e r . com/ loca te / j p ro t
Identification and quantification of peptides and proteins
secreted from prostate epithelial cells by unbiased liquid
chromatography tandem mass spectrometry using goodness
of fit and analysis of variance
Angelica K. Florentinus, Peter Bowden, Girish Sardana,
Eleftherios P. Diamandis, John G. Marshall⁎

Department of Chemistry and Biology, Ryerson University, Toronto, Canada
A R T I C L E I N F O
Abbreviations: ACN, acetonitrile; C18, rever
FWER, family-wise error rate; HPLC, high pre
MCP, multiple comparison procedure; (*.mgf
tistical analysis system; SAX, strong anion e
⁎ Corresponding author.

E-mail address: 4marshal@ryerson.ca (J.G

1874-3919/$ – see front matter © 2011 Elsevie
doi:10.1016/j.jprot.2011.11.002
A B S T R A C T
Article history:
Received 2 July 2011
Accepted 5 November 2011
Available online 15 November 2011
The proteins secreted by prostate cancer cells (PC3(AR)6) were separated by strong anion
exchange chromatography, digested with trypsin and analyzed by unbiased liquid
chromatography tandem mass spectrometry with an ion trap. The spectra were matched
to peptides within proteins using a goodness of fit algorithm that showed a low false
positive rate. The parent ions for MS/MS were randomly and independently sampled from
a log-normal population and therefore could be analyzed by ANOVA. Normal distribution
analysis confirmed that the parent and fragment ion intensity distributions were sampled
over 99.9% of their range that was above the background noise. Arranging the ion intensity
data with the identified peptide and protein sequences in structured query language (SQL)
permitted the quantification of ion intensity across treatments, proteins and peptides.
The intensity of 101,905 fragment ions from 1421 peptide precursors of 583 peptides from
233 proteins separated over 11 sample treatments were computed together in one ANOVA
model using the statistical analysis system (SAS) prior to Tukey–Kramer honestly signifi-
cant difference (HSD) testing. Thus complex mixtures of proteins were identified and quan-
tified with a high degree of confidence using an ion trap without isotopic labels,
multivariate analysis or comparing chromatographic retention times.
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1. Introduction

Two challenges in the application of unbiased LC-ESI-MS/MS
are the estimation of type I error rate and the large scale quan-
tification of proteins between samples [1–6]. Empirical, heu-
ristic or pragmatic approaches such as the so called false
discovery rate (FDR) have been used for estimating the false
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positive rate of protein identification [7]. The problem of pro-
tein identification has been addressed by the use of the good-
ness of fit tests [8–12]. Spectral counting [13], isotopic labels
[14] or multivariate statistics [1,15–19] have been utilized to
quantitatively separate sample treatments. However, where
unbiased LC-ESI-MS/MS is randomly and independently sam-
pled from a normal probability distribution, the data may be
y; CID, collision induced dissociation; ESI, electrospray ionization;
phy; GPM, global proteomic machine; LC, liquid chromatography;
MS/MS, tandem mass spectrometry; P63104, 14-3-3 zeta; SAS, sta-
query language; XML, extensible mark up language.
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analyzed by ANOVA and multiple comparison procedures
(MCP). Chromatographic separations can be analyzed by the
ion current intensity of tryptic peptides [20] from unbiased
LC-ESI-MS/MS using the goodness of fit of MS/MS spectra to
identify peptides and proteins [9,11,12] with ANOVA of pep-
tide and fragment intensity values [21,22]. Here the large-
scale database and statistical analysis tools SQL and SAS
were used to analyze the results of LC-ESI-MS/MS by Chi
square, general linear models such as ANOVA, and the
Tukey–Kramer Honestly Significant Difference (HSD) test
using only the mgf file provided by the mass spectrometer
and the results of a correlation algorithm such as X!TANDEM.

1.1. Type I and type II error of peptide and protein
identification

The basis of classical statistics is the expectation value of the
fit of thedatawith respect to randomchance. Peptide identifica-
tion using algorithms such as X!TANDEM may be considered a
correlation or goodness of fit problem of the many fragment
ion m/z values to the predicted peptide fragments from a pro-
tein database. The expectation values of a type I error (false
positive) can be generated by the goodness of fit test in X!
TANDEM. The products of the replicate peptide goodness of
fit tests for each peptide sequence and the different peptides
within each protein combine to yield the confidence in the
protein identification [10]. There are protections against
type I error built into the X!TANDEM correlation algorithm
to prevent false positive identification [11,12]. It is possible
to confirm the type I error rate of protein identification by
Chi square comparison of peptide-to-protein distribution to
that of random results [11,12]. The Chi square comparison
to random expectation confirmed that error rates were low
and showed good agreement when the results of different ex-
periments, instruments and correlation algorithms were
compared [10–12,23,24]. The Chi square test agreed with the
X!TANDEM and PARAGON algorithms for fitting spectra that
type I error rates of protein identification were low and dif-
fered from those of the so called FDR test by many orders of
magnitude [10–12,23,25]. The false discovery rate (FDR) is a
multiple comparison protocol (MCP) designed to correct the
significance of multiple means tests between many controls
versus treatments over many parameters by holding a com-
petition for significance [26]. In contrast, matching MS/MS
spectra to peptide sequences within the mass tolerance of
the instrument is not a multiple means comparison problem
but a goodness of between the MS/MS spectra to the candi-
date peptides. The application of the so called FDR test to cor-
recting the goodness of fit of MS/MS spectra resulted in a
large type II error (false negative) and therefore an unaccept-
able total error [11,12]. The best fit of MS/MS spectra to a pep-
tide sequence has already won a competition for significance
between the candidate peptides within the specified parent
mass tolerance.

