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ABSTRACT: The development of signature biomarkers has gained considerable attention in the past
decade. Although the most well-known examples of biomarker panels stem from gene expression studies,
proteomic panels are becoming more relevant, with the advent of targeted mass spectrometry-based
methodologies. At the same time, the development of multigene prognostic classifiers for early stage breast
cancer patients has resulted in a wealth of publicly available gene expression data from thousands of breast
cancer specimens. In the present study, we integrated transcriptome and proteome-based platforms to
identify genes and proteins related to patient survival. Candidate biomarker proteins have been identified
in a previously generated breast cancer tissue extract proteome. A mass-spectrometry-based assay was then
developed for the simultaneous quantification of these 20 proteins in breast cancer tissue extracts. We
quantified the relative expression levels of the 20 potential biomarkers in a cohort of 96 tissue samples
from patients with early stage breast cancer. We identified two proteins, KPNA2 and CDK1, which
showed potential to discriminate between estrogen receptor positive patients of high and low risk of
disease recurrence. The role of these proteins in breast cancer prognosis warrants further investigation.

KEYWORDS: selected reaction monitoring, gene expression data meta-analysis, breast cancer prognosis, mass spectrometry,
targeted proteomics

■ INTRODUCTION

The development of biomarker panels, rather than single
biomarkers, has emerged as an attractive approach after
recognizing the biological heterogeneity of human disease
and the multiple molecular pathways involved during disease
progression. Although the most well-known examples of
biomarker panels stem from gene expression studies,1 similar
panels could be developed at the proteome level. Targeted
mass-spectrometry-based methodologies (such as selected
reaction monitoring, SRM) provide an effective platform for
evaluation of proteomic signatures. As implied by the name,
targeted mass spectrometric approaches require a priori
knowledge of the analytes to be detected and enable relative
or absolute quantification of multiple peptides, and therefore
proteins, in a biological sample.2 Small sample amount
requirements, multiplexing capability, high selectivity, and
cost- and time-efficient development of assays are the major
advantages of targeted mass-spectrometry-based assays.

Breast cancer is a major health issue, affecting annually ∼1.4
million women worldwide.3 The advent of high-throughput
platforms for gene expression analysis, such as microarrays, has
led to studies that revolutionized the way breast cancer is
perceived. Microarray studies undertaken the past decade gave
rise to a molecular classification system and numerous
prognostic multigene classifiers for breast cancer.4 A “by-
product” originating from these studies is an unprecedented
access to gene expression data from hundreds to thousands of
breast cancer specimens deposited in public data repositories
(e.g., the National Centre for Biotechnology Information
(NCBI) gene expression omnibus (GEO),5 ArrayExpress6).
Given that the samples analyzed belong to well-annotated
cohorts with long follow-up, the significance of these publicly
available data is high. Taking also into consideration the fact
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that sample availability is one of the main obstacles in
biomarker development,7 the publicly available gene expression
data are a valuable resource for the scientific community.
Despite the undeniable contribution of gene expression in

the field of breast oncology, proteins are the mediators of all
biological processes and the molecular targets of the majority of
drugs. Additionally, they are more dynamic than nucleic acids
and may be more reflective of cellular physiology because they
integrate the cellular genetic information with the effect of the
immediate environment.8 More specifically, in the breast cancer
field, proteomic technologies have been recently applied in the
quest of novel biomarkers.9,10 Furthermore, quantitative
protein-based assays are cost-effective and easy to use;
therefore, they are considered the gold standard in the clinic.
In the present study, we integrated transcriptome and

proteome-based platforms to identify genes related to patient
survival that have also been identified at the protein level in a
breast cancer tissue extract proteome previously generated by
our group,11 postulating that these proteins may have
prognostic potential. Given that the debate on assessing
prognosis is particularly intense in the management of breast
cancer patients with localized, estrogen receptor (ER)-positive
tumors, where the option of targeted therapies exists, we
focused on ER-positive patients only. We sought to identify
genes that are related to 5-year disease-free survival (DFS) of
ER-positive patients using gene expression profiling data from
four independent cohorts. Then, we compared the generated
list to our breast cancer tissue extract proteome and selected
only genes that have been identified at the protein level. Next,
we developed an SRM method for the relative quantification of
the selected proteins in breast cancer tissue samples. Finally, the
relative levels of candidate biomarkers were measured using the
developed SRM method in a selected cohort composed of 96
patients with primary, lymph-node-negative breast cancer.

■ MATERIALS AND METHODS

Tissue mRNA Expression Microarray Data Analysis

NCBI GEO was queried for data sets with breast cancer tissue
microarray data. The data sets A: GSE7390,12 B: GSE2034,13

C: GSE21653,14 and D: GSE492215 were selected to identify
genes related to 5-year DFS (in the case of GSE2034 data set
the end point was distant metastasis-free survival). The four
studies were performed on a common microarray platform
(Affymetrix Human Genome 133A chip − a high coverage chip
that includes 22 283 probes mapping to 12 688 unique genes),
and description of clinical outcome along with censoring status
were also available. Microarray data were normalized using
gcRMA algorithm and quality-controlled according to Affyme-
trix guidelines, as previously described.11 Because many probes
in any microarray experiment do not show significant variation
(resulting from genes not expressed in a specific tissue or
nonspecific binding of probe sets), a limit on the mean
interquartile range (IQR) of each of the probes across the four
data sets was imposed. Probes showing less than two-fold ratio
across the patient median were excluded. This exercise resulted
in a set of 3124 probes that showed highly variable expression
among patients. This filtering also limited the impact of
multiple testing penalty. Patients were then divided into two
groups: patients with DFS lower and higher than 5 years. A t
test was performed to identify genes differentially expressed
between the two groups (p < 0.05) in at least three out of four
data sets.

Breast Cancer Tissue Samples and Preparation for SRM
Analysis

To evaluate the relative expression levels of potential
biomarkers with SRM, we selected 96 breast cancer tissues.
The selection was based on ER status and on whether the
patients had developed a distant metastasis within 5 years (poor
prognosis) or remained free of disease for more than 7 years
(good prognosis). The selection was such that of the included
48 ER-positive patients 24 had a good prognosis and 24 had a
poor prognosis. A detailed description of the cohort can be
found in Table 1. Breast cancer tissues were processed as
previously described16 and remained frozen at −80 °C until
assayed. The total protein concentration of all samples was
adjusted to 1 mg/mL.

