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To investigate the quantitative response of energy meta-
bolic pathways in human MCF-7 breast cancer cells to
hypoxia, glucose deprivation, and estradiol stimulation,
we developed a targeted proteomics assay for accurate
quantification of protein expression in glycolysis/gluco-
neogenesis, TCA cycle, and pentose phosphate path-
ways. Cell growth conditions were selected to roughly
mimic the exposure of cells in the cancer tissue to the
intermittent hypoxia, glucose deprivation, and hormonal
stimulation. Targeted proteomics assay allowed for re-
producible quantification of 76 proteins in four different
growth conditions after 24 and 48 h of perturbation. Dif-
ferential expression of a number of control and metabolic
pathway proteins in response to the change of growth
conditions was found. Elevated expression of the majority
of glycolytic enzymes was observed in hypoxia. Cancer
cells, as opposed to near-normal MCF-10A cells, exhib-
ited significantly increased expression of key energy met-
abolic pathway enzymes (FBP1, IDH2, and G6PD) that are
known to redirect cellular metabolism and increase car-
bon flux through the pentose phosphate pathway. Our
quantitative proteomic protocol is based on a mass spec-
trometry-compatible acid-labile detergent and is de-
scribed in detail. Optimized parameters of a multiplex
selected reaction monitoring (SRM) assay for 76 proteins,
134 proteotypic peptides, and 401 transitions are included
and can be downloaded and used with any SRM-compat-
ible mass spectrometer. The presented workflow is an
integrated tool for hypothesis-driven studies of mamma-
lian cells as well as functional studies of proteins, and can
greatly complement experimental methods in systems bi-
ology, metabolic engineering, and metabolic transforma-
tion of cancer cells. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.015214, 422–434, 2012.

Adaptation of cancer cells to hypoxia, lack of nutrients, and
abnormal hormonal stimulation is known to alter their metab-
olism (1, 2). “Aerobic glycolysis,” also referred as the Warburg
effect, is a unique characteristic of rapidly proliferating cancer
cells (3). Deregulating cellular energetics and reprogramming
of metabolism are the emerging hallmarks of cancer (4). There
is also an increasing number of epidemiologic evidence that
link cancer risk with metabolic disorders such as diabetes and
obesity (5).

Until recently, the metabolic transformation of cancer cells
was studied primarily at the level of genome (6), transcriptome
(7), and metabolome (8). These studies discovered new mu-
tations (9, 10), cancer-related alternative splicing isoforms
(11), and altered enzyme activities in human cancers (2). Sub-
sequent clinical applications included diagnostic imaging (12),
prognosis (13), and identification of compounds targeting tu-
mor metabolism (14).

To fully understand the events and outcomes of metabolic
transformation of cancer cells, quantitative proteomic ap-
proaches are required to complement existing genomic, tran-
scriptomic, and metabolomic approaches. Proteomic meth-
ods provide additional levels of information, such as protein
abundances, post-translational modifications, dynamics of
protein turn-over, which cannot be accurately predicted using
other -omic approaches.

Typically, expression of enzymes in cellular metabolic
pathways is measured by ELISA or immunoblot assays,
which provide information for a very limited number of en-
zymes. Multiplex proteomic assays, on the contrary, could
reveal simultaneous rearrangement of protein expression in
entire metabolic pathways. Mass spectrometry-based pro-
teomics, complemented with chemical and metabolic label-
ing approaches, is a powerful tool for global analysis of
protein expression. However, these approaches have very
limited throughput and require extensive sample prepara-
tion, complex data analysis, and verification of their results
by independent assays. Besides, metabolic labeling is ap-
plicable to actively dividing cell lines, but not to the primary
cells.

Targeted proteomic assays present an attractive comple-
mentary tool devoid of the abovementioned limitations. Se-
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lected reaction monitoring (SRM)1 assays can simultaneously
monitor hundreds of proteins in hundreds of different biolog-
ical samples. Targeted proteomics was previously used to
measure protein abundances in metabolic pathways in bac-
teria and yeast (15–17). Analysis of proteins in mammalian
cells poses additional challenges such as detection of multi-
ple enzyme isoforms and almost 10-fold lower protein abun-
dance per cell. To our knowledge, analysis of multiple energy
metabolic pathways in mammalian cells by SRM has not been
realized to date.

Here, we present an integrated SRM-based label-free pro-
teomic workflow for measurement of the relative expression
of proteins in entire metabolic pathways of mammalian cells
(Fig. 1). Our SRM-compatible sample preparation protocol
allows for accurate measurement of changes in protein ex-
pression between two biological conditions in less than a day.
In our protocol, protein abundances are normalized to an
array of high-abundance housekeeping proteins. Such nor-
malization allows for a label-free analysis, reduces variabil-
ity, and facilitates accurate measurement of relatively small
changes in protein expression under different growth
conditions.

As a proof-of-principle experiment, MCF-7 breast cancer
cells were exposed to different growth conditions such as
normoxia, hypoxia, galactose-rich-glucose-free media, and
estradiol stimulation. These conditions roughly mimic the ex-
posure of cells in the breast cancer tissue to the intermittent
hypoxia, starvation, and hormonal stimulation. Using a multi-
plex SRM assay, we measured relative abundances of nearly
all proteins in major energy metabolic pathways, such as
glycolysis/gluconeogenesis, TCA cycle, and the pentose
phosphate pathway (Fig. 2). A set of control proteins was
used to validate cellular response to the given growth condi-
tions. Using our SRM assay, we also compared cancer
(MCF-7) and near-normal (MCF-10A) breast cells.

MATERIALS AND METHODS

Cell Lines—The breast cancer MCF-7 and breast epithelial MCF-
10A cell lines were purchased from the American Type Culture Col-
lection, Manassas, VA. MCF-7 cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM)—high glucose (25 mM) culture me-
dium (Invitrogen) supplemented with 10% fetal bovine serum. MCF-
10A cells were maintained in Dulbecco’s modified Eagle’s medium
and F-12 medium (DMEM/F-12) supplemented with 10% fetal bovine
serum, epidermal growth factor (20 ng/ml), hydrocortisone (0.5 �g/
ml), and insulin (10 �g/ml). All cells were cultured in a humidified
incubator at 37 °C and 5% CO2.