1.2. ANOVA and multiple comparison procedure (MCP)

Comparing the mean intensity values of many peptides or
proteins between treatments is a valid use of a multiple com-
parison procedure (MCP).Whenmultiplemeans are compared
between controls and treatments, the significance value ac-
cepted must be adjusted to compensate for the number of
mean comparisons performed. Depending on the design and
aims of the experiment, and whether the error in the mea-
surements is known, MCP can take the form of a correction
for family-wise error rate (FWER), such as the Tukey–Kramer
HSD test, or the form of a competition for significance such
as a False Discovery Rate [26]. When there is only a single cate-
gory of data (i.e. chromatography fraction) and when the mea-
surement error about the mean can be calculated and is equal
between the treatments, the use of ANOVA with a multiple
comparison procedure based on family wise error rate is appro-
priate [22,27]. One of the most rigorous MCP tests is the Tukey–
Kramer Honestly Significant Difference test that is available in
SAS [22]. Previously, the analysis of spectral peaks from MALDI
MS was accomplished by using ANOVA by breaking the m/z
scale into 5m/zwindows prior to analysis [21]. Here the applica-
tion of ANOVA to unbiased LC-ESI-MS/MS is taken to its logical
conclusion using the many intensity values from MS and MS/
MS spectra matched to peptides and proteins.

1.3. Univariate ANOVA verses multivariate ANOVA

ANOVA can be univariate (e.g.. comparing the intensity of one
peptide m/z value) or multivariate (e.g. including the intensity
values of many different peptide m/z intensity values in the
model). The unguarded use of overly powerful multivariate
statistics led to the erroneous conclusion that pattern recogni-
tion methods could diagnose cancer with complete accuracy
[17–19,28]. In contrast, the use of ANOVA to confirm the signifi-
cance of individual parent ions intensity data prior to entry into
amultivariatemodel (i.e. no garbage in) provided a quantitative
means to compare normal versus disease samples [21]. ANOVA
of individual ion intensity values followed by multiple ANOVA
models were comparedwith linear discriminant analysis to en-
sure the significance of the results [21]. The approach of ANOVA
is in keeping with traditional statistical theory and practice [29]
while the approach of unguardedmultivariate analysis was not
the appropriate strategy for diagnostic experiments [30]. Essen-
tially the data entering themultivariatemodel should be highly
significant in itself by ANOVA and if so, then increasing the di-
mensionality of the data provides little additional benefit [21].
In agreement with these results, it has been subsequently con-
cluded that ANOVA performs best [31]. The prerequisites to
using ANOVA are that the data has been randomly and inde-
pendently sampled from a normal population.

1.4. Random and independent

Biological experimentsmade under controlled laboratory con-
ditions are usually analyzed by frequency-based statistics
using the null random model and normal distribution fol-
lowed by Chi-square, ANOVA or Student t-tests. ANOVA
models of the results of complex liquid chromatography ex-
periments of intact proteins followed by LC-ESI-MS/MS of
the tryptic digests may be used to reveal which fractions are
best for the identification of a certain protein of interest. In
order to use ANOVA the data must be randomly and indepen-
dently sampled fromanormal population. It has beenprevious-
ly shown that different LC-ESI-MS/MS experiments agree on the
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identity of the proteins in the sample but often detect different
peptides from the same proteins [23]. Moreover repeating the
same chromatography experiment and identifying the proteins
by LC-ESI-MS/MS result in different sets of peptides and pro-
teins identified in each run: Hence unbiased LC-ESI-MS/MS ap-
parently makes a random sampling of the peptides generated
in each experiment [24]. The peptides are progressively eluted
from the HPLC column in order of solubility and are intended
to be sampledwithout replacement in each recording especially
if a rotating exclusion list is used. Critically, the results of one
experiment must not be contaminated by the results from
others experiments inorder to achieve independence. Previous-
lywe achieved independence by creating a separate, disposable
micro-chromatography column, or organic extract, for each in-
tact polypeptide sample and then collecting the tryptic or en-
dogenous peptides using another disposable micro-
chromatography column prior to analysis by HPLC-ESI-MS/MS
with cleaning between each sub-fraction [24,25,32,33]. Thus
under our conditions, the sampling of the ions with respect to
the start of each chromatographic run is random and indepen-
dent where the sampling of an ion from one run, has no effect
on the sampling of that ion from another run. Under these con-
ditions LC-ESI-MS/MS datamay be considered a randomand in-
dependent sample of the ions eluting from the end of an HPLC
column via an electrospray source over the course of an elution
gradient from 95% water to about 65% acetonitrile (ACN).

1.5. Log normal distribution

Log transformation has been used to obtain a normal distribu-
tion and homogenize variance prior to statistical analysis in a
number of applications including GC–MS and LC-ESI-MS/MS of
small molecules, isotopic or isobaric tag ratios, spectral
counts or MALDI spectra [13,34–37]. The log intensity distribu-
tion of ions in LC-ESI-MS/MS spectra from serum, protein
standards and noise have been related to the normal distribu-
tion and log transformation has resulted in more homoge-
nous variation [27,38]. In the present study, completely
filtering out background noise of E3 or less for the randomly
and independently sampled parent peptides, and filtering
out noise in the MS/MS spectra of E2 or less for fragment
ions, followed by log transformation lead to a normal distribu-
tion for the measured intensity that was linear over 2 orders
of magnitude and thus suitable for analysis by ANOVA.
Hence, the results of complex sets of LC-ESI-MS/MS experi-
ments were analyzed in a complete ANOVA model by SQL
and SAS. The ANOVA model can account for sources of error
attributable to the different peptide sequences within pro-
teins and the distribution of proteins over multiple chroma-
tography fractions.

