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Abstract
Several studies have shown that persistent infections and inflammation can favor carcinogenesis. At the

same time, certain types of pathogens and antitumor immune responses can decrease the risk of

tumorigenesis or lead to cancer regression. Infectious agents and their products can orchestrate a wide

range of host immune responses, through which they may positively or negatively modulate cancer

development and/or progression. The factors that direct this dichotomous influence of infection-mediated

immunity on carcinogenesis are not well understood. Even though not universal, several previous reports

have investigated the inverse link of pathogen-induced "benign" inflammation to carcinogenesis and

various other pathologies, ranging from autoimmune diseases to allergy and cancer. Several models and

ideas are discussed in this review, including the impact of decreased exposure to pathogens, as well as the

influence of pathogen load, the timing of infection, and the type of instigated immune response on

carcinogenesis. These phenomena should guide future investigations into identifying novel targets within

the microbial and host proteome, which will assist in the development of cancer therapeutics and vaccine

remedies, analogous to earlier efforts based on helminthic components for the prevention and/or treatment

of several pathologies. Clin Cancer Res; 19(11); 2834–41. �2013 AACR.

Introduction
Even though the course of carcinogenesis is undoubtedly

multifactorial, major attention has been attracted on the
role of infectious diseases and the immune system in cancer
development (1–4). Several types of carcinomas are related
to infections (2, 5), whereas inflammation is recognized as
one of the hallmarks of cancer (1, 6), and inclusion of
immunologic assessments in cancer classification and prog-
nosis has been suggested (7, 8). In contrast, immune
responses, including those triggered by microorganisms,
are known to decrease cancer risk or lead to tumor regres-
sion. The relationship between infection and tumorigenesis
is not well understood, and both favorable and unfavorable
immune-mediated or direct anticarcinogenic microbial
effects have been observed. This review aims to provide an
update primarily on the inverse association between infec-
tions and cancer and provide clues for potential underlying
mechanisms. Attention is drawn to the hygiene hypothesis
that attempts to explain the increased incidence of pathol-

ogies such as allergies, autoimmune diseases, and cancer in
the industrial world. Several historical observations and
other theories, such as hormesis (9) and concomitant
immunity (10), are revisited to lend more credence to the
hygiene hypothesis.

The Cancer Hygiene Hypothesis
Several decades ago, the hygiene hypothesis, referring to

the lack of exposure to microbes at childhood, was intro-
duced to explain the higher numbers of allergic and auto-
immune diseases in the Western world and urbanized
communities (11–14). More recently, the hygiene hypoth-
esis has been restated to account for the association between
microorganisms and cancer (13). Following the same pat-
tern observed with some immune pathologies, there is
growing evidence of an increased cancer incidence in West-
ernized economically developed countries (15). Socioeco-
nomic status was also inversely associated with Hodgkin
lymphoma (16), and daycare attendance was associated
with a lower risk of acute lymphoblastic leukemia (17, 18).
The resemblance of the hygiene–immunopathology rela-
tionship to the one exhibited by hygiene and cancer is not
surprising, given that preliminary observations have asso-
ciated tumorigenesis with chronic immune-mediated dis-
orders (Table 1); for example, an increased risk of cancer
has been observed in patients with autoimmune disease
(19, 20), chronic allergic disorders have been connected to
pro- and antitumor effects (21–24), and allergic patients
with cancer have been suggested to exhibit higher cure rates
and more favorable disease progression (25). Some exper-
imental evidence may also support the cancer hygiene
hypothesis, that is, the antitumorigenic role of several
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inflammatory components, the ability of some commensals
and benign gastrointestinal parasites like helminths to
downregulate inflammation, as well as the ability of patho-
gens and their products to stimulate anticancer immunity
(see sections below). However, the hygiene hypothesis, as
it stands, cannot rationalize why specific infectious agents
(e.g., Helicobacter pylori; refs. 26, 27) or microbial products
[e.g., lipopolysaccharide (LPS); refs. 28, 29] can exhibit
both pro- and anticarcinogenic functions and, therefore,
many questions remain unresolved.