MCF-7 Proteome Identification by 2D-LC-MS/MS—Three biologi-
cal replicates of �3 � 106 MCF-7 cells (500 �g of total protein) were
used. Before cell lysis, culture media were discarded; cells were
washed three times with phosphate-buffered saline (PBS) buffer to
remove traces of fetal bovine serum, trypsinized, and centrifuged at
9000 rpm. The cell pellet was resuspended with 200 �l of 0.1%
acid-labile detergent RapiGest SF (sodium-3-[(2-methyl-2-undecyl-
1,3-dioxolan-4-yl)-methoxyl]-1-propanesulfonate, Waters, Milford,
MA) in 25 mM ammonium bicarbonate, vortexed, and sonicated three
times for 30 s. All lysates were centrifuged for 20 min at 15,000 rpm
at 4 °C, even though no debris was typically observed after lysis. Total
protein concentration was measured using a Coomassie (Bradford)
protein assay reagent (Pierce). Proteins in detergent solution were
denatured at 60 °C, and the disulfide bonds were reduced with 10 mM

dithiothreitol. Following reduction, the samples were alkylated with 20
mM iodoacetamide. Samples were then digested overnight at 37 °C
with sequencing grade modified trypsin (Promega, Madison, WI).
Trypsin/total protein ratio of 1:30 was used. After digestion, RapiGest
SF detergent was cleaved with trifluoroacetic acid, 1% final concen-
tration, and samples were centrifuged at 1500 rpm. Upon removal of
Rapigest, tryptic peptides were diluted to 500 �l with strong cation
exchange (SCX) mobile phase A (0.26 M formic acid in 5% acetonitrile;
pH 2–3) and loaded directly onto a 500 �l loop connected to a
PolySULFOETHYL A™ column (2.1 mm ID � 200 mm, 5 �m, 200 Å,
The Nest Group Inc., MA). The SCX chromatography and fraction-
ation were performed on an HPLC system (Agilent 1100) using a
60-min two-step gradient, which was optimized to provide a uniform
elution of peptides based on the absorption at 280 nm. An elution
buffer that contained all components of mobile phase A with the
addition of 1 M ammonium formate was introduced at 10 min and
increased to 20% at 30 min and then to 100% at 45 min. Fractions
were collected every 2 min from the 10 min time point onwards. This
resulted in the collection of 24 fractions (400 �l each). Peptides in
each fraction were identified by liquid chromatography-tandem MS
(LC-MS/MS) as previously described (18, 19). Briefly, peptides were
extracted with 10 �l OMIX C18 tips, eluted with 64.5% acetonitrile,
diluted to 40 �l with 0.1% formic acid, and loaded onto a 3 cm C18
trap column (with an inner diameter of 150 �m; New Objective),
packed in-house with 5 �m Pursuit C18 (Varian, Lake Forest, CA).
Eluted peptides from the trap column were subsequently loaded onto
a resolving analytical PicoTip Emitter column, 5 cm in length (with an
inner diameter of 75 �m and 8 �m tip, New Objective) and packed
in-house with 3 �m Pursuit C18 (Varian, Lake Forest, CA). The trap
and analytical columns were operated on the EASY-nLC system
(Proxeon Biosystems, Odense, Denmark), and this liquid chromatog-
raphy setup was coupled online to an LTQ-Orbitrap XL hybrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA) using a nano-
ESI source (Proxeon Biosystems, Odense, Denmark). Peptides were
separated using a 60-min gradient and analyzed in data dependent
mode in which a full MS1 scan acquisition from 450–1450 m/z in the
Orbitrap mass analyzer (resolution 60,000) was followed by MS2 scan
acquisition of the top six parent ions in the linear ion trap mass
analyzer. The following parameters were enabled: monoisotopic pre-
cursor selection, charge state screening, and dynamic exclusion. In
addition, charge states of �1, �4 and unassigned charge states were
not subjected to MS2 fragmentation. For protein identification and
data analysis, XCalibur software (v. 2.0.5; Thermo Fisher) was used to
generate RAW files of each MS run. The RAW files were subsequently
used to generate Mascot Generic Files (MGF) through extract_msn on
Mascot Daemon (version 2.2.2). Once generated, MGFs were
searched with two search engines, Mascot (Matrix Science, London,
UK; version 2.2) and X!Tandem (Global Proteome Machine Manager;
version 2006.06.01). Searches were conducted against the nonredun-
dant Human IPI database (v. 3.62; 167,894 forward and reverse