1.6. Statistical strategy

For the purpose of the statistical demonstration, we used the
previously published results from the chromatographic sepa-
ration of the intact, secreted proteins of the CaP cell line that
were separated over strong anion exchange (quaternary
amine) into a void volume and ten salt fractions. The secreted
proteins from the human prostate cancer (CaP) epithelial cell
line PC3(AR)6 were thus separated into eleven fractions by
strong anion exchange (SAX) chromatography prior to diges-
tion of each fraction with trypsin for peptide analysis by liquid
chromatography and tandem mass spectrometry (LC-ESI-MS/
MS). Themany resulting LC-ESI-MS/MS experiments were dis-
tilled into a set of MASCOT generic format (mgf) files that con-
tained them/z and intensity values for the parent peptides and
resulting CID fragment sets. The fragmentm/z values from the
mgf file were fit to human tryptic peptides by the goodness of
fit algorithm X!TANDEM [9]. The peptide and protein results of
the X!TANDEM algorithm may be stored in an SQL database
and examined by a generic Statistical Analysis System (SAS)
[10]. The peptide to protein frequencymay be used to calculate
the probability that the results are the same as random spectra
by the Chi square test [11,12]. The parent peptide ions and the
resulting fragment ion intensity values frommany LC-ESI-MS/
MS experiments were linked to the peptide sequence and pro-
tein names supplied by the X!TANDEM algorithm to create
complete ANOVAmodels of each protein at the level of the dif-
ferent peptide sequences and their many fragment intensity
values. The intensity of ions was compared between peptides,
proteins or fractions by ANOVA followed by the Tukey–Kramer
HSD test to establish differences between treatments [26]. The
capacity to statistically compare the fragment intensity values
of peptides fromproteinsmight be applied to quantifyingdiffer-
ences in chromatography fractions. However, there are many
proteins in each fraction and each protein has many different
peptide sequences eachwith its ownunique chemical composi-
tion, ionization and fragmentation characteristics. Thus, the
ANOVA model is an appropriate approach since the data can
be blocked by the nominal variables of peptide sequence as
well as parent protein and chromatography fractions to control
for all sources of error [22].

1.7. 14-3-3 proteins

To illustrate thepower of theANOVAapproach to automatically
account for peptide and fragment intensity values from the dif-
ferent peptides the arbitrarily selected example of the 14-3-3
proteins is presented. The 14-3-3 proteins found in all Eukaryot-
ic cells to date are key regulators of cell division, signalling and
apoptosis that function by facilitating the interaction of pro-
teins [39]. The molecule scaffold 14-3-3 proteins are suspected
biomarkers and potential therapeutic targets [40–42]. The detec-
tion of different 14-3-3 proteins and peptides over the course of
a chromatographic separation experiment were analyzed by
ANOVA to factor parent and fragment intensity values as well
as peptide sequence and chromatographic fractions in the com-
parisonof proteins. To illustrate the automatic calculations per-
formed by SAS, the average intensity of the 14-3-3 proteins in
the chromatography fractions were compared and the peptides
of 14-3-3 zeta examined at the level of peptides and peptides
nested within proteins.

1.8. Data summary

A complete ANOVA model summarizing the entire set of LC-
ESI-MS/MS experiments was constructed for the measured in-
tensity values of 101,905 fragment ions from 1421 different
parent ions matched to 583 peptides from 233 proteins over
11 column fractions as calculated by SQL and SAS. The parent
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and fragment m/z and intensity values were matched to the
peptide sequences provided by the X!TANDEM algorithm in a
Structured Query Language (SQL) database. The parent and
fragment intensity data was transformed to log normal and
tested by the log probability plot with >99.9% of the sampled
distribution above the background noise. The intensity values
for every parent peptide and its fragments from each
chemically-distinct peptide sequence may be considered sepa-
rately in the ANOVA model of the proteins over chromatogra-
phy fractions. There is a need for a classical statistical analysis
system that can be used to estimate type I error rate of protein
identification and to compare log normal relative quantification
using only thewidely available and commercially standard SQL
and SAS data systems.
2. Materials and methods
2.1. Cell culture

Human prostate cancer (CaP) epithelial cells lines PC3(AR)6
were cultured in roller flasks as previously described [43].
Briefly, the cells were grown in RPMI supplemented with
8% fetal calf serum (FCS) for two days, washed twice with
phosphate-buffered saline and then cultured in chemically
defined Chinese hamster ovary (CHO) medium supplemen-
ted with glutamine for 14 days. Afterwards, serum-free
CHO media was collected. During roller bottle culture the
levels of total protein increased linearly. Levels of the
human kallikreins hK5 and hK6 were measured and showed
steadily increasing amounts over the 14 day culture which
was due to cell secretion and not cell death. We confirmed
this by analyzing the cell pellet by Western blot where hK5 and
hK6 was not present in significant amounts compared to the
conditioned media (loading the same amount of total protein).
In addition, we also monitored the confluency of the cells in
the roller bottle to ensure they did not grow over ~80% and en-
sured therewere not necrotic cells or cell debris by direct inspec-
tion with light microscopy. We previously showed agreement
between the mass spectrometer and the ELISA assay on
humanKallikrein 5 and 6 (HK5 andHK6) andMac-2-binding pro-
tein from this study [43].
2.2. Sample preparation