Immune Responses to Infection and Cancer
Host immune response to pathogens generally involves

effectors preexisting locally in mucus (e.g., immunoglob-
ulin A, antimicrobial peptides, lysozyme) or plasma (nat-
ural immunoglobulin M, complement), followed by acti-
vation of more specialized innate (e.g., macrophages,
granulocytes, dendritic, mast, natural killer cells) and
adaptive (T cells, B cells) immune processes, to facilitate
clearance of pathogens or reduction of their impact (30).
Innate immune cell activation can trigger phagocytosis,
release of antimicrobial compounds and proinflamma-
tory cytokines, as well as lead to immune suppression,
fibrosis, angiogenesis, and wound healing (31). T cells,
following pathogen recognition and depending on the
antigen and local environment, develop into CTL or T-
helper cells (TH), namely TH1, TH17, or TH2 cells, medi-
ating different cytokine expression patterns, known as
classical (TH1, TH17) or alternative (TH2) inflammation
(32). TH cells also stimulate production of antibodies
from antigen-activated B cells. Another distinct cell sub-
type, regulatory T cells (Treg), particularly observed in
chronic parasitic infections (e.g., helminths), have a role

in preventing immune-mediated damage (33, 34). Nota-
bly, the immune response pattern can vary during the
infection course; in helminth infections, a TH1 to TH2
shift is commonly observed in parallel with infection
progression, and may also signal the reduced effectiveness
of a drug therapy (35, 36).

The various immune processes induced during infection
may also be implicated in cancer. In 1863, it was Rudolf
Virchow who showed the presence of leukocytes in neo-
plastic tissue (reviewed in ref. 37). Paul Ehrlich later sug-
gested that the immune system continuously destroys spon-
taneously arising tumors (immune surveillance hypothe-
sis), work that was updated by the cancer immunoediting
hypothesis, stating that the immune systemhas a significant
role in shaping the properties of an emerging tumor (38,
39). Both innate and adaptive immune cells are nowknown
to localize at tumor sites, with specific cell subsets, densities,
and intratumor locations being associated with cancer risk
or survival (8). Antibodies against tumor-associated anti-
gens have also been detected in cancer patients’ sera (Inter-
national SEREX Program, The Ludwig Institute for Cancer
Research, Uppsala, Sweden). However, although several
studies have considered the role of immunity in cancer
survival/progression, the idea that an existing infectionmay
further modulate the pro-/antitumorigenic immune effect
has been overlooked.

Infection as a Carcinogenic Factor
Some infectious agents can directly influence carcinogen-

esis; for instance, human papillomavirus protein E7 can
bind the retinoblastoma tumor suppressor and the cyclin-
dependent kinase inhibitor p21 in infected cells, promoting
DNA replication and cell proliferation (40), whereas Hep-
atitis B virus can induce hypoxia-inducible factor-1a, stim-
ulating angiogenesis (41). Pathogens may also promote
tumorigenesis indirectly (Table 1; refs. 3, 4), by activating
cancer-mediating host inflammatory pathways. The hel-
minth Schistosoma haematobium can induce urothelial dys-
plasia and inflammation upon intravesical administration
in mice (42) and has been linked to bladder cancer (43). In
another example, Propionibacterium acnes, found in prostate
cancer and benign hyperplasia samples, when cocultured
with prostate epithelial cells results in production of pro-
inflammatory cytokines, prostaglandins, and activated
matrix metalloproteinases, whereas long-term infection
leads to anchorage-independent cancer cell growth (44).
Inflammation induced by chronic infectionsmay be able to
trigger mutations, epigenetic changes, and protein modifi-
cations that may lead to oncogene activation and tumor
suppressor inhibition (3). Apart from the typical infectious
agents, altered intestinal microbiota may also promote
carcinogenesis, DNA damage, and cell proliferation via
chronic inflammatory processes (45). Secretion of patho-
gen-induced cytokinesmay also have a dual role depending
on the settings; for example, TNFa can mediate tumor
hemorrhagic necrosis and regression (46, 47), whereas, on
the other hand, it can promote carcinogenesis if present in
a chronic fashion (48).

Table 1. Association between different
pathologies and cancer, based on
epidemiologic and experimental studies

Condition
Association
with cancer References

Infections
Helminths and
protozoa

Negativea (13, 58, 80, 93–95)

Positiveb (43, 96, 97)
Viruses Negativea (57)

Positiveb (2, 5, 13, 98)
Bacteria Negativea (13, 26, 28, 47, 54–56)

Positiveb (2, 5, 13, 27, 37, 98)
Allergy Negativea (21–24)