Sample volume corresponding to 30 μg of total protein was
diluted four times with 50 mM ammonium bicarbonate (Fisher
Scientific) buffer solution, and proteins were denatured with
0.05% RapiGest (Waters) at 60 °C. The disulfide bonds were
reduced with dithiothreitol (final concentration, 10 mM;
Sigma-Aldrich) before being subjected to alkylation with
iodoacetamide at room temperature for 45 min in the dark
(final concentration, 20 mM; Sigma-Aldrich). Samples were
then digested with sequencing-grade-modified trypsin (trypsin:
protein ratio of 1:30; Promega, sequencing-grade modified
porcine trypsin) overnight at 37 °C. RapiGest (Waters) was
cleaved with 1% trifluoroacetic acid (TFA, Fisher Scientific),
samples were centrifuged at 453 g for 10 min, and supernatant
was carefully collected to avoid pellet contamination. In
experiments where isotope-labeled peptides were utilized,
they were spiked into the samples after protein digestion and
prior to RapiGest precipitation by TFA (Fisher Scientific).
Volume corresponding to 15 μg of peptides was purified and
extracted using ZipTip C18 pipet tips (Millipore) and was
eluted using 4.5 μL of mobile phase B (55% acetonitrile
(ACN), 0.1% formic acid, Fisher Scientific). Fifty-six μL of
mobile phase A (0.1% formic acid, Fisher Scientific) was added
to each sample to yield three injections of 18 μL. During the
verification experiment, all samples were processed at the same
time (96-well plate) in a randomized and blinded manner.
Metabolic Labeling of Breast Cancer Cell Lines

Two cell lines (SK-BR-3 and MDA-MB-231) were purchased
by the American Tissue Culture Collection (ATCC) and

Table 1. Demographics of the Patients for the 96 Breast
Cancer Tissue Samples Analyzed in the Present Study

ER status

ER-negative ER-positive

total number 48 48
tumor stage T1 15 32

T2 29 13
T3 2 2
Tx 2 1

menopausal status pre- 22 24
post- 26 24

age ≤40 11 1
>40−≤55 16 30
>55−≤70 17 11
>70 4 6

age mean 53.7 55
age median 52.5 53
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metabolically labeled as follows. Stable isotope labeling with
amino acids in cell culture (SILAC) media was prepared from
customized RPMI-1640 media devoid in two essential amino
acids: L-arginine and L-lysine (AthenaES). Heavy amino acids,
L-arginine-6 (13C) and L-lysine-8 (13C and 15N) (Cambridge
Isotope Laboratories), were supplemented to the medium at a
concentration of 87 and 54 mg/L, respectively, for the “heavy”
medium. For the control medium (“light”), amino acids L-
arginine and L-lysine (Sigma-Aldrich) were supplemented at a
final concentration of 84 and 52 mg/L each. Both heavy and
light media were supplemented with L-proline (Sigma-Aldrich)
at a concentration of 150 mg/L. All amino acids were
reconstituted in phosphate-buffered saline (PBS, Gibco) and
were filtered through a 0.22 μm filter to obtain a sterile solution
(Millipore). Additionally, 10% of dialyzed fetal bovine serum
(FBS, Gibco) was added to both heavy and light media. A
minimum of five doubling times was ensured to achieve high-
efficiency (>97%) labeling.

Sample Preparation of Cell Lines for SRM Analysis

Cells were washed twice with PBS (Gibco), detached using
trypsin (Gibco), and centrifuged at 290g for 10 min, and
supernatants were discarded. Cell pellets were kept at −80 °C
until they were further processed. Cell lysis and protein
digestion was performed as previously described,17 and
equimolar amounts of “heavy” and “light” cell lysates were
mixed. Volume corresponding to 15 μg of peptides was purified
and extracted using ZipTip C18 pipet tips (Millipore) and were
eluted using 4.5 μL of mobile phase B (55% ACN, 0.1% formic
acid, Fischer Scientific). Fifty-six μL of mobile phase A (0.1%
formic acid, Fisher Scientific) was added to each sample to yield
three injections of 18 μL.

Peptide Selection for SRM Method Development

Between three and five doubly charged proteotypic (PTP)
peptides (length of 8 to 20 amino acids) per protein were
initially selected. Peptides were selected from the peptide
spectral library of the breast tissue extract proteome previously
generated in-house. Peptides with N-terminus glutamine (Q),
cysteine (C), or asparagine (N) were excluded. Also peptides
containing histidine (H) in the middle of the sequence were
avoided, if possible. In cases that the discovery data did not
render sufficient numbers of peptides (at least three), Global
Proteome Machine (GPM) database (http://gpmdb.thegpm.
org/) was searched. Peptide uniqueness was confirmed by
searching against the Basic Local Alignment Search Tool
(BLAST; http://blast.ncbi.nlm.nih.gov/). In silico digestion,
fragmentation, and prediction of collision energy were
performed using Skyline software.18

Liquid Chromatography (LC)/Mass Spectrometry
Conditions

Samples were loaded onto a 2 cm trap column (C18, 5 μm)
with an inner diameter of 150 μm, and the peptides were eluted
onto a resolving 5 cm analytical column (C18, 3 μm) with an
inner diameter of 75 and 8 μm tip (New Objetive). The LC
setup, EASY-nLC 1000 (Thermo Fisher), was coupled online
to a triple-quadrupole mass spectrometer (TSQ Vantage,
Thermo Fisher) using a nanoelectrospray ionization source
(nano-ESI, Thermo Fisher). A three-step 60 min gradient with
an injection volume of 18 μL was used. Buffer A contained
0.1% formic acid in water, and buffer B contained 0.1% formic
acid in acetonitrile (Fisher Scientific). Peptides were analyzed
by SRM assays with the following parameters: predicted

collision energy values, 0.2 Da fhwm at the first quadrupole, 0.7
Da fhwm at the third quadrupole, 1.5 mTorr pressure at the
collision cell, tuned tube lens values, and 7 V skimmer offset.