The secreted proteins from the CaP human prostate epithelial
cell line were collected from the growth medium prior to dialy-
sis against 20 mMdiethanolamine pH 8.9. Proteins from the cell
media were pre-separated by partition chromatography using a
SAX column as previously described [43]. Briefly, the proteins
were applied to a strong anion exchange chromatography
column under low pressure and resolved into 10 fractions at
1 ml per minute over a 10-minute gradient to 1 M NaCl in
20mM diethanolamine as previously described [43]. An aliquot
of each fraction (and the void volume fraction 0) containing
~100 μg of protein was digested with 1 μg trypsin in 200mM
Urea, 50mM Tris pH 8.8, reduced with 1 mM DTT at 50 °C for
30min and re-digested.
2.3. LC-ESI-MS/MS

The tryptic peptides were collected over preparative C18 in 5%
formic acid and eluted in 2 μl 65% ACN, 5% formic acid before
dilution into 0.1% formic acid for immediate injection and
separation by micro HPLC for electrospray ionization and tan-
dem mass spectrometry. HPLC grade water and solvents were
used for all steps. The proteins were digested with trypsin and
the peptides were separated over a 300 μm ID, 15 cm C18 re-
versed phase column with an Agilent 1100 HPLC pump. The
LC-ESI-MS/MS analysis was recorded with Esquire 3000 ion
trap (Bruker Daltonics, Bellerica, MA, USA) as previously de-
scribed [44]. A federated library of ~135,000 human proteins
predicted from cDNA and genomic sequences from the NCBI,
Swiss Prot, Ensembl, Trembl and other sources was assem-
bled in 2009 and rendered distinct with SQL prior to output
in a FASTA format for correlation analysis [10].

2.4. MGF and X!TANDEM parser

The peptide and protein expectation values from X!TANDEM
were parsed into an SQL database as previously described
[10]. The MS and MS/MS spectra from parent ions greater
than E3 in intensity were converted to .mgf files. The MS/MS
spectra were correlated against the tryptic peptides of the
federated human library by X!TANDEM within −3 to +3 Da for
parent ions and within 0.5 Da for the +1 b and +1 y fragment
ions and with no modifications considered [11,12]. Correlation
of the≥E3 parent intensity values from blank runs into .mgf
files for correlation yielded no protein identifications by X!TAN-
DEM and thus noise made no contribution to the ion intensity
data. The control of the blank runs with the LC-ESI-MS/MS sys-
tem indicated that themeasured ion intensity of noise and con-
tamination spectra at the base line or from blank runs was≤E3
parent signal intensity and so no spectra from noise entered
the data set. The parent and fragment data information in the
mgf files were matched to the peptides and proteins from X!
TANDEM using the file import and spectra numbers [10]. The
MS/MS spectra were manually examined to ensure a goodness
of fit.

2.5. Statistical analysis

The parent and fragment m/z and intensity data from the mgf
files matched to the corresponding peptide identifications
from the X!TANDEM correlation algorithm in SQL were ana-
lyzed by SAS. The m/z values in the spectra were treated as
continuous variables and thus compared using a random
spectra generator to reflect the true degrees of freedom in m/z
values from tandem mass spectra. The peptides per protein
counted in ordinal bins from 1 up to 133 peptides per protein.
The parent and fragment intensity values were treated as con-
tinuous variables. The peptide and protein sequences were
treated as nominal variables. The nominal and continuous
variables were declared using the SAS JMP graphical interface
prior automatic calculation of ANOVAmodels. The tables and
graphical results from the "model" and "fit y to x" automatic
SAS reports were converted tometafiles for inclusion in figures.
The ANOVA results were converted to rich text formats for in-
clusion as tables.
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3. Results

3.1. False positive identification rate

The peptides sequences were identified by X!TANDEM that
matched the MS/MS spectra to amino acid sequences using a
goodness of fit test. The parent ions with intensity≥E3 counts
were matched to proteins that often showed multiple inde-
pendent peptides correlations. In contrast, the random and
false positive spectra showed mostly proteins with one pep-
tide [11,12]. After calculating the expected peptide to protein
distribution based on random frequency estimates [11,12], a
Chi-square value of ≥750 was obtained showing a low proba-
bility that the data set is random or false positive identifica-
tions (p<0.0001) (Table 1). The results were in agreement
with the previous use of Chi square to estimate error rates
[10–12,23,45].

3.2. Distribution of peptides and fragments

A total of 103,326 intensity values (1421 parent and 101,905
fragment ions) from the .mgf files were matched to the pro-
teins and peptides from the X!TANDEM .xml files in an SQL
database [10]. The 1421 parent peptide intensity values
appeared symmetrical after log transformation and approxi-
mated the log normal distribution (Fig. 1A). Most of the log
Table 1 – The redundant peptide to protein frequency
distribution of CaP proteins versus three different control
distributions from noise, random spectra and a reversed
human library. All results were calculated with the X!
TANDEM algorithm with the identical parameters. The
expected distributions were re-calculated using the
frequency values of Zhu et al. [11,12] such that the total
number of protein identified in each category matches
the present study. For this analysis noise spectra were
correlated from parent ions with intensity values≤E3
from blank runs.

