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Coupling proteomics and transcriptomics in the quest

of subtype-specific proteins in breast cancer
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Breast-cancer subtypes present with distinct clinical characteristics. Therefore, characterization
of subtype-specific proteins may augment the development of targeted therapies and prognostic
biomarkers. To address this issue, MS-based secretome analysis of eight breast cancer cell lines,
corresponding to the three main breast cancer subtypes was performed. More than 5200 non-
redundant proteins were identified with 23, four, and four proteins identified uniquely in basal,
HER2-neu-amplified, and luminal breast cancer cells, respectively. An in silico mRNA analysis
using publicly available breast cancer tissue microarray data was carried out as a preliminary
verification step. In particular, the expression profiles of 15 out of 28 proteins included in the
microarray (from a total of 31 in our subtype-specific signature) showed significant correlation
with estrogen receptor (ER) expression. A MS-based analysis of breast cancer tissues was
undertaken to verify the results at the proteome level. Eighteen out of 31 proteins were quantified
in the proteomes of ER-positive and ER-negative breast cancer tissues. Survival analysis using
microarray data was performed to examine the prognostic potential of these selected candidates.
Three proteins correlated with ER status at both mRNA and protein levels: ABAT, PDZK1, and
PTX3, with the former showing significant prognostic potential.
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1 Introduction

Advances in screening and improved treatment options con-
tributed to the decline of breast cancer mortality in the west-
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ern world during the last decade. However, breast cancer
remains the most frequently diagnosed cancer and the sec-
ond cancer-related cause of death in women, highlighting the
numerous unmet clinical needs [1].

Molecular profiling of breast cancer tissues has shown
that breast cancer is not a single entity but rather a collec-
tion of diseases developed at the same anatomical site. Us-
ing gene expression analysis of breast tumor tissues, Perou
et al. identified at least four molecular subtypes of breast can-
cer (luminal, HER2-neu-amplified, basal-like, and normal-
like) [2]; a classification that was independently reproduced
[3, 4]. One of the implications of the molecular taxonomy
is that different subtypes are associated with distinct clini-
cal characteristics such as prognosis and response to ther-
apy [5, 6]. More specifically, patients with luminal cancers
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(ER-positive) show better prognosis compared to patients
with HER2-neu-amplified and basal-like breast tumors [5].
Additionally, luminal and HER2-neu overexpressing cancer
patients benefit from targeted therapies—endocrine thera-
pies and trastuzumab, respectively—whereas patients with
basal-like breast cancer are left with the option of conven-
tional cytotoxic therapies [7].

During the last decade it has been shown that molecular
classification of breast cancer holds promise for the develop-
ment of novel prognostic tools and treatment targets. How-
ever, proteins are the mediators of all biological processes and
the molecular targets of the majority of drugs. Moreover, the
proteome integrates the cellular genetic information and en-
vironmental influences [8]. Hence, studying the proteome in
combination with transcriptomic studies may augment the
development of targeted therapies and the identification of
disease-relevant protein networks.

Due to the distinct clinical characteristics of each subtype,
we reasoned that subtype-specific proteins may have signif-
icant potential as prognostic biomarkers and/or therapeutic
targets for breast cancer. Toward our goal, a “bottom-up” pro-
teomics approach and a 2D LC-MS/MS platform on a linear
ion trap–orbitrap were utilized to analyze the conditioned
media of eight breast cancer cell lines. The cell lines were
selected to represent the three main breast cancer subtypes:
luminal, basal, and HER2-neu-amplified. Proteins common
to all cell lines of the same subtype but not present in the
other two subtypes were identified and proposed as subtype-
specific proteomic panels. An in silico mRNA analysis using
publicly available data from four independent experiments
was performed as a preliminary verification step to confirm
the subtype-specificity of our proteins. Since most of the iden-
tified proteins have not been connected to breast biology or
breast cancer before, we sought to examine if these proteins
are expressed in breast cancer tissues at the proteome level
using a mass spectrometric approach. The prognostic poten-
tial of the top candidate proteins was examined using publicly
available microarray data.

2 Materials and methods

2.1 Breast tumor-derived cell lines

Eight cell lines were obtained from American Type Culture
Collection (ATCC, Manassas, VA, USA) and were grown
using the recommended conditions: MCF-7, HCC-1428,
BT-438, HCC-38, HCC-1143, MDA-MB-231, SK-BR-3, and
HCC-202. (Supporting Information Table 1).

2.2 Cell culture

The seeding density and incubation periods were optimized
as previously described [9] to maximize protein secretion and
minimize cell death. Optimum conditions are summarized

in Supporting Information Table 2. See Supporting Infor-
mation Materials and Methods for detailed cell culture con-
ditions. Total protein concentration was determined using a
Coomasie (Bradford) total protein assay (12) and a volume
corresponding to 1 mg of total protein was processed as fol-
lows. The experiment was performed in duplicate for each
cell line.