Identification of Optimum Peptides for SRM Method
Development

Peptide identification was confirmed in four ways: (1) by
observing the coelution of, at least, six transitions per peptide;
(2) prediction of retention times (RTs) using SRRCalc 3.0, 300
Å (Skyline software, version 1.4); (3) comparing the observed
fragmentation pattern of these peptides (SRM methods) with
the fragmentation pattern displayed in our in-house breast
cancer tissue extract proteome (discovery data); and (4) by
observing the coelution of transitions originating from the
“heavy” and “light” peptides, as also described by Liu et al.19

For RT prediction, a 0.2 mg/mL bovine serum albumin (BSA,
Sigma) solution with 10 isotope-labeled standard peptides
(SpikeTides TQL, JPT Peptide Technologies) was used. A
multiplex SRM assay with 28 peptides (18 peptides from BSA
and 10 isotope-labeled peptides) was ran in a 60 min gradient,
and the measured RTs were utilized to predict the RT and 95%
confidence intervals (CIs) of target peptides using Skyline
software (SRRCalc 3.0).

Selection of Transitions for SRM Method Development

Three transitions per peptide were selected based on two main
criteria: relative intensity (according to the results in breast
cancer tissues) and presence of interferences. Transitions with
the highest intensity were preferred. Presence of interferences
was predicted by using the SRM collider software, version 1.4
(www.srmcollider.org). SRM collider predicts unique ion
signatures (UISs) for each peptide. The search parameters
utilized were: SSRCalc window: 10 arbitrary units; Q1 mass
window: 0.2 Th; Q3 mass window: 0.7 Th; low and high mass
threshold for transitions: 300 and 1500 Th, respectively;
genome: Human Peptide Atlas; consider isotopes up to 3 amu;
one missed cleavage; find UIS up to order 3; and finally, charge
check, modifications, and all background ion series were
selected.

Optimization of the Amount of Spiked-in Isotope-Labeled
Peptides

Lyophilized peptides (JPT Peptide Technologies) were
reconstituted in 100 μL of 20% ACN (Fisher Scientific) in
0.1 M ammonium bicarbonate (Fisher Scientific) and divided
in three aliquots to ensure no repeating freeze−thaw cycles.
Equal volumes of the heavy peptides were mixed to create a
master stock solution. A pool of breast cancer cytosols was
digested as previously described. Before precipitation of
RapiGest (Waters) with TFA (Fisher Scientific), isotope-
labeled peptides were added in the matrix, and serial dilutions
covering three orders of magnitude were prepared and analyzed
with our method. Scan time and time windows were adjusted to
ensure the measurement of at least 15−20 points per LC peak.

Data Analysis

The raw files were uploaded to Pinpoint software, version 1.0
(Thermo Fisher), which was used for quantification of the area
under the curve (AUC). The ratio AUClight/AUCheavy was
multiplied by the amount of isotope-labeled peptide added in
the sample to estimate the relative amount of each native
peptide (expressed in fmoles per injection). These values were
used for further analysis.
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Analytical Range and Limit of Quantification of SRM
Assays

For the study of linearity, a pool of breast cancer tissues that
expressed most of the investigated proteins was prepared. The
pool was digested and then separated in 13 parts. Isotope-
labeled peptides (250 fmoles of each peptide per injection)
were added in the first part, and this solution was sequentially
diluted (1:2) to generate 13 points of calibration (250, 125,
62.5, 31.25, 15.62, 7.81, 3.9, 1.95, 0.98, 0.48, 0.24, 0.12, and
0.06 fmoles per injection). The standard solutions were
analyzed in triplicate (except 250 that was analyzed in
singleton) and in order from lowest to highest concentration.
The limit of quantification (LOQ) was estimated as the
concentration with a coefficient of variation (CV) lower than
20% and within the linear range.
Statistical Analysis

Protein levels were univariately associated with the relapse
status of the patients using the nonparametric Mann−Whitney
U-test. All statistical tests were performed using Stata v11
(StataCorp, College Station, Texas), and two-sided p value
<0.05 was considered significant.

■ RESULTS

Identification of Genes Related to Disease Free Survival
Using Publicly Available Microarray Data

The gene selection procedure was based on microarray profiles
of breast cancer tissue samples from 607 ER-positive patients
across four different studies summarized in Table 2. Although

these studies included both ER-positive and ER-negative
patients, only ER-positive patients were used in the analysis.
The breast cancer patients of all studies were untreated at the
time of sampling (surgery), and three out of four studies
(experiments A−C) included only lymph-node-negative
patients. Following microarray data meta-analysis, 89 genes
were found to be differentially expressed (p < 0.05) between
patients with DFS lower or higher than 5 years in at least three
out of four data sets. Out of these 89 genes, 76 were
overexpressed in the group of patients with poor prognosis
(DFS < 5 years), whereas 13 of these were overexpressed in the
group of patients with favorable prognosis (DFS > 5 years). On
the basis of this selection procedure, the statistically expected
number of false-positive findings is fewer than 3 out of the 89

genes (two tail; p < 0.05). All genes, except for one, exhibited
the same direction of effect (favorable/unfavorable) in all data
sets, even for the cases where the effect itself was not
statistically significant, as it can be seen in Supplementary Table
1 in the Supporting Information.
The list of the 89 selected genes was uploaded and analyzed

in the DAVID Functional Annotation Tool. This tool performs
a gene ontology (GO)-term enrichment analysis to highlight
the most relevant GO terms associated with a given gene list.
The top enriched GO categories associated with the studied
genes are summarized in Supplementary Table 2 in the
Supporting Information and mainly include GO terms
connected to cell proliferation such as M phase, cell division,
and mitotic cell cycle. This finding underscores that high levels
of tumor cell proliferation play a central role in breast cancer
prognosis of ER-positive patients.

Selecting Potential Prognostic Biomarkers by Integrating
Transcriptomic and Proteomic Information

The proteomic analysis of breast cancer tissues previously
performed by our group11 provided us with a comprehensive
database of breast-cancer-related proteins that can be identified
(and potentially be quantified) by mass spectrometry. Initially,
we sought to examine whether the 89 genes that were identified
to discriminate between good and poor prognosis breast cancer
patients at the mRNA level were present in the breast cancer
tissue proteome. Twenty out of 89 genes were identified by
mass spectrometry in the breast cancer tissue proteome with at
least two peptides: 14 related to poor prognosis and 6 related
to favorable prognosis, summarized in Table 3.