Positiveb (21, 24)
Autoimmune
diseases

Positiveb (19, 20)

aNegative: cancer prevention, cancer regression, decreased
cancer risk.
bPositive: cancer promotion, increased cancer risk.
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In addition to giving rise to the inflammation-mediated
detrimental effects, pathogens may also promote tumori-
genesis by inhibiting host anticancer immunity, for
instance, by stimulating production of immunosuppressive
cytokines [e.g., interleukin (IL)-10], causing T-cell apopto-
sis, promoting T-cell subtypes with attenuated antitumor
activity (e.g., TH2), or triggering recruitment of myeloid
suppressor cells and Tregs (49–52). Another potential effect
on antitumor immunity triggered by chronic infections,
also observed in cancer, is the dysfunction and subsequent
elimination of antigen-specific T cells, a phenomenon
called T-cell exhaustion (53).

Infection in Cancer Prevention
Several observations, reported as early as the 1700s,

support the link between infection-mediated inflammation
and cancer prevention or regression (Table 1); most not-
able are the efforts byWilliamColey in early 19th century to

vaccinate his patients with cancer with an attenuated bac-
terialmixture (Streptococcus pyogenes andSerratiamarcescens)
that accomplished significant cure and favorable progres-
sion rates (47, 54). There is also evidence of the antitumor
effect of certain microbial products (e.g., LPS) and attenu-
ated pathogen forms [e.g., Bacillus Calmette-Gu�erin (BCG)
vaccine; refs. 13, 28, 55]; more specifically, BCG, vaccinia,
or yellow fever virus vaccinations have been linked tomela-
noma protection (56, 57). In addition, infectious agents
have also been inversely associated with cancer (Table 1), as
in the case of Trypanosoma cruzi, which can result in lower
incidence of experimentally induced rodent colon cancer
(58). These observations support the protective action of
infections, as proposed by the hygiene hypothesis (11–14).
In the subsequent sections, we will expand on this discus-
sion by suggesting potential mechanisms that are often
underestimated but may likely explain the favorable asso-
ciation of infection to carcinogenesis (Fig. 1).
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Figure 1. Potential pathogen-mediated antitumor mechanisms. A microorganism may influence the fine balance between immunosuppression and
immunity against a concurrent or subsequent tumor by modulating the availability and presentation of cross-reactive antigens, by influencing induction of
preexisting immunity, and by shaping the components of the tumor microenvironment. The levels of microbe-triggered stimuli are also decisive factors on
the biphasic influence (pro- or anti-inflammatory) that a microorganism can have on immune functions. Several other mechanisms, such as removal of
carcinogens and restriction of tumor vascularization may also facilitate the beneficial antitumor effects of microbes on their host.
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Suppression of inflammation
Severalmicrobial products (e.g., lysophosphatidylserine)

can have anti-inflammatory effects (34, 59); for instance,
they can suppress toll-like receptor signaling, inflammatory
cytokine and nitric oxide production, as well as inhibit
innate immune cell activation and stimulate production
of immunosuppressive cytokines and recruitment of Tregs.
In this regard, TH1 or TH2 responses to some helminth
infections rarely result in severe pathology (36) and can,
in fact, downregulate allergic or autoimmune pathology
(e.g., see ref. 60). However, immunosuppressive cytokines,
specifically, have pleiotropic effects on tumorigenesis either
by inhibiting inflammation-associated tumorigenesis or
by restricting antitumor immunity; for example, IL-10 is
known to either inhibit or promote tumor growth, as well
as facilitate tumor rejection in mice (61).

Promotion of antitumor immunity
Microorganisms may provide specific triggers (e.g., low-

level endotoxin, commonly produced by many pathogens)
that increase antigenicity of nascent tumor cells, or keep
the immune cells in an "alerted" immunosurveillance state
(13). This phenomenon resembles the infection-mediated
stimulation of autoimmunity as a result of molecular mim-
icry, epitope spreading, exposure of cryptic antigens, or
bystander activation (62). Epitope spreading has been
observed in few cancer vaccine studies, i.e., following injec-
tion of dendritic cells in patients with melanoma (63). An
infection can also lead to tumor cell destruction, subsequent
release of tumor antigens, and activation of antigen-present-
ing cells. This could potentially trigger T-cell responses with
antitumor activities, like the ones that may be responsible
for the protective action of BCG (64). Moreover, potential
increases in tumor vascular permeability may also facilitate
the local recruitment of anticancer T cells (47). Heat shock
proteins expressed by stressed cells and found upregulated
in virus-infected and several cancer cells can alsobe immuno-
genic, thus influencing antitumor responses (65).