2.3 Conditioned media sample preparation

The samples were dialyzed, lyophilized, and processed for
trypsin digestion. For a detailed protocol see Supporting
Information Materials and Methods. Trypsin digests were
lyophilized to dryness.

2.4 Human tissue samples

Sixteen breast cancer tissues, eight ER-positive and eight
ER-negative, from patients with primary breast cancer were
processed as previously described [10] and stored as cytosolic
extracts in liquid nitrogen. Selection of samples was based
on the availability of stored cytosolic extracts that remained
after routine ER analyses. The samples were not subjected to
freezing-thaw cycles prior to analysis.

2.5 Breast cancer cytosol sample preparation

Equal amounts of total protein from each sample, as de-
termined by the Bradford total protein assay (Pierce, USA),
were pooled to create two pools (total protein concentration
250 �g): one containing ER-positive and a second contain-
ing ER-negative samples. The samples were diluted four-fold
with 50 mM ammonium bicarbonate buffer solution and each
pool was then divided in two technical replicates that were
processed individually. Proteins were denatured with 0.05%
RapiGest (Waters) at 60�C and the disulfide bonds were re-
duced with DTT (final concentration, 10 mM; Sigma). Follow-
ing reduction, the samples were alkylated with iodoacetamide
in room temperature for 45 min in the dark (final concentra-
tion, 20 mM; Sigma). The samples were then trypsin-digested
overnight at 37�C (trypsin: protein ratio of 1:50; Promega,
sequencing-grade modified porcine trypsin). RapiGest was
cleaved with 1% TFA and samples were centrifuged at 453 ×
g for 20 min.

2.6 Strong cation-exchange LC

The tryptic peptides were subjected to strong cation exchange
chromatography to reduce sample complexity. Refer to
Supporting Information Materials and Methods for a detailed
protocol.
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2.7 MS

Mass spectrometric analysis was performed as previously de-
scribed [9] and is also described in Supporting Information
Materials and Methods.

Instrument performance was monitored using BSA as
quality control. More specifically, 10 fmol of digested BSA
were injected in the mass spectrometer and five peptides
(m/z: 582.316, 722.817, 653.360, 733.282, 740.401) were mon-
itored in terms of retention time, peak shape, area under the
curve, and mascot score to evaluate proper and consistent
instrument performance.

2.8 Data analysis

2.8.1 Cell lines

Data analysis was performed as previously described [9] and
is also described in Supporting Information Materials and
Methods. Protein Center Professional Edition (v. 3.5.2.1;
Proxeon Bioinformatics, Odense, Denmark) was utilized
for obtaining genome ontology information including cel-
lular localization, function, process annotations, and further
analysis.

2.8.2 Breast cancer cytosols

Data analysis was performed by MaxQuant software (v
1.1.1.25) [11]. MS/MS spectra were searched against the hu-
man international protein index database (v3.68, 87,061 se-
quences) by Andromeda search engine supplemented with
frequently observed contaminants and concatenated with re-
versed copies of all sequences. Enzyme specificity was set to
trypsin and a maximum of two missed cleavages was allowed.
Carbamidomethylcysteine was set as fixed and N-acetylation
and methionine oxidation were set as variable modifications.
The initial maximum allowed mass deviation was set to
7 ppm for monoisotopic precursor ions and 0.5 Da for MS/MS
peaks. The required minimum peptide length was six amino
acids. The false discovery rate (FDR) at the peptide level and
protein level was set to 1%.

Label-free quantification was performed also in MaxQuant
by extracting isotope patterns for each peptide in each run
and matching to each other across runs using peptide iden-
tifications, very high mass accuracy, and retention time. In
order to identify differentially expressed proteins between ER-
positive and ER-negative samples, the average intensity of the
two technical replicates for ER-positive and ER-negative sets
was used and the log2 ratio ER-positive/ER-negative was com-
puted. The ratio was then transformed to z-scores by using
the median of log2 ratio and a robust estimate of the SD based
on interquartile range. Outliers were identified by computing
a p-value for each z-score and then adjusting it for FDR based

on Benjamini and Holberg correction. A cutoff of 0.0025 was
used to identify significantly differentially expressed proteins.

2.9 ELISAs

ELISA for proprotein convertase subtilisin/kexin type 9
(PCSK9) was purchased commercially and performed accord-
ing to the manufacturer’s instructions (R&D systems, catalog
# DCP900). Kallikreins 5 and 6 were measured in conditioned
media using in-house developed ELISA assays, as described
previously [12].

2.10 Cell line mRNA expression microarray data

Cell line mRNA expression data were obtained from NCBI
GEO [13], experiment GSE12790 [14], performed on the
Affymetrix HGU133Plus2 platform. From all raw files, eight
cell lines that corresponded to our cell line work were se-
lected. The CEL files were imported into R and normalized
using gcRMA [15] in the Bioconductor [16] environment. Ex-
pression values for the eight cell lines were obtained as log2

transformed intensities. Probes that showed little variation
(i.e. having a maximum over minimum ratio of less than two
between different cell lines) were excluded.