Identification of Proteotypic Peptides for SRM Method
Development

The final list of proteins for SRM method development
included the 20 identified candidate biomarkers, two proteins
(ABAT and PTX3) previously identified by our group as
potential biomarkers,11 two proteins (MARCSL1 and DDX1)
previously reported in the literature as breast cancer prognostic
markers20,21 and the two biomarkers used in the clinic (ESR1
and ERBB2) − a total of 26 proteins.
The SRM method development was a multistep process with

various rounds of optimization. In the first step, 97 peptides
from 26 proteins and 580 transitions were monitored over the
complete duration of the gradient (60 min) in a pool of breast
cancer tissue samples. To ensure that at least 15 points were
measured per LC peak, the scan time was set to 0.03 s, and no
more than 60 transitions were included per method, resulting in
10 methods to be run. The coelution of all selected transitions
(at least 6 in most cases) would indicate the presence of the
peptide of interest. This process was repeated three times with
three different pools of tissues, and the peptide yield out of this
exercise is summarized in Supplementary Table 3 in the
Supporting Information.
At the end of step one of method development, not all

proteins were represented by at least one PTP, possibly due to
sample complexity. For this reason, a more homogeneous and
less complex system was selected − cancer cell lines. The cell-
line proteome was searched to identify in which cell line(s) the
proteins were identified with the greatest abundance. Two cell
lines, SK-BR-3 and MDA-MB-231, were found to express
almost all of the proteins in relatively high amounts (based on
the spectral counts) and were selected for SRM method
development.

Table 2. Demographics of the Four Microarray Experiments
Used for Identifying Genes Related to Disease Free Survival
(DFS)a

ID experiment
number of ER+

samples
survival
data

5 year DFS
TRUE/FALSE

A GSE7390 130 125 93/32
Bb GSE2034 144 138 97/41
C GSE21 653 122 91 64/27
D GSE4922 211 196 58/138

total 607 550
aBreast cancer patients of all studies were untreated at time of
sampling and three out of four studies (A−C) included only lymph-
node-negative patients. Although these studies included both estrogen
receptor (ER)-positive and ER-negative patients, only ER-positive
patients for each study were used for our analysis. Patients were
divided into two groups: patients with DFS lower (FALSE) and higher
than 5 years (TRUE). bEnd point in the GSE2034 data set was distant
metastasis-free survival (MFS).
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The use of cell lines offers another advantage to method
development: the relatively cost-efficient generation of isotope-
labeled peptides. Light- and heavy-labeled cells were lysed
following our optimized protocol,17 mixed in a total protein
ratio of 1:1, and processed for trypsin digestion. The SRM
methods were modified to monitor both light and heavy
peptides. Given that chromatographic properties of heavy and
light peptides are identical, both of them elute at the same time
(and thus have the same RT). Also, AUClight/AUCheavy should
be ∼1. Additionally, the order of transition intensities should be
the same for light and heavy peptides. However, because of the
difference in the mass (+6 Da for arginine (R) and +8 Da for
lysine (K)), the m/z of heavy peptides is shifted by six and
eight units for peptides containing an arginine and lysine,
respectively. A graphic representation of these properties can be
seen in Figure 1A,B. Following this approach, we were able to
confirm the identity of 10 peptides (corresponding to eight
proteins) previously found in tissue samples by our SRM
method. Additionally, we were able to detect 12 peptides
(corresponding to 10 proteins) not previously observed in
tissues (Supplementary Table 3 in the Supporting Informa-
tion).
Notably, not all peptides identified by SRM in tissues were

found also in the cell lines. An additional step to increase our
confidence that the detected peaks in tissues correspond to the
peptides of interest is predicting the RT and comparing it to
the experimental RT. The RT of 25 peptides corresponding to
20 proteins was within the CI predicted by SSRCalc 3.0
(Supplementary Table 3 in the Supporting Information); also
see Figure 1C. Notably, there were two peptides for which
coelution of at least six transitions was observed, but the
experimental RTs were different than the predicted ones,
flagging these peptides as false-positives. These two peptides
(corresponding to proteins CD74, CDK1) were excluded from
further analysis.

For peptides confirmed in the two previous approaches, an
extra confirmation step was performed that included the
comparison of data obtained through previous shotgun
proteomic experiments11 and current SRM analyses. For this
purpose, the MS/MS spectra obtained for the peptides of
interest were retrieved, and the order of transition intensities
was recorded and then compared with the order of transition
intensities from the SRM approach. Because of the similar way
of peptide fragmentation, the transition intensity order should
be similar in the two experiments. A graphic representation of
these fragmentation patterns is depicted in Figure 1D.
Through the procedure previously described, 46 peptides

that corresponded to 21 proteins were detected. For proteins
with multiple peptides, several criteria to select the final
peptide(s) were applied. First, Universal Protein Resource
(Uniprot) was utilized to investigate whether the selected
peptides carry post-translational modifications (www.uniprot.
org), which may affect m/z of the peptides and may differ
among individuals, thus introducing variation in our analysis.
The peptides that could possibly carry a modification were
discarded. Second, among peptides from the same protein, the
ones with highest signal intensities were preferred. Finally,
peptides with minimally overlapping RTs (when possible) were
selected for the final assay. The proteins and peptides of the
final SRM method are summarized in Table 4.
Upon peptide selection, three transitions per peptide were

retained for the final assay. SRM collider was used to identify
UIS of the selected peptides, and the UIS that contained the
most intense transitions was preferred. All peptides and
corresponding transitions were scheduled in a single multiplex
scheduled SRM method within 5 min (±2.5 min) intervals
during a 60 min LC gradient. Scan times were optimized for
each peptide in the final SRM method to ensure the
measurement of 15−20 points per LC peak per transition.
During the SRM development phase, 60 min LC gradients

were used. In the interest of reducing machine run time, the

Table 3. 20 Candidate Prognostic Biomarkers along with the p Value and the Coefficient of the End-Point Analysis in the Four
Gene Expression Data Sets Used in the Present Studya

experiment A experiment B experiment C experiment D

gene name p value coefficient p value coefficient p value coefficient p value coefficient