Presentation of cross-reactive antigens
Several pathogens contain antigens, mainly glycopro-

teins, that cross-react with tumor-associated antigens. As
an example of such glycoprotein cross-reactivity, the Thom-
sen–Friedenreich T and Tn parasitic antigens can be
detected in more than 80% of patients with cancer and
have been under experimental and clinical investigations as
markers and therapeutic targets for cancer (66, 67). Fur-
thermore, sera from patients suffering from parasitic infec-
tions (e.g., Echinococcus) are commonly found to cross-
react (contain similar immunogenic epitopes) with sera
from patients with cancer (68). Interestingly, it has been
observed that such sera are more frequent in patients with
less extensive malignancy. Antibodies against these shared
parasite/tumor-associated antigens can potentially target
tumor cells for destruction or promote antigen presentation
to T cells and induce antitumor responses; this antibody-
mediated immune enhancement has been observed for
nontumor antigens in experimental models (69).

Induction of preimmunity
The "concomitant immunity hypothesis" was originally

suggested to explain resistance to secondary tumors or
infections, particularly in animal models (10, 70). As an
ongoing persistent infection can protect the host from the
same infection, similarly, in animal models, immunity to
the original tumor can prevent growth of a comparable
mass (10, 71). Concomitant immunity was considered the
result of either immunogenic factors, for example common
antigenic epitopes, or nonimmunogenic factors, such as
putative antimitotic components (10). The concomitant
effectmay be abrogated once the original tumor is removed.
It has also been observed that anticancer immunity can
be present after the removal of the original malignant mass,
a phenomenon termed sinecomitant immunity (10, 71)
that can potentially be attributed to the parallel removal of
tumor-induced immunosuppression.

Formulation of the tumor microenvironment
In principle, any agent thatmodulates antigen expression

and cell populations in the tumor microenvironment can
determine the quality and level of anticancer immunity. For
instance, the previously observed effect of Coley’s toxin on
cancer regression may be the result of TNFa affecting local
vascular permeability and enhancing leukocyte recruitment
(47, 54). Microorganisms, such as helminthes and com-
mensals, may also contribute to a cancer inhibitory micro-
environment by affecting TH1/TH2 responses and Tregs
recruitment (36, 72). Infection-mediated antitumor immu-
nity can also be restricted by the immunosuppressivemicro-
environment that is often associatedwithdeveloped tumors
and characterized by TH2 responses and the presence of
myeloid-derived suppressor cells and Tregs (73). Tumor-
associated macrophages can also promote angiogenesis,
tumor cell invasion, metastasis, and T-cell inhibition.
Angiogenesis itself has been related to immune suppres-
sion; for example, VEGF may lead to decreased antigen
presentation to T cells, due to inhibition of dendritic cells
maturation (74). The role of microbial infections in form-
ing the local versus systemic or "secondary" (noninfected
site) pro- or anticarcinogenic immune milieu in competi-
tion with the immunosuppressive tumor microenviron-
ment remains to be discovered.

Production of low-level "danger" signals
A phenomenon termed hormesis has been coined to

describe a biphasic dose-dependent response to an agent
characterized by a low-dose beneficial effect and a high-
dose inhibitory or toxic effect (9). It can be speculated
that microbes, and specifically relatively benign micro-
organisms and commensals, embody this pleiotropic
response by stimulating DNA and tissue repair processes
at low infectious agent loads while resulting in extensive
inflammatory and genomic changes that can subsequent-
ly foster procarcinogenic processes at higher pathogen
loads. Interestingly, it has been postulated that the
hygiene hypothesis describes this beneficial low-level
exposure phenomenon (75). As the hormetic effect would
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be highly dependent on spatial and temporal factors,
in the case of carcinogenesis, both tumor stage and loca-
tion at the time of infection may be of paramount import-
ance; the beneficial effects of pathogen-triggered stress
repair processes at tumor initiation may, therefore, be
replaced by detrimental effects in later stages, when re-
pair may be accompanied by a more immunosuppressive
microenvironment.

Removal of carcinogens
The health benefits of bacterially enriched food (probio-

tics) and certain ingredients that can stimulate growth of
indigenous commensal bacteria (prebiotics) have been
widely discussed in several settings, including inflammation
(76). Although the evidence for the ability of probiotics to
reduce risk of colorectal cancer is still controversial, pro-
biotics, particularly containing bifidobacteria and lactoba-
cilli, have been suggested to reduce the production of
carcinogens by other gastrointestinal bacteria like clostridia
and bacteroides (77).