From the normalized expression measurements, probes
that matched the genes of interest were selected using the
current Affymetrix annotation file. The log2 intensity values
were used for constructing a heatmap on which genes were
ordered based on which cell lines they were identified, in
our proteomic data analysis. The cell lines were grouped ac-
cording to the reported subtype. For the color coding of the
heatmap, we centered each row on the median expression
and used the centered value as a color scale. Thus, the quali-
tative difference in color is proportional to the log2 expression
ratio between each two-cell lines.

2.11 Tissue mRNA expression and survival data

The NCBI GEO was queried for datasets with breast cancer
tissue microarray data that were performed on Affymetrix
arrays (HG-U133A or HG-U133Plus2), one of the most com-
mon platforms with wide gene coverage. The datasets A:
GSE7390 [17], B: GSE2034 [18], C: GSE21653 [19], and D:
GSE4922 [20] were selected for further analysis.

Raw CEL files for the four datasets were obtained from
NCBI GEO repository. Normalization and quality control
metrics were computed in R 2.14/Bioconductor 2.8 and sim-
pleaffy [21] packages. Quality control metrics were evaluated
(average background, RNA degradation, scale factors, percent
present) by simpleaffy. Samples that showed high 5′ to 3′ ratio
for control genes (>2.5 for ACTB, >2 for GAPDH) or flagged
as outliers in other metrics were excluded. After quality con-
trol, expression data were normalized using gcRMA [15]. In
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total 924 samples passed, quality control criteria and were
used for further analysis.

All probes matching to the genes identified by proteomic
analysis were selected. To ensure consistency of interpre-
tation among datasets, only probes that were common be-
tween all experiments were included, effectively selecting
only probes on the U133A chip. In total, 46 probes match-
ing to 28 genes identified by proteomics were used in down-
stream analysis.

Evaluation of the probe correlation with ER expression
was based on estrogen receptor 1 (ESR1) probe 205225_at,
which exhibited excellent correlation with ER status based on
clinical data (ANOVA test p < 10−30 in all datasets). Pearson’s
product moment correlation coefficient and significance of
the correlation was evaluated for all genes, independently on
each dataset.

2.12 SRM assay development for ABAT

2.12.1 Peptide selection

Global proteome machine proteomics database
(http://mrm.thegpm.org) was used to select top nine
peptides for 4-aminobutyrate aminotransferase (ABAT)
protein. Peptides were then confirmed in selected reaction
monitoring (SRM) atlas (http://www.srmatlas.org) or in
our LC-MS/MS identification data. Fully tryptic and doubly
charged peptides with 7–20 aminoacids were chosen. From
the nine initial candidate peptides those with methionine
and N-terminal cysteine residues were excluded resulting in
four candidate peptides. Peptides were also analyzed with the
Basic Local Alignment Search Tool to ensure that they were
unique to the protein of interest. In silico protein digestion
and peptide fragmentation were performed with Pinpoint
software (Thermo Scientific).

2.12.2 SRM conditions

In the first step of method development, four peptides and 27
transitions were included in one SRM method. For method
optimization, digested samples of breast cancer cytosols used
previously in our analysis were loaded onto a 2 cm C18 col-
umn with 15 �m inner diameter and were eluted to a re-
solving 5 cm analytical C18 column (inner diameter 75 �m)
for separation. This setup was online coupled to a triple-
quadrupole mass spectrometer (TSQ Vantage, Thermo Sci-
entific) using a nano-ESI source (Proxeon Biosystems). De-
tails regarding LC and MS methods can be found in our
previous study [22]. Parameters of SRM method were as fol-
lows: predicted collision energy values, 0.002 m/z scan width,
20 ms scan time, 0.2 resolution at the first quadrupole, 0.7
resolution at the third quadrupole, 1.5 mTorr pressure at the
collision cell, tuned tube lens values, 7 V skimmer offset. Re-
tention times, relative intensities of peptides, most intense

and selective transitions per peptide were recorded at that
step.