CDK1 0.02 −0.68 0.06 −0.42 <0.01 −1.19 <0.01 −0.77
CTTN 0.02 −0.60 0.22 −0.32 0.01 −1.01 <0.01 −0.67
CIAPIN1 0.39 −0.11 0.04 −0.38 0.04 −0.30 0.01 −0.35
FEN1 0.01 −0.40 0.07 −0.25 0.01 −0.66 ,0.01 −0.35
HN1 0.02 −0.51 0.16 −0.26 0.01 −0.66 <0.01 −0.73
KPNA2 0.02 −0.43 0.01 −0.46 0.23 −0.26 <0.01 −0.37
LMNB1 0.02 −0.29 0.56 −0.09 <0.01 −0.92 0.01 −0.53
LRRC59 <0.01 −0.62 0.02 −0.42 0.01 −0.48 0.20 −0.17
MCM2 0.02 −0.42 0.24 −0.20 0.01 −0.60 <0.01 −0.56
NOL3 0.02 −0.34 <0.01 −0.58 0.01 −0.50 0.04 −0.25
PAICS 0.01 −0.38 0.15 −0.20 0.02 −0.44 0.02 −0.37
PNP 0.01 −0.54 0.01 −0.42 0.05 −0.44 0.04 −0.25
RRM2 0.05 −0.64 0.03 −0.68 <0.01 −1.34 <0.01 −1.20
TXNRD1 <0.01 −0.50 0.03 −0.31 0.28 −0.21 0.05 −0.21
CD74 0.06 0.38 0.02 0.36 0.04 0.51 <0.01 0.35
ALDH2 0.02 0.47 0.04 0.39 0.02 0.60 0.18 0.19
FAM129A 0.08 0.53 0.03 0.61 0.01 0.75 <0.01 0.63
HLA-DPA1 0.03 0.51 0.20 0.28 0.04 0.66 0.01 0.41
KCTD12 0.57 0.11 0.02 0.39 0.01 0.73 <0.01 0.54
SH3BGRL 0.02 0.48 0.20 0.22 0.03 0.50 0.01 0.27

aDifference in means of log2 expression between patients with DFS greater than 5 years (positive value) or lower than 5 years (negative value).
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method was modified to a 30 min gradient. Comparison of
signal intensities for peptides monitored in the 30 versus the 60
min method (Supplementary Table 4 in the Supporting
Information) did not reveal considerable differences. At the
same time, sample analysis time was reduced to 57 min
compared with 90 min previously. Therefore, the final SRM
method was run in a 30 min gradient.

Optimization of the Amount of Spiked-in Isotope-Labeled
Peptides

Upon selection of the final peptides to be included in the assay,
the corresponding isotopically labeled peptides in unpurified
form were purchased. An estimated concentration of 25 nM
was provided by the manufacturer and was used for further
calculations. On the basis of these estimated concentrations and
using a pool of breast cancer cytosols as matrix, serial dilutions
of the “heavy” peptides covering three orders of magnitude (2−
1000 fmoles per injection) were prepared and analyzed with the
developed SRM method. As expected, all spiked-in isotope-
labeled peptides were detected. However, not all the peptides
were present in the matrix. The SRM assays (for the 14
detected proteins) showed good linearity (coefficient of
determination, R2 > 0.99 for all proteins except ABAT that
exhibited R2 = 0.985) in the entire concentration range (2−

1000 fmol/injection) (Supplementary Table 5 in the
Supporting Information).
The purpose of adding isotope-labeled peptides in the

samples was to control for variations during sample preparation
and mass spectrometric analysis of samples. These peptides
were used for normalization of signal intensities. It is preferable
that the spiked-in amounts of “heavy” peptides are close to the
levels of the endogenous counterparts. This exercise allowed us
to determine what amount of heavy peptides should be added
to the samples to obtain a heavy-to-light ratio close to one. On
the basis of the relative abundances of heavy and light peptides,
the optimum amount of heavy peptides was determined. For
peptides that were not present in the matrix, the relative
abundance compared with other peptides was taken into
consideration. The optimum amount for each peptide is
summarized in Supplementary Table 6 in the Supporting
Information.

Calibration Curves and Limit of Quantification

Calibration curves with 13 points ranging from 0.06 to 250
fmol/injection were generated to define the LOQ of the SRM
assays. Analysis of the second to last point (125fmol/injection)
failed due to technical problems; therefore, that point was
excluded from further analysis. Additionally, the endogenous

Figure 1. Identification of proteotypic peptides for SRM method development: a representative example. Co-elution of seven transitions originating
from the endogenous (A) and the spiked-in isotope-labeled (B) peptide. Both “light” and “heavy” transitions elute at the same RT and with the same
order of transition intensities. The relative intensity of “light” and “heavy” is almost equal. (C) Predicted retention time (RT) and 95% confidence
interval (CI) for peptide AAATPESQEPQAK, according to SRRCalc. 3.0, and observed RT in a 60 min gradient. (D) MS/MS spectrum of the
doubly charged peptide AAATPESQEPQAK (m/z = 664.3), acquired in an LTQ Orbitrap XL, and identification of b and y ions in Scaffold software.
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levels of FEN1 were very low, and thus the generation of a
calibration curve was not possible. The SRM assays showed
good linearity (R2 > 0.99) in both the entire concentration
range, from 250 fmoles to the LOQ, and in the lower range
(five lower concentration standards). The LOQ, defined as the
concentration for which monitored transitions could be clearly
detected, was within the linear range and showed a CV lower or
equal to 20%. Table 5 summarizes the LOQs for the SRM
assays.

Measurement of Relative Amounts of 20 Proteins in 96
Breast Cancer Tissue Samples

Using the developed SRM assays, the relative amounts of 20
proteins in 96 breast cancer tissues were measured. All samples
were analyzed in duplicate; however, 10 out of 192 injections
failed due to technical problems. It the end, 86 samples were
assayed in duplicate and 10 samples in singleton.
As expected, all spiked-in isotope-labeled peptides were

detected. Native peptides from proteins PNP, RRM2, NOL3,
DDX1, and TXNRD1 were not detected in the majority of
samples, indicating low abundance of these proteins in this set
of samples. It is worth mentioning that even in cases where the
transitions of monitored peptides were detected the signal-to-
noise ratio was low, so they were not taken into further
consideration. The native peptide of ESR1 was detected but
with low sensitivity, allowing only the qualitative and not
quantitative assessment of ER (presence or absence). All of the

other native peptides were clearly detected. The majority of
AUClight/AUCheavy for all peptides was between 0.1 and 1,
indicating that the spiked-in amount of isotope-labeled peptides
was optimized. For samples analyzed in duplicate, the average
CV was 4%, ranging from 1 to 26%. The estimated amount of
each native peptide along with the CVs is depicted in
Supplementary File 1 in the Supporting Information.
Given that the SRM assay included two peptides for ALDH2,

we sought to examine the extent of their correlation. The signal
intensities for both peptides were similar (105) except for eight
samples that the second peptide showed a 10-fold decrease in
signal intensity. As can be seen in Figure 2, the relative amounts
of the two peptides were significantly correlated (R2 = 0.87).
Notably, only one of the two peptides had the isotope-labeled
counterpart; therefore, raw AUC values were compared without
any normalization.