1 The abbreviations used are: SRM, selected reaction monitoring;
2D-LC-MS/MS, two-dimensional liquid chromatography-tandem
mass spectrometry; CE, collision energy; CV, coefficient of variation;
Da, Daltons; ELISA, enzyme-linked immunosorbent assay; FDR, false
discovery rate; LC, liquid chromatography; MCF-7, human breast
adenocarcinoma cell line; MCF-10A, near normal human mammary
epithelial cell line; MS/MS, tandem mass spectrometry; PPP, pentose
phosphate pathway; SCX, strong cation exchange chromatography;
TCA cycle, tricarboxylic acid cycle.
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protein sequences) using the following parameters: fully tryptic cleav-
ages, 7 ppm precursor ion mass tolerance, 0.4 Da fragment ion mass
tolerance, allowance of one missed cleavage and fixed modifications
of carbamidomethylation of cysteines. Variable modifications in-
cluded oxidation of methionine, pyro-Glu from glutamine of the n-
terminuss-carbamoylmethylcystein cyclization at N terminus, deami-
dation of glutamine, oxidation of tryptophan, and acetylation of the
n-terminus. The files generated from MASCOT (DAT files) and X!Tan-
dem (XML files) for the three replicates were then integrated through
Scaffold 2 software (version 2.06; Proteome Software Inc., Portland,
Oregon) resulting in a nonredundant list of identified proteins per
sample. Results were filtered separately using the X!Tandem LogE
filter and Mascot ion-score filters on Scaffold to achieve a protein
false discovery rate (FDR) of 1.0%. FDR was calculated as [2�FP/
(TP�FP)]�100, where FP (false positive) is the number of proteins
that were identified based on sequences in the reverse database
component and TP (true positive) is the number of proteins that were
identified based on sequences in the forward database component.
Scaffold protein report was generated and uploaded onto Protein
Center Professional Edition (v. 3.5.2.1; Proxeon Bioinformatics,
Odense, Denmark) to facilitate KEGG pathway analysis and visual-
ization. Peptide and protein identifications reports are included into
supplemental Tables S1 and S2. Scaffold file with all spectra, peptide
and protein identifications including annotated spectra for single-
peptide identifications was deposited at Tranche Proteome Com-
mons Database (http://proteomecommons.org/tranche) with the hash
code 0HdNVoQPyPNfeYjcaZXwvDUKxfV926AVv4ljTK47qaRZ4YAz
g3IrvH497s/XzsIK08yXLYuKNz932jSuh0muSF1BK/8AAAAABOTsTA
�� Peptide spectra were deposited with the hash code

4olJ/dS6OT5hxnz22JSKfPvBRt4yBVSi6w1awKEKYe/5xoOFfmA
yI7�6oKZIUgVmTWAzQEpSu2FigIhZiXEKikycEH4AAAAAANRUEw
��.

Cell Culture and Growth Conditions for SRM Quantification—For
SRM-based experiments, three biological replicates for each growth
condition were used. Approximately 0.5 � 106 cells were seeded
individually into six-well tissue culture plates and left for 1 day for cell
attachment. For the galactose-based experiment, cell medium was
changed to glucose-free DMEM supplemented with 25 mM galactose
and 10% fetal bovine serum. For the hypoxia-based experiment, cells
were cultured under hypoxic conditions (0.1% O2). Control cells for
both experiments were maintained in regular media with no galac-
tose, 25 mM glucose, and cultured at 18% O2. For the estradiol
stimulation experiment, MCF-7 cells were transferred to a phenol
red-free Roswell Park Memorial Institute 1640 culture medium sup-
plemented with 10% the charcoal-dextran-stripped fetal bovine se-
rum and grown for a day. Following this, cells were stimulated with
either estradiol (10 nM final concentration) or 0.1% ethanol (control
cells) and were grown for 24 and 48 h, trypsinized and lysed. We
ensured that cells still grew as a monolayer in 48 h after change of
growth conditions or estradiol stimulation.

Cell Lysis and Protein Digestion for SRM Quantification—The cell
pellet was resuspended with 100 �l of 0.1% acid-labile detergent
RapiGest SF (sodium-3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)-me-
thoxyl]-1-propanesulfonate, Waters) in 25 mM ammonium bicarbon-
ate, vortexed, and sonicated three times for 30 s. All lysates were
centrifuged for 20 min at 15,000 rpm at 4 °C, even though no debris
was typically observed after lysis. Total protein concentration was
measured using a Coomassie (Bradford) protein assay reagent
(Pierce). Proteins (60 �g) in detergent solution were transferred to the
96-well plate, denatured at 60 °C, and the disulfide bonds were
reduced with 10 mM dithiothreitol. PCR thermocycler (MasterCycler
5332, Eppendorf, Germany) was used to incubate all samples on a
96-well plate at the corresponding temperatures. Following reduction,
the samples were alkylated with 20 mM iodoacetamide. Samples were

then digested overnight at 37 °C with sequencing grade modified
trypsin (Promega). Trypsin:total protein ratio of 1:30 was used. After
digestion, RapiGest SF detergent was cleaved with trifluoroacetic
acid, 1% final concentration, and samples in the 96-well plate were
centrifuged at 1500 rpm. Peptides were extracted with 10 �l OMIX
C18 tips (Varian) using 12-channel pipettes and eluted with 10 �l
64.5% acetonitrile. Recovery from Omix C18 microextraction tips was
measured by SRM using several peptides of BSA digest and was
estimated as 82%. In this work, a heavy isotope-labeled internal
standard peptide LSEPAELTDAVK* peptide was spiked into each
digest and used as a quality control for C18 microextraction. Follow-
ing microextraction, peptides were diluted to 130 �l to provide three,
40 �l injections from a 96-well plate. The following precautions were
taken to minimize deterioration of peptides, such as oxidation of
methionines and deamidation of asparagines and glutamines, during
storage and analysis: (1) peptides in 96-well plates were stored at
�20 °C until the use and then analyzed within a day; (2) plates were
sealed with silicone rubber sealing mats and kept at 6 °C during
analysis.