2.12.3 Sample preparation

Twenty breast cytosolic extracts (10 ER-positive and 10 ER-
negative) were processed for trypsin digestion individually as
follows. Total protein for each sample was measured by the
Bradford total protein assay (Pierce), and the volume was ad-
justed to extract equal amounts of total protein (30 �g) from
the individual samples. Samples were diluted four times with
50 mM ammonium bicarbonate buffer solution and proteins
were denatured with 0.05% Rapigest (Waters) at 60�C, and the
disulfide bonds were reduced with DTT (final concentration,
10 mM; Sigma) before being subject to alkylation with iodoac-
etamide in room temperature for 45min in the dark (final con-
centration, 20 mM; Sigma). Samples were then digested with
sequencing grade modified trypsin (trypsin: protein ratio of
1:30; Promega, sequencing-grade modified porcine trypsin)
overnight at 37 �C. Sixty femtomoles of heavy 13C6, 15N2
L Lysine-labeled peptide (LSEPAELTDAVK*) of KLK3 pro-
tein was added as an internal standard for microextraction.
Rapigest was cleaved with 1% TFA, and samples were cen-
trifuged at 453 g for 10 min and supernatant was carefully col-
lected to avoid pellet contamination. Volume corresponding
to 5 �g of peptides were purified and extracted using ZipTip
C18 pipette tips (Millipore) twice for each sample, and were
eluted using 2 �L of mobile phase B (55% ACN, 0.1% formic
acid). Eighteen �L of mobile phase A (0.1% formic acid) was
added to each sample to yield one injection of 18 �L.

2.12.4 Protein quantification by SRM

Six transitions of best performing peptide (IDIPSFDWPI-
APFPR) were used for the quantification of ABAT protein
in breast cancer cytosolic extracts (Supporting Information
Table 3). Housekeeping proteins beta actin (ACTB) and
GAPDH were selected to serve as relative internal standards
(SRM methods developed previously [22]). The final SRM
method targeted 45 transitions of 5 peptides (one peptide for
ABAT, two peptides for GAPDH, one peptide for ACTB and
heavy labelled peptide of KLK3 as internal standard, Support-
ing Information Table 3) during a 60 min LC gradient. Scan
time was set to 30 msec and was calculated to ensure the
measurement of at least 15–20 points per LC peak. Peptides
were separated by 60-min C18 RP LC (EASY-nLC, Proxeon)
and analyzed by a triple-quadrupole mass spectrometer (TSQ
Vantage, Thermo Scientific) using a nano-ESI source, as pre-
viously described [22]. Analytical nano-LC column performed
well several days before and after the analysis, so stability of
SRM signal was not compromised. Reproducibility of SRM
signal was ensured by running two quality control solution
of 0.25 fmol/mL BSA every ten runs. Raw files recorded for
each sample were analyzed using Pinpoint software, and CSV

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2013, 13, 1083–1095 1087

files with peptide areas were extracted (Supporting Informa-
tion file 1). It should be noted that three out of 40 injected
samples were excluded for further analysis due to inadequate
microextraction based on the signal of the quality control pep-
tide. The quality control peptide was not used in further data
analysis.

2.12.5 Data analysis

Normalization among samples was performed by calculat-
ing the ratio of ABAT peptide extracted area over the sum of
GAPDH and ACTB peptides extracted area scaled by a factor
of 104. For samples with two technical replicates the average
normalized peak area was used for further analysis. The re-
sults were analyzed using the GraphPAD Prism (GraphPAD
Software).

3 Results

3.1 Delineation of breast cancer cell lines secretome

The conditioned media of eight breast cancer cell lines repre-
senting the main breast cancer subtypes (ER-positive, basal
and HER2-neu-amplified) were analyzed using a bottom-up
tandem mass-spectrometric approach. Two biological repli-
cates were analyzed for each cell line, yielding between 1492
and 2828 proteins in each of the eight cell lines, with FDR of
less than 1% (Supporting Information Table 4). The repro-
ducibility between biological replicates, defined as the overlap
of identified proteins in each replicate, was over 70% in all
cell lines analyzed; this reproducibility is considered accept-
able in experiments of similar nature [9, 23]. More than 60%
of the proteins were identified with two or more peptides
(Supporting Information Table 4).

In the absence of cell death, conditioned media is expected
to contain proteins secreted or shed from the cellular plasma
membrane. Thus, to verify that proteomic analysis of the con-
ditioned media resulted in enrichment for the subproteome
of interest (secreted or shed proteins), cellular localization an-
notation of the identified proteins was performed using the
Gene Ontology consortium database as provided in Protein-
Center. Our datasets were enriched for proteins annotated as
“extracellular,” “cell surface,” and “membrane” (Supporting
Information Table 4). Although cell growth conditions were
optimized (Supporting Information Table 2), uncontrolled
cell death can account for the large proportion of proteins
annotated as cytosolic. Alternatively, proteins annotated as
“cytosolic” could reach the extracellular space through exo-
some secretion [24].

A summary of proteins per cell line along with interna-
tional protein index identifiers, gene names, number of iden-
tified peptides, cellular localization annotation, and signal
peptide information can be found in Supporting Informa-

tion file 2. An extensive peptide report for the eight cell lines
can be found in Supporting Information file 3.