Association of PTX3 and ABAT with ER Status

In a previous study by our group, protein ABAT was identified
as specific to ER-positive breast cancer tumors, whereas PTX3
was proposed as an ER-negative subtype-specific protein.11 In
the present study, the relative amounts of ABAT and PTX3 in a
set of samples that contained both ER-positive and ER-negative
cases were measured to investigate whether this finding could
be independently reproduced. Indeed, PTX3 was shown to be
significantly associated (Mann−Whitney U-test, p < 0.0001) to
ER-negative samples (Figure 3A). ABAT was found to be

Table 4. Proteins, Peptides, and Transitions of the Developed SRM Method

protein peptide
peptide
m/z

transition
m/z

ion
type

ABAT IDIPSFDWPIAPFPR 885.964 1098.573 y9
983.546 y8
797.467 y7

ALDH2 ANNSTYGLAAAVFTK 764.394 1040.578 y10
877.514 y9
395.229 y3

ALDH2 ELGEYGLQAYTEVK 800.399 1171.599 y10
1008.536 y9
710.372 y6

CDK1 SPEVLLGSAR 514.790 844.489 y8
503.294 y5
390.210 y4

CTTN SAVGFDYQGK 536.259 814.373 y7
757.352 y6
610.283 y5

DDX1 ELAEQTLNNIK 636.843 959.516 y8
830.473 y7
488.283 y4

ESR1 YLENEPSGYTVR 714.343 1151.532 y10
1022.490 y9
779.404 y7

FAM129A VLTSEDEYNLLSDR 827.402 1124.522 y9
717.389 y6
377.178 y3

FEN1 LIADVAPSAIR 563.335 713.430 y7
614.362 y6
543.325 y5

KCTD12 SGYITIGYR 515.272 609.335 y5
395.204 y3
338.182 y2

KPNA2 ASLSLIEK 430.758 789.472 y7
589.356 y5

protein peptide
peptide
m/z

transition
m/z

ion
type

389.239 y3
LMNB1 IQELEDLLAK 586.332 930.514 y8

801.472 y7
688.388 y6

MARCKSL1 AAATPESQEPQAK 664.328 1013.490 y9
787.394 y7
443.261 y4

MCM2 VAVGELTDEDVK 637.827 1005.473 y9
706.325 y6
490.251 y4

NOL3 LLLLVQGK 442.302 657.429 y6
544.345 y5
431.261 y4

PAICS EVYELLDSPGK 625.319 1021.520 y9
858.457 y8
503.246 y5

PNP ANHEEVLAAGK 569.796 687.404 y7
558.361 y6
459.293 y5

PTX3 LTSALDELLQATR 715.896 945.500 y8
588.346 y5
475.262 y4

RRM2 IEQEFLTEALPVK 758.917 870.529 y8
656.398 y6
343.234 y3

SH3BGRL GDYDAFFEAR 595.759 740.373 y6
669.335 y5
522.267 y4

TXNRD1 IGLETVGVK 458.279 802.467 y8
745.445 y7
632.361 y6
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significantly (Mann−Whitney U-test, p < 0.0001) associated
with ER-positive samples (Figure 3B). These results provide
strong confirmation of our previous study.
Given that this study was performed in a blinded fashion, we

sought to investigate whether we could predict the ER status of
the samples based on the ABAT and ESR1 levels measured by
SRM. The ER status was correctly assigned in 80 out of 96
assayed samples, a result highly significant as shown by a chi-
square test (p < 0.0001).

Association of Candidate Biomarker Levels with Clinical
Outcome

Analysis of results was performed independently for ER-
positive and ER-negative patients. In ER-negative patients, the
average levels of all proteins between good and poor prognosis
patients did not show a significant difference. This finding was
expected given that the candidate biomarkers were chosen to
have prognostic potential in ER-positive patients. In the
subgroup of ER-positive patients, the majority of proteins
were not found to be differentially expressed between patients
with good and poor prognosis. However, two proteins, KPNA2
and CDK1, were found to be overexpressed (Mann−Whitney
U-test, p < 0.05) in the poor prognosis patient group by
approximately two-fold (Figure 4). The direction of effect was
in accordance with our proposal that CDK1 and KPNA2 are
biomarkers of poor prognosis. Notably, the levels of those two
proteins did not differ significantly in the subgroup of ER-
negative patients (Supplementary Figure 1 in the Supporting
Information).

■ DISCUSSION
In the present study, we integrated transcriptome- and
proteome-based platforms for identifying potential prognostic
biomarkers for stratification of ER-positive breast cancer
patients into groups of low and high risk for disease recurrence.
The selection of our candidate prognostic biomarkers was a
two-step process. First, we identified genes that are related to 5-
year DFS of ER-positive patients by performing meta-analysis
of gene expression profiling data from four independent studies.
Then, we compared the generated gene list to a previously
generated breast cancer tissue proteome and selected only