Inhibition of angiogenesis
It has been suggested that infection can prevent angio-

genesis, an effect that may subsequently lead to restriction
of tumor growth. For example, despite its potential role in
induction of tumor-promoting myeloid suppressor cells
(78, 79), Toxoplasma gondii infection is also known to
suppress vascularization in a mouse melanoma model, an
effect that may be attributed in part to secretion of anti-
angiogenic cytokines (80).

Cancer Immunotherapy and Pathogen-Based
Therapeutics

The concept of using anti-inflammatory agents to regulate
not only immune processes but also the tumor load is not
new, with the most widely discussed recent example being
the benefits of aspirin in carcinogenesis risk reduction (81).
The latest approach in immune-related cancer therapy is to
promote targeting of specific tumor antigens or stimulate
the host immune response to growing tumors using a
number of different approaches (82, 83). Several tumor
cell antigens, that is, cancer specific, differentiation, viral,
and carbohydrate, as well as mutated and overexpressed
proteins have been considered as potential vaccine candi-
dates (e.g., see ref. 84). In addition, antibody-based thera-
peutic agents with reduced immunogenicity have been
designed to specifically recognize and destroy tumor cells
directly or via their specific stromal or immunomodulatory
effects (82). T cells have also been investigated in cancer
treatment, for example, in patients with leukemia and
melanoma (85). In addition, Tregs from mice infected by
selected pathogens (e.g., Helicobacter hepaticus) have exhib-
ited anticancer activity (86).

In a more microbe-based approach, pathogens and
their toxins have been tested as antitumor agents or as
carriers for tumor-targeting therapies (87). The concept
behind this approach is to use the infectious agent or

its selected components as means to treat/prevent can-
cer. In this regard, the BCG vaccine, an attenuated form
of Mycobacterium bovis, is now an U.S. Food and Drug
Administration–approved agent for the first-line intra-
vesical treatment of bladder cancer (55). BCG in this
context may have a role in stimulating the body’s own
anticancer immunity via enhancing TH1 cytokine pro-
duction (e.g., IFN-g , TNFa; refs. 88, 89). Microbial com-
ponents may also find applicability in preventing cancer,
as in the case of the tumor-pathogen T/Tn antigen (90)
and the bacterial endotoxin LPS (28). More specifically
for the T/Tn antigen, vaccination regimens based on
this common microbe–tumor glycoprotein (66, 67) have
been previously evaluated in breast cancer prevention
(90). Vaccination was accompanied by an increase of
helper T lymphocytes and decrease of T-suppressor/cyto-
toxic cell ratio, possibly leading to regulation of antitu-
mor immune responses and subsequent prevention of
breast cancer recurrence.

More recently, the helminth Trichuris suis has been
under clinical and experimental investigation for its abil-
ity to alleviate diseases, such as inflammatory bowel
disease (ulcerative colitis, Crohn disease), multiple scle-
rosis, and allergy (e.g., see ref. 91, 92). Its applicability to
cancer pathology, and more specifically to tumors of
the gastrointestinal system, is a question open to future
investigations.

Conclusion and Future Perspectives
Both protective and detrimental effects of microorgan-

isms have been observed, many of them linked to various
immune components. Overall, their effect may depend
on the fine orchestration between induction and suppres-
sion of cancer-promoting or antitumorigenic immunity
as well as on the level of pathogen load and the timing
between infection and cancer initiation. In this regard,
cancer may be associated with the increased hygiene/
decreased exposure to specific microorganisms, similar
to what is known for autoimmune diseases and allergies.

That said, it should be noted that not all types of
microorganisms are expected to have the same anticar-
cinogenic effect; for example, viral infections seem to be
mainly procarcinogenic, in contrast to bacteria or para-
sitic worms that have a longer coevolution history with
human species and may have, therefore, adapted to
exhibit more antitumorigenic effects. Novel clinical stud-
ies are therefore needed to delineate the specific role of
these relatively benign organisms in modulating the host
immune response toward cancer prevention. The adju-
vant and cross-reactive effects of parasites and commen-
sals should be investigated in more detail to identify
potential novel therapeutic targets. Exploration of the
immunogenic epitope availability orchestrated by these
agents may also, in the future, assist in the development
of personalized treatments and immunization strategies
that can be used to prevent, regress, or slow down cancer
progression.
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