Overall, this experiment resulted in the identification of
5222 non-redundant proteins in the secretomes of eight
breast cancer cell lines. To verify the biological relevance of
proteins identified using our in vitro system, the generated
non-redundant list of proteins was compared against our pre-
viously studied nipple aspirate fluid (NAF) proteome [25]. A
total of 553 out of 863 (64%) previously identified NAF pro-
teins were present in the compiled breast cancer cell line
proteome. It is worth mentioning that approximately 50% of
proteins identified in the NAF proteome were annotated as
cytosolic, further supporting the notion that cytosolic proteins
could reach the extracellular space through diverse pathways
including exosome secretion [24].

The MS-based identification of KLK5 and KLK6 (proteins
previously studied in the context of breast cancer [26]) and
PCSK9 a protein never connected to breast cancer before)
was verified using immunosorbent assays. KLK5 was ex-
pressed in HCC-1143 and HCC-38 cell lines at concentrations
42 �g/L and 30�g/L, respectively. KLK6 was expressed by
BT-483 (0.5�g/L), MCF-7 (0.3 �g/L), HCC-1143 (7 �g/L),
and HCC-38 (5 �g/L). Finally, PCSK9 was expressed only by
the basal cell lines MDA-MB-231, HCC-38, HCC-1143 at the
level of 10 �g/L, 5 �g/L, and 2,5 �g/L, respectively.

3.2 Identification of subtype-specific proteins

Next, we sought to determine breast cancer subtype-specific
secretome signatures in our data. To achieve so, the identi-
fied proteomes were qualitatively compared to select proteins
common among the cell lines of the same subtype, yet unique
to each subtype. ProteinCenter was utilized for the compar-
isons among the eight cell lines and results were manually
verified. To increase stringency, only proteins present in both
biological replicates, with two peptides identified in at least
one replicate were selected. Additional filtering was added
for proteins with multiple isoforms, whereby they were ex-
cluded from further analysis to avoid gene name promiscuity.
This step-wise selection of proteins is depicted in Supporting
Information Fig. 1. By using these criteria, we managed to
identify 23 basal, four ER-positive and four HER2-neu ampli-
fied specific proteins, as shown in Table 1. Notably, v-erb-b2
erythroblastic leukemia viral oncogene homolog 2 (ERBB2)
was one of the proteins uniquely identified in the HER2-neu-
amplified subtype.

3.3 In silico verification of the proposed

subtype-specific protein panels using publicly

available microarray data

Our list of 31 proteins (Table 1) was identified using a
discovery-based mass spectrometric approach. However, for
most of these proteins there are no commercially available
quantitative methods at present. Consequently, we opted to
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Table 1. Summary of subtype-specific proteomic panels

Basal

VIM FBN1 LAMB3 TGM2
GSTP1 LOXL2 AHNAK2 PTX3
PCSK9 COL4A2 MFI2 PTRF
AKR1B1 DCTD MT2A TRAP1
AKR1C3 LMAN1 DNAJB4 PSMG1
ICAM2 BAG2 SIL1
HER2-neu-amplified

VAMP8 VTCN1 SCOC ERBB2
ER-positive

PDZK1 CLSTN2 ABAT SEMA4C

SIL1, endoplasmic reticulum chaperone SIL1 homolog; FBN1,
fibrillin 1; PCSK9, proprotein convertase subtilisin/kexin type 9;
COL4A2, collagen type IV alpha 2; DCTD, dCMP deaminase;
PSMG1, proteasome assembly chaperone 1; short coiled-coil pro-
tein; ERBB2, v-erb-b2 erythroblastic leukemia viral oncogene ho-
molog 2.

preliminarily examine the relationship of these candidates
with breast cancer subtypes by using an in silico approach,
based on transcriptomic data. We first studied the correla-
tion between mRNA and protein levels of the genes of inter-
est identified through our analysis. Towards this aim, we
performed a meta-analysis of available mRNA expression
data focusing on the cell lines and genes of interest [14].
The qualitative concordance between microarray and protein
expression data was high (Fig. 1, Supporting Information
Table 5). Twenty of 23 basal-specific proteins (except TRAP1,
endoplasmic reticulum chaperone SIL1 homolog and protea-
some assembly chaperone 1) showed higher expression in
basal cell lines by microarray analysis, with ratios ranging
from 2.16 to 369, when compared to ER-positive/HER2-neu-
amplified cell lines. Among ER-positive-specific proteins, all
four (ABAT, CLSTN2, PDZK1, and SEMA4C) were validated
using the microarray data, with PDZK1 having a ratio of
640 in comparison to the mean value of the other cell lines.
From the three proteins identified by our proteomic work in
HER2-amplified cell lines (short coiled-coil protein (SCOC),
VAMP8, and VTCN1), none exhibited a ratio of 2, however
VTCN1 was uniquely expressed in the two HER2-amplified
cell lines as well as HCC-1428. Similar results were obtained
when analysis was expanded in 51 breast cancer cell lines
(Supporting Information Fig. 2). In total, 24 of our 30 candi-
dates showed microarray expression patterns consistent with
the proteomic data.