Development of SRM Assays—To facilitate protein quantification,
we intended to identify for each protein two peptides with the most
intense and reproducible SRM signal. Initially, GPM proteomics da-
tabase (http://mrm.thegpm.org) was used to select top 5–8 peptides
for each protein based on the occurrence of �2 ions. Peptides were
then confirmed in SRM atlas (http://www.srmatlas.org) or in our 2D-
LC-MS/MS identification data. Fully tryptic and doubly charged pep-
tides with 7–20 aminoacids were chosen. Peptides with a significant
occurrence of �3 ion (�10% of �2 ion) according to the GPM
proteomics database or to our identification data were not consid-
ered. Peptides with methionine, tryptophan, and N-terminal cysteine
residues were avoided, if possible. A list of nearly 600 peptides was
uploaded to Pinpoint and was used to design in silico survey SRM
methods. An equimolar mixture of regular MCF-7 cells and SILAC-
labeled MCF-7 cells (13C6, 15N2 L-Lysine, �8 Da, and 13C6 L-Argi-
nine, �6 Da) was used to experimentally test nearly 10,000 transi-
tions. In the first step of method development, 7–8 peptides and
about 125 transitions were included into each of 80 survey SRM
methods and run in a nonscheduled mode with 12 ms scan times per
transition. In the second step, 4–5 peptides and around 60 transitions
were included into each of 40 survey SRM methods and run in a
nonscheduled mode with 25 ms scans per transition. Retention times,
relative intensities of peptides, three most intense and selective tran-
sitions per peptide were recorded at that step. Transitions with frag-
ment m/z higher than precursor m/z were preferable, but transitions
with lower m/z were not excluded if had high intensity (especially at
proline residue), and low noise. As a reference to exclude possible
interferences, we used SRM signal of SILAC cells. In the third step,
around 25 light and heavy peptides and near 150 transitions (three
most intense transitions per peptide) were scheduled in five survey
SRM methods and analyzed with 10–60 ms scans. At that step, the
following parameters were verified, recorded or tuned, if required: (1)
retention time of light and heavy peptides and scheduling intervals; (2)
heavy-to-light ratios of transitions; (3) selectivity of transitions and
possible interferences; (4) scan times. If multiple peptides per protein
were detected, two peptides with the highest SRM area and signifi-
cantly different retention times were chosen. In general, there was a
clear correlation between protein abundance in the cell lysate and the
number of peptides suitable for SRM quantification. All peptides were
also analyzed with the Basic Local Alignment Search Tool (BLAST) at
http://blast.ncbi.nlm.nih.gov/Blast.cgi to ensure that peptides were
unique to each protein isoform. At the fourth step, 76 proteins, 134
peptides, and 401 most intense and reproducible transitions were
scheduled in a single multiplex scheduled SRM method within 3.5-
min (�1.75 min) intervals during a 60 min LC gradient. Scan times
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were optimized for each peptide in the final SRM method to ensure
the measurement of 15–20 points per LC peak per transition. Opti-
mized regression to calculate collision energies CE � 0.0316 � m/z �
1.7802 (r2 � 0.95) was used.

Protein Quantification by SRM—Peptides were separated by
60-min C18 reversed-phase liquid chromatography (EASY-nLC,
Proxeon, Odense, Denmark) and analyzed by a triple-quadrupole
mass spectrometer (TSQ Vantage, Thermo Fisher Scientific Inc., San
Jose, CA) using a nanoelectrospray ionization source, as previously
described (18–20). Analytical nanoLC column performed well several
days before and after analysis, so stability of SRM signal was not
compromised. Reproducibility of SRM signal was ensured by running
a QC solution of 0.25 fmol/�l BSA every nine runs. The upper level of
signal instability of our system could be estimated by the technical
variation of analysis (median CV 4%). Carry-over was evaluated with
a blank injection and was estimated in the range 0.05–0.2%. To
minimize the carry-over effect, analysis of control cells was followed
by the analysis of treated cells for each biological condition. We also
assumed that the effect of ionization suppression was reproducible in
all runs because of the identical cell lysate matrix, low variation of LC
retention times (1.8% median CV), and the fixed position of the
nanoESI tip to ensure the constant electric field. The maximum level
of signal instability because of the intermittent ionization suppression
can be estimated with biological variation of analysis.

Data Analysis—Raw files recorded for each sample were analyzed
using Pinpoint software, and CSV files with peptide areas were ex-
tracted (supplemental table S3). It should be mentioned that 73 peaks
in the set of 13,132 peaks (134 peptides measured in 98 runs) were
not detected due to their drift outside the scheduled window (�0.5%
of all measurements). For peptides lacking a single technical repli-
cate, or a single biological replicate, or two or three biological repli-
cates, the average of two technical replicates, or two peptides in the
remaining two biological replicates, or only the second peptide in
three biological replicates were used for the analysis, respectively.
The statistics software package and programming environment R
was used for data normalization and analysis. Normalization of pep-
tide areas was performed on the log2-transformed peak areas. The
first injection of replicate 1 of Control-24 h cells was used as the
reference, and the subsequent replicates were normalized to that
reference by the means of a normalization constant estimated by a
linear model (supplemental information). Normalization constants and
normalized areas are presented in the supplemental Tables S3 and
S4. After normalization, we first computed r2 (square of Pearson
correlation coefficient) and RMS (Root Mean Square) errors between
all pairs of samples (supplemental Table S5). One biological replicate
of hypoxia-48h sample had significantly lower correlation with other
replicates (0.75 and 0.76 versus 0.99) and thus was excluded from
analysis. All other pairs of biological replicates for each condition
showed consistent pattern of correlation. The median r2 was 0.995
across LC-SRM injections and 0.978 across biological replicates.
Second, we performed quality control to remove peptides that were
the consistent outliers. We computed ratios of 28 pairs of MCF-7
biological replicates (except the third replicate of hypoxia-48), found
the median ratio and the standard deviation, and flagged outlier
peptides with p � 0.05 based on the normal approximation of the
distribution of the ratios. Then we computed how many times (out of
28) each peptide was flagged as an outlier and then removed pep-
tides that were outliers 10 or more times (FPR of not being an outlier
was 6 � 10�7). As a result, we removed 6 peptides (supplemental
Table S3). Poor reproducibility of these peptides may be because of
the poorly controlled or irreproducible biological, digestion or LC
separation effects. For example, four of six peptides had relatively
short length (7–9 aminoacids) and eluted at the beginning of LC
gradient (12–16 min). Peptide LSEPAELTDAVK*, a quality control for

microextraction, was not used in data analysis. Normalized peptide
areas for each protein with two peptides were summed to obtain the
protein area (supplemental Table S6). Biological reproducibility of
protein areas (median CV 7%) was estimated with three replicates
(supplemental Table S7 and Fig. S4).