Count Noise Random CaP a Reversed

>18 9 0 410 2
18 0 0 14 0
17 0 0 11 2
16 0 0 15 0
15 0 0 14 0
14 0 0 21 0
13 0 0 24 2
12 2 0 24 1
11 15 0 29 2
10 9 0 25 0
9 11 0 35 1
8 49 0 39 5
7 11 2 44 7
6 13 1 52 9
5 45 1 61 9
4 54 5 76 13
3 52 29 94 34
2 215 152 109 212
1 937 1230 324 1122

a The probability that the CaP peptide to protein distribution was
the same as that of any of the controls was less than 1/10,000 or p
(x)<0.0001 by Chi square analysis.
transformed data from many ions fell within the diagnostic
plot for the log normal distribution (Fig. 1B). With a column
loading of 1–5 μg, setting the parent fragment intensity filter
to E3, essentially captures about 99.9% of the sampled normal
distribution (Fig. 1B). The 101,905 fragment ions intensity
values approximated a normal distribution after log transfor-
mation (Fig. 1C). The normal diagnostic plot showed that
most of the fragment ion intensity values were not far from
the predicted normal and that more than 99.9% of the signal
intensity distribution was above the background (Fig. 1D).
The population of fragment ion intensity values from individual
peptides showed a distribution thatwas often indistinguishable
from normal examined on a peptide by peptide basis (not
shown). The fragment intensity data were numerous and
showed acceptable normality. Thus, the normal distribution
analysis and baseline measurements were in agreement that
parent ions of less than E3 and fragment ions of less than E2
were similar to noise and not required for the analysis.

3.3. Range of parent and fragment ion intensity values

The range of identified peptide intensity values sampled by
the ion trap were found to span about four orders of magni-
tude from E3 to about E7 (Fig. 2A). The range of fragment in-
tensity values also covered five orders of magnitude from
about E2 to about E7 arbitrary count values (Fig. 2B). In both
cases, the intensity values showed a linear increase over
about 2 orders of magnitude from the inflections. Hence, the
potential exists to directly quantify the measured ion intensi-
ty values from the unbiased LC-ESI-MS/MS experiment of CaP
proteins with a linear range of about two orders of magnitude
in this experiment.

3.4. Parent and fragment ion m/z distribution

The parentm/z values appeared to show a consistent increase
from about 500 to 800m/z with the highest value of about
1100m/z with relatively few peptides sampled at extreme m/z
values (Fig. 2C). The parent ion [M+H] values from the MS
spectra of peptides ranged from about 800 to 2200 Da
(Fig. 2D). The fragment m/z values showed a linear range
from 200 to about 1100m/z with a sharp inflection to a maxi-
mal value of 1900m/z (Fig. 2E). Most or all of the identified pep-
tides were apparently [M+2H] ions (Fig. 2F). Hence the best fit
of parent ions of≥E3 intensity by X!TANDEM was entirely re-
stricted to 2+ ions.

3.5. The effect of sample treatment, protein, peptide and
fragments

Whole models of log-transformed parent (1421) and fragment
(101,905) intensity values were fit at the level of the sample
treatments, proteins, and the many peptide sequences associ-
ated with each protein. The many replicated parent peptides
each with the many fragment intensity values have the cumu-
lative effect of building confidence in the results of the
ANOVA. The results of such a whole model analysis show that
there is a significant probability of real variation between sam-
ple treatments, proteins and peptides (Table 2). There were sig-
nificant differences betweenproteins even after the effect of the
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different peptide chemical compositions have been taken into
account (p≤0.0001) (Table 2) and so it was possible to compare
average protein intensity values summed over all peptides.

3.6. General analysis of secreted proteins and peptides

The general description of the ion trap data made with SAS
showed that most of the calculated peptide mass values
closely corresponded to the predicted [M+H] of the correlated
peptide (Fig. 3A). Peptide [M+H] values from about 1200 to
2000 Da showed the lowest expectation values (best identifi-
cations) but much of the significant data was still collected
in the range of 1000 to 1700 Da (Fig. 3B). Most of the peptide
correlation results were obtained from peptides of about 7 to
16 amino acids with the best scores observed for peptides of
12 to 14 residues (Fig. 3C). Fragment intensity values showed
a mean of about E4 intensity and there was little trend in
intensity versus [M+H] indicating the measured intensity is
not much affected by the peptide mass (Fig. 3D). The individual
peptide expectation values were as low a E-12 with more than
1200 peptides showing expectation values of false positive iden-
tification of E-2 (1/100) or less (Fig. 3E). The product of the log
peptide expectation values yield the total protein expectation
of type I error (false positive) as low as E-346with some 900 pro-
tein identifications of about E-10 or less (Fig. 3F).Most of the pro-
tein expectation scores were derived from polypeptides of 300
amino acids in length or less and there was no trend towards
the better identification of longer proteins (Fig. 3G). Examining
the distribution of peptide and protein expectations in a scatter
plot showed many identifications where the peptide and/or
protein expectations values of type 1 error were less that E-4
(1/10,000) as calculated by X!TANDEM (Fig. 3H). The calculation
of type I error rates by the goodness of fit of many proteins by
X!TANDEMseems acceptable and is not necessarily far different
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from the 1/10,000 E-4 or p<0.0001 for the entire experiment cal-
culated by Chi square.