Table 5. Analytical Characteristics for the Quantification of 14 Endogenous Peptides from 14 Proteinsa

protein peptide min/max LOQ CV analytical range R2

ABAT IDIPSFDWPIAPFPR 0.8−52 0.49 1% 250−0.49 0.999
62.5−0.49 0.998

ALDH2 ANNSTYGLAAAVFTK 1−52 0.98 20% 250−0.98 0.994
62.5−0.98 0.993

CDK1 SPEVLLGSAR 0.1−13 0.06 8% 250−0.06 0.998
15.6−0.06 0.995

CTTN SAVGFDYQGK 0.6-31 0.49 10% 250−0.49 0.996
31.25−0.49 0.998

FAM129A VLTSEDEYNLLSDR 0.9−37 0.49 2% 250−0.49 0.997
31.25−0.49 0.989

KCTD12 SGYITIGYR 3−28 1.95 5% 250−1.95 0.996
31.25−1.95 0.994

KPNA2 ASLSLIEK 0.4−18 0.24 8% 250−0.24 0.996
31.25−0.24 0.998

LMNB1 IQELEDLLAK 0.1−4 0.12 13% 250−0.12 0.996
7.81−0.12 0.982

MARCSL1 AAATPESQEPQAK 2.6−101 0.49 10% 250−0.49 0.993
MCM2 VAVGELTDEDVK 0.2−27 0.24 5% 250−0.24 0.996

31−0.24 0.998
MCM6 ESEDFIVEQYK 0.08−8 0.06 20% 250−0.06 0.999

7.8−0.06 0.995
PAICS EVYELLDSPGK 1.3−26 0.49 7% 250−0.49 0.998

31.25−0.49 0.998
PTX3 LTSALDELLQATR 0.1−25 0.06 16% 250−0.06 0.998

31.25−0.06 0.994
SH3BGRL GDYDAFFEAR 3−185 0.12 14% 250−0.12 0.998

amin/max, the minimum and maximum amount of the corresponding protein quantified in the 96 clinical samples; LOQ, limit of quantification
(fmoles per injection); CV, coefficient of variation (triplicates) at LOQ; R2, coefficient of determination.

Figure 2. Correlation of the relative amounts (shown as AUC) of two
peptides (ANNSTYGLAAAVFTK and ELGEYGLQAYTEVK) origi-
nating from the same protein (ALDH2).
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genes that have been identified at the protein level. Following
candidate identification, we developed a multiplex mass-
spectrometry-based assay for the simultaneous quantification
of the 26 selected proteins in breast cancer tissues. We were
able to develop a single multiplex SRM assay for the
quantification of 21 peptides (corresponding to 20 proteins)
in breast cancer tissues. Finally, the prognostic potential of the
candidate biomarkers for which the SRM method was
successfully developed was investigated. The relative amounts
of 20 proteins were measured by SRM in a cohort of 96

samples from patients with early-stage primary breast cancer.
Two proteins, KPNA2 and CDK1, were found to discriminate
between patients with favorable and poor prognosis.
SRM has recently emerged as a promising technology for

mass spectrometry-based quantification of targeted proteins in
clinical specimens. A drawback of current SRM technology is
relatively low sensitivity. Without sample prefractionation, SRM
measurements have been limited to only moderately abundant
proteins in human plasma, present in the low microgram per
milliliter range.22 This limitation may explain why we were not

Figure 3. Association of PTX3 (A) and ABAT (B) expression levels with ER status. Lines define median levels of each protein. Median levels of
PTX3 in ER-negative and ER-positive patients were 0.54 and 0 fmoles per injection, respectively. Median levels of ABAT in ER-negative and ER-
positive patients were 0 and 2.8 fmoles per injection, respectively. The statistical analysis (Mann−Whitney U test) was performed by comparing the
samples from ER-negative patients (n = 48) versus the samples from ER-positive patients (n = 48).

Figure 4. Association of CDK1 and KPNA2 expression levels with clinical outcome in ER-positive patients. CDK1 (A) and KPNA2 (B) expression
levels were found increased in ER-positive patients with poor prognosis compared with ER-positive patients with favorable prognosis. The lines in
scatter plots define median levels of each protein. Median levels of CDK1 in poor and good prognosis ER-positive patients were 1.3 and 0.7 fmoles
per injection, respectively. Median levels of KPNA2 in poor and good prognosis ER-positive patients were 2.2 and 1.1 fmoles per injection,
respectively. The statistical analysis (Mann−Whitney U test) was performed by comparing the samples from ER-positive patients with poor (n = 24)
versus good prognosis (n = 24).
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able to develop an SRM method for 6 out of the 26 candidate
proteins. Some approaches to increase assay sensitivity include
sample fractionation, depletion of high abundance proteins, or
affinity purification of low abundant proteins using antibodies
(immuno-SRM) or aptamers. Additionally, several efforts to
circumvent sensitivity limitations have been undertaken
recently. The online sample fractionation using cation exchange
chromatography,23 isoelectric focusing,24 and high-resolution
reverse-phase chromatography has been described and
demonstrated sensitivities of pg/mL.25 However, these
experimental setups significantly decrease method throughput
and increase development time. In an attempt to increase
method throughput, Whiteaker et al. demonstrated the
feasibility of multiplexing immuno-SRM assays for the
simultaneous quantification of up to 47 peptides.26 Never-
theless, good-quality purification reagents are of paramount
significance. In general, these strategies decrease the throughput
and increase variability due to extensive sample handling, and in
the case of immuno-SRM, a high-quality antibody is required.
For these reasons, in the present study, we decided to employ
minimum sample manipulation and focus on medium to high
abundance proteins. Some reasons for our inability to identify
the protein counterparts of 69 out of 89 genes could include
low protein abundance, protein degradation during sample
preparation, or protein insolubility.
In an SRM experiment, the proteotypic peptides act as

surrogates for the quantification of the corresponding protein.
It is recommended that two peptides per protein and at least
three transitions per peptide should be monitored;2 however,
this may not be always feasible. First, it should be noted that
not all possible peptides originating from a protein can be
detected by the mass spectrometer due to factors such as poor
ionization efficiency. Additionally, a set of heuristics exists
regarding peptide selection for SRM. In general, peptide length
should be between 8 and 20 amino acids, accommodating the
m/z range of the quadrupole analyzer (typically 50 to 1500 m/
z). Also, peptides shorter than eight amino acids (very small m/
z) are prone to suffer from more interferences. For sensitive
analysis, it is important to monitor the predominant charge
state of a peptide. Because of our focus on doubly charged
peptides, peptides containing histidine (positively charged
amino acid) in the middle of the sequence were avoided, if
possible. Furthermore, peptides with N-terminus glutamine,
cysteine, or asparagine should be excluded because these
residues are susceptible to chemical modifications that will alter
the peptide mass. Ideally, peptides should not contain any post-
translational modifications that again will affect the mass of the
peptide and thus the m/z. Given that usually only part of native
peptides will be modified, there is no straightforward way to
calculate the total amount of all modified forms. When all of
these rules of the thumb are taken into consideration the
number of candidate peptides is reduced. It has been previously
reported that the failure rate of omitting peptides during
peptide selection was close to 75%.27 In the present study, we
were able to identify two (or more) peptides for approximately
half of the studied proteins. However, the final method contains
one peptide per protein (except for ALDH2) to maximize assay
sensitivity. In the case of ALDH2, five eligible peptides were
identified, and the top two performing were included in the
final assay.
An integral part of our approach was the utilization of