To calculate relative abundance of proteins in control and treat-
ment groups, we used a linear model to fit protein areas and growth
times (supplemental information), and assess the significance of
treatment. The Benjamini and Hochberg approach was used to obtain
FDR corrected p values (q-values) (21). We used q-value � 0.05 as a
cutoff to select differentially expressed proteins (supplemental Table
S8). Because we were interested in proteins with high differential
ratios, we presented in Table I only proteins with ratios outside the
range of two standard deviations from the mean (0.72–1.30). The
mean ratio (1.01) and its standard deviation (0.14) were calculated
based on ratios of 12 high-abundance house-keeping proteins in
galactose-grown, hypoxia, and estradiol stimulation samples.

RESULTS AND DISCUSSION

Proteomic Protocol—Accuracy and reproducibility of quan-
titative proteomics measurements rely to a great extent on the
robustness of the sample preparation protocol. Our goal here
was to develop a straightforward protocol that integrated
mammalian cell culture and accurate SRM quantification. We
used a mass spectrometry-compatible acid-cleavable deter-
gent Rapigest that was originally proposed as an acid-labile
detergent for protein denaturation (22). In this work, we opti-
mized the use of Rapigest for cell lysis. We also tested SDS-
and CHAPS-based protocols and found that all three proto-
cols provided similar number of protein identifications using
2D-LC-MS/MS (unpublished data). SDS and CHAPS deter-
gents, however, are removed with additional steps of dialysis
and lyophilization, may cause sample loss and make the
whole proteomic protocol more tedious and less robust.
Rapigest-based protocol facilitated quick and easy cell lysis,
protein denaturation, digestion, and preparation of peptides
for mass spectrometry analysis. This protocol was success-
fully used in our laboratory for the proteomic analysis of
breast and prostate cancer cells, human amniocytes, and
human proximal tubule cells. Rapigest-based protocol was
also found as efficient as SDS-based protocol in terms of
identification of membrane proteins. Recently, similar proto-
col was used to quantify by LC-MS/MS nearly 7300 proteins
in the human osteosarcoma cells (23). In this work, we report
that Rapigest-based protocol is efficient, straightforward, and
may be widely used for protein identification by LC-MS/MS
and for functional studies of proteins in mammalian cells by
SRM.

Protein Identification—We used a described cell lysis pro-
tocol followed by strong cation-exchange chromatography
and reversed-phase-nanoLC-ESI-MS/MS for protein identifi-
cation (Fig. 1). We identified in MCF-7 cell lysate 4074 pro-
teins (at false discovery rate of 1.0%), which represents one of
the largest proteome of MCF-7 cells ever reported (supple-
mental Tables S1 and S2). A total of 2738 proteins were
identified with at least two peptides. Identified proteins were
annotated to 216 distinct protein pathways using the KEGG
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pathway database (supplemental Table S9). Rapigest-based
sample preparation protocol was efficient with identification
of membrane proteins as GO Cellular Component analysis
revealed (supplemental Fig. S1). Interestingly, nearly all en-
zymes in the major cellular metabolic pathways were identi-
fied. This allowed us to select distinct enzymes and enzyme
isoforms in glycolysis/gluconeogenesis, TCA cycle, pen-
tose phosphate pathway, galactose metabolism, and gluta-
mine metabolism pathways (Fig. 2). In addition, there were
five proteins (seven peptides) in the metabolic pathways that
were not identified, but for which we were able to develop
SRM assays.

Development of SRM Assay—Sets of survey SRM methods
were designed for five to eight peptides per protein, for light-
and heavy-isotope labeled peptides. An equimolar mixture of
digests of normal and SILAC-labeled heavy MCF-7 cells was

used to survey five to eight transitions per peptide (supple-
mental Fig. S2). In total, nearly 10,000 transitions, 600 unique
peptides, and 90 proteins were surveyed.

To ensure high selectivity and the correct identity of each
peak, we applied the following set of criteria for each peptide:

1. Peptide sequence uniqueness: all peptide sequences were
analyzed with BLAST to ensure sequence uniqueness. The only
exception was made for some high-abundant proteins selected
for normalization, such as beta-tubulins, for which peptides
could represent several members of the protein family;

2. Correspondence of LC retention times of light- and
heavy-peptide forms;

3. Correlation of SRM retention time of a peptide to its
discovery retention time (supplemental Fig. S3); this test
should eliminate spurious peptides with multiple isobaric tran-
sitions, but different hydrophobicities;

FIG. 1. Schematic presentation of a workflow for SRM measurement of the relative expression of proteins in mammalian cells. In
Step 1, MCF-7 cells were lysed, and proteins were subjected to 2D-LC-MS/MS identification. Data analysis revealed 4074 unique proteins in
216 KEGG pathways. In Step 2, a multiplex SRM assay was developed for proteins in energy metabolic pathways and included 76 proteins,
134 peptides, and 401 transitions. In Step 3, MCF-7cells were grown in different conditions, lysed, and subjected to the proteomic sample
preparation. The peak area for each peptide was measured with a multiplex SRM assay and normalized using a statistical linear model. Protein
areas were used to calculate relative abundances and identify differentially expressed proteins in the entire metabolic pathways in mammalian
cells grown under different conditions. PPP, the pentose phosphate pathway.
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4. Superposition of transitions; light- and heavy-peptide
forms should have a minimum of six to eight overlaid y-ion
transitions. This number of transitions is sufficient to ensure
correct peptide identity in complex mixtures (24);

5. Order of transitions: same order of y-ion transition
intensities for light- and heavy-peptide forms, e.g.
y1�y2�y3;

6. Integrated area of all transitions; area of light and heavy
peptides should be equal in the equimolar mixture of lysates.

To ensure high selectivity, all transitions were tested in the
same cell lysate matrix that was used in the final SRM anal-
ysis. Finally, we verified, recorded or tuned the following
parameters: (1) retention times and scheduling intervals; (2)
selectivity of transitions and possible interferences; (3) scan

times; (4) collision energies. Following that, one or two pep-
tides per protein and the three most intense, selective and
reproducible transitions per peptide were chosen; 134 pep-
tides representing 76 proteins were multiplexed in a single
SRM assay (supplemental Fig. S3).