The data indicate that successful correlations from the X!
TANDEM were strongly non-random in agreement with the
Chi Square result. Furthermore, of these 2+ ions the best corre-
lations scores were obtained from peptides of about 12 to 14
amino acids. Previously endogenous polypeptides of greater
than ~6500 resisted CID fragmentation presumably because
the momentum of the molecule is too great to be fragmented
by N2 gas [25]. In the present study of tryptic peptides with
the lighter He2 gas few peptides of greater than 2000 [M+H]
were observed. Perhaps at a charge state of 2+ peptides of
much less that 12 amino acids may not provide enough b and
y fragment ions for optimal statistical confidence by goodness
of fit.
3.7. Comparison of fragment intensity by column fraction

It might be useful to compare the ion current intensity of pep-
tides from proteins in chromatography fractions to develop
separation protocols. The analysis of the LC-ESI-MS/MS results
from the many SAX factions showed significant differences
on average fragment ion intensity of proteins at the level of
sample treatments by the Tukey–Kramer HSD test (Fig. 4A).
About 10 different pair-wise difference rangeswere identified
among 11 column fractions as illustrated. As expected, the
void volume (fraction 0) had low measured ion intensity
values compared to those of ~200–300 mM NaCl that showed
greater ion intensity values than the 600–700 mM NaCl frac-
tions but thereafter declined to the final fraction (10) of
~1 M NaCl. The trend in measured intensity values closely



Table 2 – The whole model of log fragment intensity values
(arbitrary counts) for a set of LC-ESI-MS/MS
experiments at the level of sample fractions, proteins and
peptides. A model total of 101,905 log transformed
fragment ions intensity values from 1421 parent peptides
were computed from 11 chromatography fractions with 583
different peptides from 233 proteins identified from the
parent and fragment m/z values by X!TANDEM. The proba-
bility that the transformed LC-ESI-MS/MS data fails to show
significant variation apparently approaches zero. The effect
of each chemically distinct peptide sequence, parent pro-
teins and chromatography columns was
modeled by ANOVA. Note the differences between
sample treatments, proteins and peptides achieved F values
of 2561, 63, and 111 respectively indicating the approach
shows great statistical power. Note that only parent ions
with intensity values≥E3 that were
successfully correlated by X!TANDEMwere accepted and so
no noise spectra entered the analysis.

Analysis of variance

Source DF Sum of squares Mean square F ratio

Model 623 20,309.137 32.5989 236.3603
Error 101,281 13,968.730 0.1379 Prob>F

C. total 101,904 34,277.867 0.0000⁎

Effect tests

Source Nparm DF Sum of
squares

F ratio Prob>F

Sample
treatment

11 11 3886.2862 2561.611 0.0000*

Protein
accession

232 22 193.0022 63.6078 <.0001*

Peptide
sequenc

582 380 5856.5406 111.7451 0.0000*

* The probability associated with the whole model or effect is
shown.
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matched the trend in protein assays of the SAX column (not
shown).

3.8. Comparison of protein fragment intensities

It was possible to provide relative quantification of the ion
currents from different peptides by MALDI mass spectrometry
with ANOVA and Tukey–Kramer means testing [21]. Here, the
parent (1421) and fragment (101,905) ion intensity values were
organized under all of the 11 fractions, 233 protein and 583
peptide sequences to permit complete statistical modeling.
The intensity values from any or all proteins of interest may
be rapidly exported from SQL database and can be instantly
queried by SAS or run as a batch file in total and stored. To il-
lustrate the types of statistical analysis that might be instant-
ly performed on any or all proteins, the example of the 14-3-3
proteins was selected. After specifying all 14-3-3 protein data
or 14-3-3 zeta data from the database in SQL, the parent and
fragment ion intensity data of the 14-3-3 proteins were exam-
ined in detail by SAS. Since there were significant differences
between 14-3-3 proteins even after the effect of the different
peptide chemical compositions have been taken into account
(p≤0.0001), it is possible to compare average protein intensity
values taking the effect of all peptide sequences into account
separately in the ANOVA (Table 3).

3.9. Comparison of 14-3-3 proteins

The average peptide intensity of all proteins that contain
the query term 14-3-3 in the descriptor field is shown in
Fig. 4B. The analysis of the many LC-ESI-MS/MS results from
the SAX columns fractions showed significant differences in
the ion intensity of peptide fragments over the 14-3-3 proteins
by the Tukey–Kramer HSD test (Fig. 4B). Six different 14-3-3
proteins were detected which could be resolved into four dif-
ferent pair-wise difference ranges. See overlapping circles for
comparison of all means by Tukey–Kramer at p≤0.05 at the
side of the figure where proteins with circles that resolved
are significantly different (Fig. 4B). Similarly, the mean frag-
ment ion intensity values for all the 233 proteins detected in
this experiment are provided with significance limits in Sup-
plemental Table 1. About 60 different pair-wise difference
ranges were observed among the proteins identified by the
Tukey–Kramer HSD Test (Supplemental Table 1).

3.10. Comparison of 14-3-3 zeta over column fractions

The mean fragment ion intensity from all the peptides of 14-
3-3 zeta (P63104) were compared to the chromatography frac-
tions and showed significant differences in fragment ion in-
tensity. The greatest 14-3-3 zeta intensity values were
observed in fraction 7 with much lower intensity observed in
fractions 8 and 9 that followed (Fig. 4C). There was no 14-3-3
zeta identified in any of the other fractions. Similarly, many
other proteins were discretely detected by multiple observa-
tions of peptides in only one, or a few adjacent, salt fractions
consistent with successful chromatography. Hence it was
possible to monitor and observe the efficacy of chromato-
graphic separations using statistical analysis of the ion inten-
sity values.