The good qualitative concordance between mRNA and
protein expression levels in the cell lines used in the study,
encouraged us to examine the subtype specificity of our pan-
els in breast cancer tissue samples. We performed an in sil-
ico mRNA expression analysis using publicly available data
from four independent experiments containing a total of 1039
patients with primary breast cancer [17–20]. A common mi-
croarray platform, non-overlapping patient cohorts and doc-
umented clinical information were prerequisites for dataset
selection. Patient characteristics are summarized in Table 2.

All genes except two (PCSK9, SCOC) had at least one probe
on the selected microarray platform and were qualified for
further analysis.

ER correlation was evaluated, separately on each of the four
datasets. Pearson correlation coefficients (r) for the probes
that showed significant correlation with ER status (p < 0.05
in at least three datasets) are shown in Fig. 2. Among the
ER-positive-specific genes, ABAT, CLSTN2, and PDZK1 ex-
hibited a positive correlation with ER-status, reaching a signif-
icance level of p = 10−45 for ABAT (Supporting Information
Table 6) and all three genes had a consistent pattern among
the four datasets (Fig. 2). SEM4AC did not show a significant
correlation with ESR1 expression. Among basal-type-specific
proteins, 13 showed a consistent negative correlation with
ESR1 at highly significant levels while three (dCMP deami-
nase, fibrillin 1, and endoplasmic reticulum chaperone SIL1
homolog) showed a positive correlation. Correlation of the
proposed HER2-neu-specific proteins (VAMP8, VTCN1, and
SCOC) with ERBB2 failed to reveal any consistent and statis-
tically significant association.

3.4 MS-based verification of the proposed

subtype-specific proteins in breast cancer

tissues

Given that most proteins found to be subtype-specific have
not been studied in the context of breast cancer before, we
sought to verify their expression in breast cancer tissues. Due
to the correlation of a subset of these proteins with ESR1 ex-
pression, we were interested in examining this correlation at
the proteome level. Toward our aim, we performed an exten-
sive proteomic analysis of 16 breast cancer cytosol samples;
eight ER-positive and eight ER-negative samples. The sam-
ples of each type were pooled to obtain sufficient amount
of sample for MS-based analysis. Approximately 3300 and
3500 proteins were identified in the two technical replicates
of ER-negative and ER-positive samples, respectively (Sup-
porting Information File 4). The false discovery rate was 1%
and almost 70% of proteins were identified with at least two
peptides. Notably, ER protein was identified in the pool of
ER-positive samples but was absent from the ER-negative
pool, as expected. A similar pattern was observed for proges-
terone receptor—an estrogen-regulated protein. Additionally,
KLK3, previously reported to be identified in breast cancer cy-
tocols by immunoassay was also identified (38). In summary,
a total of 4124 nonredundant proteins were identified by the
analysis of 16 breast cancer tissue pooled samples.

Eighteen out of 30 proposed subtype-specific proteins
based on the cell lines analysis were also identified in
the breast cancer cytosol proteome (Supporting Information
Table 7). Label-free MS-based quantification using extracted
ion current was utilized for relative quantification of the
identified proteins between ER-positive and ER-negative
samples. In accordance with the cell line work, protein
PTX3 was found to be significantly (p-value < 0.0001)

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2013, 13, 1083–1095 1089

Figure 1. mRNA expression of the selected genes in eight cell lines displayed as a heat map. Inside the cells are log2 expression values.
Red corresponds to higher than mean expression whereas blue to lower. The color of each cell is relative to the mean value of each row
and can be used to judge over/under expression.
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Table 2. Demographics of the four microarray experiments used for verification.

ID Experiment Number of Failed Q.C. Survival ER-positive ER-negative Two-year Five-year References
samples data DFS TRUE/ DFS TRUE/

FALSE FALSE

A GSE7390 198 6 192 130 62 168/23 131/51 [17]
B GSE2034 286 81 205 144 61 174/30 131/63 [18]
C GSE21653 266 26 226 132 105 180/26 94/60 [19]
D GSE4922 289 2 245 211 34 197/42 158/69 [20]

Total 1039 115 868 617 262

Summary demographics are shown, along with disease free survival for the 2-year/5-year endpoints. Patients who were censored and the
status could not be validated were excluded from endpoint analysis. DFS, disease-free survival.

underexpressed in ER-positive breast cancer tissues with 60-
fold difference between ER-positive and ER-negative. In the
case of proteins specific to ER, ABAT showed statistically
significant 14-fold overexpression (p-value = 0.002) in ER-
positive breast cancer tissues. Additionally, PDZK1 was iden-
tified only in the ER-positive samples.