In the future, the proposed assay can be upgraded with four
to five peptides per protein, as well as synthetic or concate-
nated peptide standards, or with SILAP, super-SILAC, and
whole protein standards (25–28). Such assay should provide
very accurate estimation of protein abundance. It should also
resolve some uncertainties and avoid inconsistencies be-
cause of the post-translational modifications and proteolytic
cleavage of proteins, incomplete trypsin digestion, acquired
peptide modifications, ionization suppression, nonlinear re-

FIG. 2. Proteins and protein isoforms in glycolysis/gluconeogenesis, TCA cycle, pentose phosphate pathway, galactose metabolism,
and glutamine metabolism pathways. In total, out of 79 proteins, 50 proteins were identified by LC-MS/MS and quantified by SRM
(highlighted in green), nine proteins were identified, but not quantified (highlighted in pink), five proteins were not identified, but quantified
(highlighted in blue), and 15 proteins were neither identified, nor quantified (not highlighted). Enzymes in the presented energy metabolic
pathways catalyze: (1) conversion of glucose or galactose through glycolysis into pyruvate, which is used in the TCA cycle to produce NADH;
(2) conversion of glutamine to 2-oxoglutarate, which is used in the TCA cycle (3) generation of NADPH and conversion of glucose or galactose
through the pentose phosphate pathway into ribulose 5-phosphate or erythrose-4-phosphate, used in the synthesis of nucleotides and
aromatic aminoacids, respectively.
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sponse, and poor LC reproducibility. One of the limitations of
our present work is an assumption that all these parameters
remain the same in MCF-7 cells under three different biolog-
ical conditions and in MCF-10A cells.

SRM Analysis of Breast Cancer Cells—Three biological rep-
licates of MCF-7 breast cancer cells were cultured under
different growth conditions for 24 and 48 h, then were col-
lected and lysed. All lysates were simultaneously subjected to
the sample preparation protocol, and the peak area for each
peptide was measured with a multiplex SRM assay. Because
the unfractionated digest of the whole cell lysate was used,
only medium-to-high-abundance proteins were quantified.
Additional fractionation may increase sensitivity of analysis to

a hundred or so protein copies per cell (15) but this extra step
will significantly decrease the throughput.

The median CV of retention times of peptides in all condi-
tions was 1.8%, so 3.5 min scheduling interval was sufficient
to multiplex all peptides in a 60-min LC gradient. Reproduc-
ibility of retention times of selected peptides is presented at
Fig. 3. The median variation of SRM area in technical repli-
cates was 4% (supplemental Fig. S4), whereas the median
biological variation before normalization was 15% (Fig. 4).
Dynamic range of SRM analysis was 3.5 orders of magnitude,
with the lowest range for progesterone receptor and the high-
est range for beta-actin (supplemental Fig. S5). This range
correlated well with the previously reported levels of proges-

FIG. 3. Reproducibility of SRM signal and retention times of four selected peptides in different biological conditions, and in MCF-10A
cells. TFF1-I and TFF1-II are peptides GCCFDDTVR and QNCGFPGVTPSQCANK of trefoil factor 1, respectively.
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terone receptor, �50,000 copies per MCF-7 cell (29), and
beta-actin, �108 copies per cell (30).

Data Analysis—Correct interpretation of multiplex SRM as-
say data requires a robust statistical analysis. In this work, we
first used a statistical linear model to calculate normalized
peptide areas. Normalization was required to correct total
protein measurements and essentially normalize peptide
abundances to the same number of cells in each biological
condition. Normalization decreased variability (Fig. 4) and fa-
cilitated more accurate label-free analysis of relative abun-
dances of proteins.

Protein abundances were computed using the sum of nor-
malized peptide areas. Such method provided the most ac-
curate results in case proteotypic peptides had significantly
different SRM areas (31). This method assigned different
weights to peptides, so peptides with significantly lower SRM
areas (and often significantly higher CVs) did not have any
considerable impact.

Another statistical linear model was used to calculate the
change of relative abundances of proteins as a function of
growth time and corresponding q-values (FDR corrected p
values) to correct for multiple testing. Such correction is re-
quired when more than one parameter is measured simulta-
neously, and, thus, is required to analyze data generated with
any multiplex SRM assay. This model also allowed discrimi-
nating early- and late-response proteins through the compar-
ison of ratio increase in 24 and 48 h (supplemental Table S8).

Growth in Galactose-Rich-Glucose-Free Media—Growth in
galactose-rich-glucose-free media resulted in the expression
of several glucose-regulated proteins (Table I, Figs. 5–6).
There was a twofold increased expression of SLC2A1 (glu-
cose transporter protein 1), 1.7-fold increased expression of
HSPA5 (glucose-regulated protein 78kDa), and 1.4-fold in-
creased expression of HYOU1 (glucose-regulated and hy-
poxia up-regulated protein), which validated our biological
model. Changes in the metabolic pathways included in-
creased expression of glycolytic pathway aldolase ALDOC.
Interestingly, expression of galactokinase, GALK1, which is
a protein highly up-regulated by galactose in yeast, did not
change in MCF-7 cells grown in the galactose-rich media.
This different response to galactose between yeast and

mammalian cells was previously described for hepatocytes
(32).

Hypoxia—Growth in hypoxic conditions (0.1% oxygen) re-
sulted in the elevated expression of a considerable number of
hypoxia-regulated and metabolic proteins (Table I, Figs. 5 and
6). This included SLC2A1 as well as ten glycolytic enzymes.
For example, there was a 3.1-fold increase in expression of
aldolase C, which is known to be directly regulated in epithe-
lial cells exposed to hypoxia through the hypoxia-responsive
element (33). It total, increased expression of 11 of 12 proteins
in Table I was previously reported in hypoxic conditions (34–
36). Expression of nine of 12 proteins was regulated directly
through the hypoxia-inducible factor (HIF) because the corre-
sponding genes had hypoxia-responsive elements (HREs) in
their promoter regions (37, 38). As determined by the com-
parison of relative rates of protein expression in 24 and 48 h
(supplemental Table S8), expression of glucose transporter
protein SLC2A1 sharply increased in hypoxia, while slowly
increasing in the galactose-grown conditions. Thus, SLC2A1
is presumably an early-response gene in hypoxia.