3.11. Comparison of fragment intensity values for the peptides
of 14-3-3 zeta

To take into account the effect of the different chemical
composition and arrangement of amino acids, each different
sequence may be declared as a separate nominal variable in
the ANOVA model. The fragment intensity values for 14-3-3
zeta peptides ranged from a maximum of~E 4.2 for the pep-
tide VLAEVAAGDDK to a minimum of~E 3.5 for the peptide
GIVDQSQQAYQEAFELSK. The average intensity of the six dif-
ferent 14-3-3 zeta peptides varied by about one order of mag-
nitude and were resolved by the Tukey–Kramer HSD test
into 4 different pair-wise comparison ranges (Fig. 4D). Exam-
ple MS/MS spectra for the 14-3-3 zeta polypeptide are shown
in Fig. 5 alongside a noise spectra typical of data collected
from blank runs of less than E3 intensity. The spectra
matched to 14-3-3 zeta show rich fragmentation patterns
evenly spaced along the backbone of the peptide with few
ions that are not accounted for by the predicted 1+ b and y
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fragment ions of the indicated peptides. Noise ions of less that
E2 were filtered out of the MS/MS data set using SAS prior to
statistical analysis. Similarly, it was possible to statistically
analyze the fragment ion intensity values associated with
every one of the 583 peptide sequences in the 11 chromatogra-
phy fractions resulting in a large number of pair-wise
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significance ranges by the Tukey–Kramer test (Supplemental
Table 2).
4. Discussion

4.1. The analysis of unbiased LC-ESI-MS/MS experiments

A standard means to convey the qualitative and quantitative
parameters between proteomics experiments will be abso-
lutely crucial to comparing and contrasting the results from
different laboratories. The use of the industry standard SQL
and SAS data systems may provide the means to compare
the results of different studies; For example the similar analy-
sis from different instruments and algorithms provided in
Bowden et al. (2009), Williams et al., (2010) and Tucholska et
al. (2010) and the present experiment provide a complete
graphical description of the experimental, instrumental, and
search parameters used in each study that include the degree
peptide digestion, the accuracy of the parent and fragments,
the typical charge state and the size of the peptides correlated
by the algorithm and the statistical confidence in the results.



Table 3 – The ANOVA analysis of 14-3-3 zeta at the level of
sample, peptide and ion type. The ANOVA table indicates
significant effects at the level of samples, the chemical
composition of the peptides sequence and parent versus
fragment or ion type. The model takes into account the
effect of the different chemical compositions of the
peptides on ion intensity values (arbitrary counts). See
Table 2 for other details.

Analysis of variance

Source DF Sum of squares Mean square F ratio

Model 7 150.29198 21.4703 157.2872
Error 1039 141.82735 0.1365 Prob>F

C. total 1046 292.11933 <.0001*

Tests

Source Nparm DF Sum of
squares

F ratio Prob>F

Sample
treatment

2 2 54.778774 200.6494 <0.0001*

Peptide
sequence

4 4 5.241488 9.5995 <0.0001*

Peptide or
fragment

Ion

1 1 46.361702 339.6369 <0.0001*
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All of these important parameters may be graphically pre-
sented on the common SQS and SAS system that does not re-
quire proteomic specific software [46]. Thus it will be
necessary to routinely collect all this information into a rela-
tional database and to include these blocking variables in
ANOVA analysis prior to means comparisons. Here, the pep-
tide and protein results of the X!TANDEM algorithm were
used to organize the peptide and fragment intensity values
to examine the separation efficacy from a set of chromatogra-
phy fractions. In this paper, we considered that parent and
fragment ion intensity values were randomly and indepen-
dently sampled without replacement as they eluted from the
end of the reversed phase column in LC-ESI-MS/MS. Further-
more, this study shows that after transformation the intensity
values of the identified peptides show a log normal distribu-
tion. Hence the parent and fragment ion intensity values
were randomly and independently sampled from a normal
population of ions that have been unambiguously assigned
to peptides and proteins for ANOVA. A complete ANOVA
model was constructed for the hundreds of thousands of mea-
sured intensity values from thousands of peptides from hun-
dreds proteins over many sample treatments by classical
ANOVA without having to take elution times into account.
This observation has profound consequences for proteomics.
It was possible to quantify and compare the measured ion in-
tensity values from peptide and proteins over many chroma-
tography fractions using only classical statistical methods
exploiting the automatic properties of widely available SQL
and SAS data system andwithout proteomic-specific software
systems [46]. Fragment intensity values were shown to in-
crease linearly from about E2.5 to E5 and so most of the data
for the ANOVA analysis shown fell within the linear range.
The normal distribution analysis indicated sufficient sample
was loaded on the column to ensure that>99% of mean
average signal intensity distribution was above the baseline
intensity cut off at about E3 counts.

4.2. Calculation of the false positive rate

The mass spectrometry data in this study was previously
shown to be in agreement with ELISA measurements of
human Kallikrein 5 and 6 as well as Mac-2-binding protein.
Numerous studies have now shown good agreement between
biochemical methods and LC-ESI-MS/MS data [21,42,43,47–74].
Agreement of biochemical studies and mass spectrometry are
consistent with previous studies controlled by noise or ran-
dom spectra which showed that identified peptide ions with
intensity values greater than E3 counts had low type I error
rates [11,12]. The peptide to protein distribution is a key de-
scriptive feature of a set of protein LC-ESI-MS/MS experiments
where the confidence of identification increases with number
of different peptides correlated to a protein [24,75,76]. The
peptide to protein distributions can be compared to that of
random expectation to yield an estimate of type I (false posi-
tive) error rate for a set of experiments. Frequency based sta-
tistical approaches, such as the Chi square test, may be
utilized to estimate the probability of agreement between dif-
ferent experimental results [10–12,23,24,45]. Random number
or noise generators were invented, and commonly used for,
making customized models of random expectation for the ex-
perimental variable undermeasurement [77]. Random spectra
are a source of false positive results that typically show about
89% of the proteins with only one peptide, about 10% of pro-
teins show two peptides, and only one to a few percent of pro-
teins have several peptides or more [11,12,78]. There was little
probability that the authentic spectra were the same as random,
noise or false positive data (p<0.001) in agreementwith previous
results [10–12,23,24,79]. It is important to note that the E3 cut
off of parent ion intensity employed still captured 99.9% of
the normal distribution of identified parent ions and so per-
mitted complete sampling of the intensity distribution. How-
ever there were no proteins identified from blank runs with
signals greater than E3 indicating that there were no noise
spectra in the present data sets.