The overexpression of ABAT in ER-positive breast can-
cer cytosolic extracts was also validated in an independent
set of twenty individual samples (ten ER-positive and ten
ER-negative) using a targeted mass spectrometric approach.
Each trypsin-digested sample was microextracted and ana-
lyzed twice and microextraction efficiency was assessed using
a heavy labeled peptide that was spiked-in as quality control.
Three out of 40 injected samples were excluded due to inade-
quate microextraction. For samples having two technological
replicates median CV was 12.1%, also depicted in Support-
ing Information Table 8. For comparison of the ER-positive
and ER-negative group the average normalized expression of
the two technical replicates of each sample (when applicable)
was used. The mean normalized expression of ABAT in ER-
negative (n = 10) and ER-positive (n = 10) samples was 2.8
(SEM = 0.37) and 15.4 (SEM = 3.2), respectively (Fig. 3, panel
A). The difference between the two groups was tested using
independent samples t-test and was found to be statistically
different (n = 20, df = 18, p-value = 0.001).

3.5 Exploring the prognostic potential of ABAT,

PDZK1, and PTX3

Breast cancer subtypes show distinct clinical outcomes with
ER-positive breast cancer patients having better prognosis in
comparison to basal or HER2-neu-amplified tumor-carrying
patients [5]. Based on this observation, we hypothesized
that proteins expressed uniquely by cancer cells represent-
ing those subtypes may have prognostic potential. Examin-
ing the expression of the three genes at a two-year endpoint
for disease-free survival (DFS), ABAT showed consistently
higher expression in patients with no recurrence and reached
significance in each of the four datasets independently (p =
4.27 × 10−5, 0.027, 0.015, and 6.14 × 10−4), (also depicted in
Fig. 3). The expression levels of ABAT were on average 2.3-
fold higher in patients with DFS of more than two years. Ad-

ditionally, ABAT expression remained significantly changed
at the five-year endpoint in all four datasets, with consistent
direction of effect and a mean ratio of 1.5. Survival analysis
using the online tool Gene expression-based Outcome for
Breast cancer Online [27] revealed that patients with high
expression of ABAT have slightly longer relapse-free survival
compared to those with low expression (p = 0.036, Supporting
Information Fig. 3). When survival analysis was performed
in subgroups of patients, it was shown that patients with
ER-positive disease and high ABAT expression have slightly
better prognosis than those with low expression (p = 0.037,
Supporting Information Fig. 3). Moreover, tamoxifen-treated
breast cancer patients with high expression of the ABAT gene
have better prognosis than those with low expression (Fig. 3)
and a similar pattern was observed for breast cancer patients
with grade II tumors (Fig. 3). The associations remained sig-
nificant in a multivariate analysis using ER status and grade
as covariates (Supporting Information Fig. 4).

PDZK1 was found to have consistently higher expression
in patients with no recurrence at a two-year endpoint but
the association reached significance in two out of the four
datasets. PTX3 was not found to be related to DFS at the
mRNA level.

4 Discussion

Given the distinct clinical characteristics of each sub-
type, subtype-specific proteins may be useful as prognostic
biomarkers or therapeutic targets especially in the case of
triple-negative breast cancer disease that lacks targeted ther-
apies. The present study provides an insight of the value of
breast cancer cell secretomics for identifying subtype-specific
breast cancer proteins. Given that intracellular and cell sur-
face proteins have been previously studied in the quest for
novel subtype-specific proteins [28, 29], the current study fo-
cuses on proteins secreted or shed by breast cancer cells.
To our knowledge, cancer cell secretomes have not been
explored in the field of breast cancer subclassification, al-
though a large number of secreted proteins have been shown
to be implicated in various steps of cancer development and
progression [30]. The use of established cancer cell lines for
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Figure 2. Correlation of each probe
with ESR1 gene expression based on
tissue microarray data in four gene-
profiling experiments with breast cancer
tissues. Pearson correlation coefficient
(r) is shown inside the cells. Red corre-
sponds to negative and blue to positive
correlation.
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Figure 3. Overexpression of ABAT in ER-positive breast cancer tissues and survival analysis for ABAT using publicly available microarray
data and GOBO. (A) Levels of ABAT measured with a selected reaction monitoring (assay were found to be significantly upregulated (t-test,
p-value = 0.001) in ER-positive breast cancer cytosolic extracts when compared to ER-negative samples. The y-axis depicts the normalized
area of the peak (area under the curve, AUC) multiplied by 104 (for details refer to Section 2). (B) Summary of the results from the Cox
proportional hazards model used to evaluate the significance of probe expression levels with relapse-free survival for ABAT. A positive ratio
indicates good prognostic potential with higher expression in patients showing no 2-year disease recurrence. (C) Kaplan–Meier analysis
for (i) tamoxifen-treated breast cancer patients and (ii) patients with grade II breast cancer using the online tool GOBO. Patients with high
ABAT expression have better prognosis when compared to patients with low expression. Relapse-free survival was used as end-point.