In total, we observed an elevated expression of enzymes
involved in 9 out of 11 enzymatic reactions that convert
glucose into lactate. On the contrary, fructose-1,6-bispho-
sphatase 2, an enzyme reverting glycolysis to gluconeogen-
esis, was found down-regulated. It was fascinating to ob-
serve such simultaneous effect of hypoxia on breast cancer
cells.

Interestingly, hypoxia also resulted in a consistent decrease
of amounts of estrogen-regulated proteins PGR and GREB1.
Such effect was mediated through the degradation of estro-
gen receptor by proteasomal degradation pathway and re-
pression of estrogen receptor mRNA expression (39). Better
understanding of estrogen regulation in hypoxia may unveil
the mechanism of transformation of breast cancers to the
estrogen-independent forms.

Estradiol Stimulation—Estradiol stimulation resulted in the
strong over-expression of known estrogen-regulated proteins
(PGR, TFF1, GREB1, TPD52L1, and TFRC). A gradual in-
crease of protein expression was observed after 24 and 48 h
of growth (Fig. 5). Differentially increased metabolic proteins
included glycolytic fructose-1,6-bisphosphatases FBP1 and

FIG. 4. Biological variation of SRM areas of peptides in all growth conditions before and after normalization. Normalization with a linear
model reduced median biological variation from 15 to 8%.
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FBP2. Interestingly, promoter regions of these genes had
estrogen-responsive elements (EREs) (40).

Increased expression of PGR, TFF1, and GREB1 genes
upon estradiol stimulation is well-documented in the litera-
ture, and was intensively studied at mRNA level (41–43).
GREB1, TPD52L1, and TFF1 genes are currently investigated
as prognostic and predictive markers of breast cancer (44–
46), so presented SRM assay can be used to investigate
expression of corresponding proteins in breast cancer cells
and tissues. Estradiol-mediated expression of TPD52L1 was

previously reported, but its cellular function is still not known
(47). Using our SRM-based workflow, multiple transcriptom-
ics-based data sets of estrogen-regulated genes can be val-
idated, and functional roles of many estrogen-regulated pro-
teins can be elucidated (40, 47). In addition, measurement of
estrogen-regulated proteins in the presence of increasing
concentrations of drug candidates can facilitate cell-based
screening for agonists and inhibitors of estrogen receptor and
accurate determination of their effective and inhibitory
concentrations.

TABLE I
Differentially expressed proteins and their relative abundance in 48 hours after treatment (in parentheses). FDR-corrected p values (q-values)
�0.05 were used to select differentially expressed proteins. Presented proteins have treated/conrol ratios outside the range of two standard

deviations from the mean (0.72–1.30)

Positive control proteins Metabolic proteins

Up-regulated Down-regulated Up-regulated Down-regulated

High-galactose-no-glucose media SLC2A1 (2.0) ALDOC (1.7)
HSPA5 (1.7)
HYOU1 (1.4)

Hypoxia SLC2A1 (3.0)a PGR (0.5) ALDOC (3.1)a FBP2 (0.7)
GREB1 (0.6) GPI (1.9)

LDHA (1.9)a

PGK1 (1.8)a

PFKP (1.7)a

SLC7A5 (1.7)
ALDOA (1.5)a

SDHA (1.5)
PKM1/M2 (1.4)a

GAPDH (1.4)a

ENO1 (1.3)a

PGAM1 (1.3)a

Estradiol stimulation TFF1 (5.7)b SLC1A5 (1.4) FBP1 (0.6)b

PGR (4.1)b FBP2 (0.6)b

GREB1 (4.1)b

TFRC (3.1)
TPD52L1 (2.8)b

MCF-10A GLUD1 (5.4) TFF1 (0.01)
LDHA (4.9) FBP1 (0.01)
SDHB (3.2) FBP2 (0.1)
UGP2 (2.8) IDH2 (0.1)
FH (2.4) G6PD (0.1)
PGM2 (2.2) GALK1(0.1)
HK1 (2.2) GREB1 (0.2)
TUBB2C (1.9) TPD52L1 (0.2)
IDH3G (1.9) SLC1A5 (0.2)
PDHA1 (1.9) PES1 (0.2)
PDHB (1.8) TFRC (0.3)
TUBB (1.7) PCK2 (0.3)
ACO2 (1.7) PFKL (0.3)
SUCLA2 (1.7) RPIA (0.3)
DLAT (1.6) ALDOC (0.4)

PGD (0.4)
HSP90AB1 (0.5)
HYOU1 (0.5)
PGR (0.5)
GAPDH (0.6)
RPL6 (0.6)
SUCLG2 (0.6)
ALDOA (0.7)
RPL27A (0.7)

a Promoters or enhancers of these genes have hypoxia-responsive elements (HRE).
b Promoters or enhancers of these genes have estrogen-responsive elements (ERE).
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Cancer Versus Near-normal Breast Cancer Cells—Impres-
sive difference in protein expression was found between
MCF-7 (cancer) and MCF-10A (near-normal) breast cells (Fig.
6). Cancer cells had significantly elevated levels of FBP1,
FBP2 (gluconeogenesis), IDH2 (TCA cycle), and G6PD (the
pentose phosphate pathway).