4.3. Comparison of measured ion intensity values from
chromatography fractions

The efficacy of chromatographic separation was quantified
with a simple ion trap by the measured ion current from tryp-
tic digests of the column fractions. The discovery of secreted
proteins by fractionation over partition chromatography
[21,32] was quantified by ANOVA of the measured fragment
ion intensity values of peptides from proteins. The ion cur-
rents between columns fractions showed similar trends to
proteins assays of quaternary amine chromatography frac-
tions with the lowest values in the 0 mM NaCl void volume,
the highest protein concentrations in the between 200 and
600 mM NaCl and declining thereafter with little further elu-
tion beyond 1 M NaCl.

The chromatography fractions, protein accession numbers
and peptide sequences provided an organization and frame-
work to quantify the measured ion intensity values over the
many LC-ESI-MS/MS experiments by statistical analysis. In
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this paper, ANOVA results of both the parent and fragment
ion results together were analyzed first, but similar results
can be obtained from the fragment ions alone. Matching the
log fragment intensity values to the treatment, protein and
peptides in SQL permitted the rapid assembly of ANOVA
models of LC-ESI-MS/MS in SAS. There was no requirement
for isotopic labelling, to compare or manipulate the source
chromatograms, or to keep track of the chromatographic re-
tention times [80]. The statistical model exploits the inherent
structure of proteomic data where for every protein sequence
there is a family of peptide(s) that might be redundantly
detected: For each parent ion detected a sub family of many
fragments and intensity values were observed. Statistical
power for proteins and peptides builds rapidly within one ex-
periment and true statistical power for treatments should
build with replication of the whole experiment [11,12]. The ap-
proach is appropriate for the instant technical appraisal of
chromatography fractions. The control and treatments
might be arranged in replicate blocks for LC-ESI-MS/MS sam-
pling to apply the method to biological study [22]. The
ANOVA analysis indicated that there was significant variation
in the ion currents between different peptides, proteins, or
fractions. The method as shown is entirely satisfactory to de-
termine which chromatography fraction(s) contain a
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detectable amount of a particular protein without the use of
isotopic labels, a result that is of great practical importance to
proteomics [20].

4.4. Analysis of complex experiments

Complex experiments involving the analysis of multiple treat-
ment fractions prior to digestion and separation of peptides by
subsequent reversed-phase LC-ESI-MS/MSwill requiremodels
that take into consideration the effect of protein fraction, the
source protein, and the chemical differences in peptide se-
quence onmeasured ion intensity in calculated statistical sig-
nificance. The capacity to completely examine the quality and
quantity LC-ESI-MS/MS data statistically permit the interpre-
tation of complex sets of LC-ESI-MS/MS experiments. Summa-
rizing all of the peptide and protein data from a large set of
treatments by automatically-generated statistical summary
tables and graphical comparison plots should permit the rela-
tive quantification of proteins between samples even in the
presence of minor variations in chromatographic separations.
The application of statistical analysis to all the ion intensity of
values of proteins and peptides from entire sets of samples
should provide the capacity to completely analyze complex
sets of LC-ESI-MS/MS experiments. The SQL and SAS data sys-
tems work well together and previously compared the blood
peptides and proteins from all laboratories internationally
[10,23]. Thus, there is every good reason to believe that the
widely available SQL and SAS data systems that are already
owned by most university, government and private research
institutions, will be sufficient to analyze large proteomic ex-
periments. Moreover these two data systems are alreadywide-
ly used and proven in clinical, laboratory, agricultural and
engineering research. The SQL and SASdata systemare sopop-
ular because they permit the researcher to rapidly make a
custom-fit database and statistical solution for each experi-
ment using point-and-clickmenus or commonwords and oper-
ators arranged in simple phrases. Thus the complete statistical
analysis of many LC-ESI-MS/MS experiments was accom-
plished with the generic and automatic features of the SQL
and SAS data systems with no special modification.

Here it is shown that the log transformed peptide and
fragment ions had a normal distribution, have been thor-
oughly sampled and quantitatively analyzed at the level of
thousands of peptides nested within hundreds of proteins
simultaneously using a simple ion trap under conditions
that showed low false positive rates. Hence the false positive
rate of both identification and quantification of complex
sets of LC-ESI-MS/MS experiments can be determined using
only the goodness of fit tests and ANOVA with Tukey–Kra-
mer HSD. The SQL and SAS analysis shown here provides
qualitative and quantitative information about complex
LC-ESI-MS/MS experiments without the requirement for ac-
curate mass values, keeping track of retention times, or the
use of heuristic or multivariate statistics. The approach uti-
lizes only standardized software packages common to all
fields of science [46]. All of the observations were consistent
with the conclusion that tandemmass spectra collectedwith a
high signal to noise ratio under controlled conditions area reli-
able means to identify and quantify peptides and proteins
across treatments.
Supplementary materials related to this article can be
found online at doi:10.1016/j.jprot.2011.11.002.
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