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2013, 13, 1083–1095 1093

biomarker discovery overcomes the issues of cellular hetero-
geneity and contamination by stromal proteins but raises
concerns as to whether these cells truly recapitulate the can-
cer in vivo. To compensate for this potential limitation, we se-
lected multiple cell lines representing the major breast cancer
subtypes. The significant overlap between the cell line secre-
tomes and the NAF proteome, along with the identification of
known breast cancer biomarkers (e.g. ERBB2) indicates that,
despite the known limitations, established cancer cell lines
could be a useful source for biomarker discovery.

Our findings from the cell line secretomes were supported
by in silico verification, using publicly available gene expres-
sion data. The wealth of generated microarray data from pa-
tient samples, accompanied with clinical variables, is an at-
tractive resource for validation studies and meta analyses [31].
Although mRNA levels can account for 40% of the variability
at the protein level [32], a good concordance between mRNA
and protein levels for the genes of interest in the eight breast
cancer cell lines was observed. Thus, utilization of microar-
ray data from breast cancer tissues as an in silico verification
step could be informative in a biomarker discovery pipeline,
as the one described here.

Not all the proteins identified during the secretomics ap-
proach as subtype-specific were verified during subsequent
analyses. Two proteins, PCSK9 and SCOC did not have probes
in the Affymetrix arrays and 12 proteins were not identified
in the breast cancer tissue proteomes. The development of
multiplex quantitative MS-based assays for the targeted quan-
tification of those proteins [33,34] in breast cancer tissues will
be the focus of our subsequent investigations.

The identified proteins could be utilized in a variety of
ways. In the case of ER-positive specific proteins, a protein
that is specifically expressed/secreted by ER-positive breast
cancer tumors could be used as a surrogate marker for
the ER status of metastatic breast cancer. Due to discor-
dances between the primary and metastatic site, re-biopsy
and re-assessment of the ER status has been recommended
[35]. However, the procedure is invasive and could also be
challenging especially in the case of bone metastasis [36].
Therefore, a blood-based test for assessing ER status in
metastatic breast cancer could be highly beneficial. This type
of biomarker should not only be specific ER-positive disease
but also be absent or in low concentrations in the plasma of
normal individuals. Based on the human plasma proteome
reference set with estimated concentrations that can be found
in PeptideAtlas [37], PDZK1 is almost undetectable in nor-
mal plasma whereas ABAT has an estimated concentration
of 0.5 ng/mL. The usefulness of these proteins toward that
direction warrants further investigation. PDZ domain con-
taining 1 (PDZK1) protein has been mostly described as an
estrogen-regulated protein in the context of breast cancer [38].
However, PDZK1 has been reported to be over-expressed in
human carcinomas and interact with multidrug resistance-
associated protein 2 (ABCC2), suggesting that it could play
a role in the cellular mechanisms associated with drug re-
sistance [39]. Furthermore, overexpression of PDZK1 has

been found to associated with drug resistance in multiple
myeloma [40]. Given that ER-positive breast cancer tumors
are less sensitive to chemotherapy [41], the role of PDZK1 in
chemotherapeutic resistance should be investigated. Finally,
PTX3 is a soluble pattern recognition receptor found to be in-
ducible by inflammation. It has been shown that PTX3 over-
expressing breast cancer cells inhibit angiogenesis in vitro
and decreases tumor volume in vivo. However, very recently,
PTX3 was reported to be highly expressed in breast cancer tis-
sues from patients classified as high risk based on the results
of OncotypeDx [42]. Although controversial, further studies
are required for elucidating the role of PTX3 in breast cancer
biology.

High expression of ABAT was shown to be associated with
better prognosis of breast cancer patients, especially in the
case of tamoxifen-treated patients and patients with grade II
disease. Notably, ABAT has never been studied in the con-
text of breast cancer before. This protein is responsible for
catabolism of gamma-aminobutyric acid (GABA), the most
abundant neurotransmitter of the CNS, into succinic semi-
aldehyde [43]. Interestingly, it has been previously suggested
that genes related to GABA synthesis may be regulated by
estrogen in the nervous system [43]. The role of ABAT in
breast cancer biology is not yet clear, thus it warrants further
investigation.

Similarly, VAMP8 that is associated with the HER2-neu
subtype, has been found to be regulated by the HER2 onco-
gene [44]. Finally, numerous studies have demonstrated the
association of LOXL2 expression with highly invasive prop-
erties, metastatic potential and basal-like phenotype of breast
cancer tumors [45–47]. Collectively, all these observations un-
derscore the validity of our findings and may render our
discovery-based strategy (patho) physiologically relevant and
concrete.

In summary, we performed an extensive proteomic anal-
ysis of eight breast cancer cell lines, generating a database
of approximately 5200 breast cancer-related proteins. Using
bioinformatics, we were able to generate subtype-specific pro-
teomic panels. Our in silico verification, utilizing publicly
available microarray datasets along with mass spectromet-
ric analysis of breast cancer tissues confirmed the existence
of three subtype-specific proteins with one of the candidates
showing significant prognostic potential.
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