Elevated expression of FBP1, FBP2, and G6PD in cancer
cells increases glucose flux from glycolysis into the pentose
phosphate pathway and redirects cellular energy metabolism
toward increased biosynthesis (48). Interestingly, the IDH2
enzyme has recently captured a lot of attention in relation to
metabolic transformation of cancer cells (9, 10). Cancer-spe-
cific mutations of IDH2 discovered in gliomas and leukemias
lead to accumulation of the uncommon metabolite 2-hydroxy-
glutarate and to profound changes in the cellular metabolome
(49). Here, we searched our MCF-7 MS/MS identification data
and found no known IDH2 mutations (R172K, R172M,
R172W) (50). However, IDH2 was considerably elevated in

cancer cells. Recently, IDH2 expression was found signifi-
cantly elevated in three breast cancer cell lines that repre-
sented late stages of tumor (51). Levels of estrogen-regulated
proteins, especially TFF1, were significantly lower in near-
normal MCF-10A cells that were known not to express an
estrogen receptor (52). Similar trend for protein abundance in
MCF-10A versus MCF-7 cells has recently been found based
on spectral counting comparison of shotgun proteomics data
(53). However, because of the limited dynamic range of spec-
tral counting, such comparison provided reliable results only
for high-abundance proteins.

Concluding Remarks—To summarize, we presented here
an SRM-based proteomic workflow to monitor relative ex-
pression of proteins in the entire energy metabolic pathway in
mammalian cells exposed to different growth conditions.

We want to emphasize the advancements made in the
present work. In general, in this work we optimized multiple
proteomic and cell biology techniques and integrated them

FIG. 5. Time-dependent expression
of selected proteins in control and ga-
lactose-grown (A), hypoxic (B), and
estradiol-treated (C) conditions. Col-
umns represent normalized peptide area
or the sum of normalized peptide areas,
whereas error bars show variation of
area in three biological replicates.
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into a single workflow with a minimal number of sample prep-
aration steps to facilitate quantitative comparison of protein
expression in mammalian cells. First, we optimized the use
of acid-labile mass spectrometry compatible detergent (Ra-

pigest) for lysis of mammalian cells. Followed by Rapigest-
assisted protein denaturation, our proteomic protocol was
carried out in a single well of a 96-well plate and was devoid
of common steps of detergent removal and lyophilization that
might lead to sample loss and low reproducibility of analysis.
Second, this work is one of the first reports on SRM-based
quantitative proteomic workflows for mammalian cells. Our
workflow allows monitoring changes in protein expression in
the whole metabolic pathway, in multiple growth conditions
and time points, and with multiple biological and technical
replicates. Present SRM workflow and the data analysis
model can be used to validate the results of global discovery
proteomics experiments, such as SILAC. In addition, our sta-
tistical model facilitates identification of early- and late-re-
sponse proteins and may possibly differentiate between di-
rectly and indirectly regulated proteins. Third, we present
quantitative protein assays that are currently lacking in the
field of metabolic transformation of cancer cells. Alterations in
cellular metabolism in hypoxia and upon abnormal hormone
stimulation are widely investigated in breast cancer studies
and often rely on measurement of mRNA expression, but not
proteins (54). Fourth, we confirmed by SRM, an alternative
protein quantification method, a well-known expression of a
number of proteins (such as SLC2A1, HSPA5, LDHA, PGR,
and TFF1) in mammalian cells exposed to glucose depriva-
tion, hypoxia, and estradiol stimulation. Hypoxia- or estrogen-
responsive elements in the promoters of corresponding genes
were found for the majority of differentially expressed meta-
bolic and control proteins. Fifth, we measured some estro-
gen-regulated proteins (GREB1 and TPD52L1), for which
quantitative protein assays, such as ELISA, are not available.

Our quantitative proteomic protocol based on an acid-labile
mass spectrometry-compatible detergent is described in detail.
Presented SRM assay includes 76 proteins, 134 proteotypic
peptides, the three most intense and selective SRM transitions,
and optimal instrumental parameters (supplemental Table S10).
This large set of parameters can be easily shared between
SRM-compatible mass spectrometers and used as a founda-
tion for developing comprehensive assays to measure protein
expression in all metabolic pathways in the cell.

It should be mentioned that the present assay allows quan-
tifying changes in protein expression, but not in enzyme ac-
tivity. Enzyme activity in the living cell is often regulated by
multiple post-translational mechanisms, regulatory proteins,
and cofactors and cannot always be correlated with enzyme
concentration. To fully comprehend the complexity of the
cellular metabolism, the targeted proteomics assays should
be complemented with metabolomic, transcriptomic, and ac-
tivity-based profilings of cellular pathways (55, 56). In addi-
tion, presented workflow cannot be applied to low-abun-
dance proteins expressed in mammalian cells at low copy
numbers (�10,000 copies per cell). Quantification of low-
abundance proteins would require an additional step of pro-
tein or peptide separation and may decrease the throughput

FIG. 6. Relative abundance of housekeeping, control and met-
abolic pathway proteins in MCF-7 cells under different growth
conditions, and in near-normal MCF-10A cells as compared with
MCF-7 cells. In galactose-grown conditions, differentially expressed
proteins included SLC2A1 (glucose transporter protein 1), HSPA5
(glucose-regulated protein 78kDa), HYOU1 (glucose-regulated and
hypoxia up-regulated protein 1) and ALDOC (aldolase C). Hypoxic
conditions resulted in differential expression of SLC2A1, estrogen-
regulated proteins and a number of proteins in glycolysis. Estradiol
stimulation changed expression of estrogen-regulated proteins, but
did not significantly affect energy metabolic pathways. Significant
difference in protein expression levels was found between MCF-7
(cancer) and MCF-10A (near-normal) breast cells.
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and reproducibility of the assay. In our experience, however,
a large fraction of proteins amenable to 2D-LC-MS/MS iden-
tification can be quantified by SRM in the unfractionated
digest of cell lysate or biological fluid.

In summary, the presented workflow is an integrated tool
for hypothesis-driven studies of mammalian cells as well as
functional studies of proteins, and can greatly complement
experimental methods in systems biology, metabolic engi-
neering, and metabolic transformation of cancer cells.
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