publicly available microarray data for identification of genes
related to 5-year DFS. Following the publication of the first

studies describing gene profiling of breast cancer tissues for the
development of prognostic signatures, numerous studies have
reported the meta-analysis of publicly available gene expression
data in the quest of novel multigene classifiers.28−35 One of the
challenges in building classification models is overfitting, which
results in nonreproducible findings.36 Overfitting occurs when
multivariable models demonstrate discrimination between two
conditions by chance, and a model is prone to overfitting when
the number of parameters tested is large and the number of
samples is small. To overcome this challenge, and unlike
previous studies, we identified individual genes that are
associated with survival by calculating the differential expression
between patients with poor or good prognosis, at the gene-by-
gene level, in four independent patient cohorts. It should be
noted that the OncotypeDX gene selection model37 was
developed based on 447 tissue samples (fewer than our 607
samples) and included both ER positive and negative tumors.
Paik et al.37 also used a less strict criterion for gene selection (p
< 0.1 in three out of three studies or p < 0.05 in two out of
three studies). Our premise is that by combining genes that
individually show prognostic potential, we could develop a
powerful multiparametric prognostic signature. Our approach
should be less prone to overfitting bias, given that we use
multiple independent data sets and we refrain from applying
multiple testing.
Assessing the prognostic utility of a candidate biomarker

requires careful selection of samples to be included in the study.
First, the samples should originate from patients that have been
monitored for an extended period of time after their disease
diagnosis. Second, given that a prognostic marker should
provide information about the natural history of the disease
independent of a specific therapy, the patients should not
receive any type of adjuvant therapy that will affect the disease
course. The cohort analyzed in the present study included
tissue specimens from patients with early stage (lymph-node-
negative) disease who, at the time of diagnosis, were considered
as low-risk for disease recurrence and were treated by local
treatment only (surgical removal of the tumor, with or without
radiotherapy). This very strictly selected set of pilot samples
allows for the investigation of the true prognostic potential of
the candidate biomarkers free of potential confounding effects
of systemic therapy. Given that in our analysis we focused only
on ER-positive patients, we would expect the candidate markers
not to show prognostic utility in ER-negative patients. The
inclusion of ER-negative patients in our cohort confirmed our
original assumption. It should be noted that this cohort was
selected for this preliminary study; an independent study with
larger number of samples should be performed to verify the
findings.
The panel of candidate prognostic biomarkers contained

both proteins that have been previously connected to breast
cancer (including prognosis) and others that (to our knowl-
edge) have not been studied in the context of breast cancer
before. Proteins such as cyclin-dependent kinase 1 (CDK1),
karyopherin 2 (KPNA2), and minichromosome maintenance
protein 2 (MCM2) are involved in cell proliferation, a tumor
characteristic that is tightly connected to prognosis. Cortactin
(CTTN) has been the focus of numerous studies in breast and
other cancer types. The gene encoding cortactin is located in
the 11q13 region that is amplified in up to 15% breast cancer
cases and produces a cytoplasmic protein that is a key regulator
of actin polymerization. Because of its role in actin polymer-
ization, CTTN has been shown to play a critical role in various
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actin-mediated processes such as cell invasion and migration,
adhesion, and receptor-mediated endocytosis.38 In breast
cancer, overexpression of CTTN has been reported in tumors
with and without 11q13 amplification, and its role in tumor
invasion and metastasis has been documented.39,40 Thus, the
potential of CTTN as a prognostic biomarker in breast cancer
warrants further investigation. CD antigen CD74 has also been
previously studied in the context of breast cancer and was
found to be associated with increased invasion and meta-
stasis.41,42 However, both studies report an association of CD74
with triple-negative phenotype, and hence the prognostic value
in ER-positive disease remains to be investigated.
Flap endonuclease 1 (FEN1), a nuclease known for its

critical roles in Okazaki fragment maturation, DNA repair, and
apoptosis-induced DNA fragmentation; thioredoxin reductase 1
(TXNRD1), a key player in oxidative stress control; and
nucleolar protein 3 (NOL3), an antiapoptotic protein have
been found to be overexpressed in breast cancer in previous
studies.43−45 Proteins FAM129A, SH3BGRL, ALDH2,
LMNB1, KCTD12, and PAICS have not been connected to
breast cancer previously. Interestingly, high levels of potassium
channel tetramerization domain-containing 12 (KCTD12) have
been associated with higher percentage of 5-year recurrence-
free survival rate in patients with gastrointestinal stromal
tumors.46 Notably, in our approach, KCTD12 was identified as
a candidate biomarker of favorable prognosis.
The majority of investigated proteins did not show potential

in discriminating between patients with different prognosis.
Although mRNA data strongly supported the prognostic
potential of those candidates, this was not mirrored in our
verification study at the protein level. Possibly, the prognostic
utility of these genes could not be observed at the protein level
due to protein instability, high turnover, or degradation.
Another possible explanation may be related to the microarray
data sets used in our analysis. Although the majority of the
patients in all four studies were lymph-node-negative, they
probably received a variety of adjuvant therapies that may have
altered the natural course of disease. Finally, it could be
possible that these markers do not show prognostic potential
individually but they may perform better in a panel. However,
this multiparametric approach will require analysis of
significantly larger number of samples to avoid overfitting.
Recently, criticism over the use of the cutoff value of 0.05 for

significance (similar to what was used in the present study) has
emerged.47,48 However, apart from the p value (which implies
statistical significance), certain findings of this study demon-
strate biological significance. As discussed in detail, many
proteins identified as candidate markers have been connected
to breast cancer (including prognosis) previously. This biologic
background supports our notion to further investigate the
prognostic potential of these proteins. Additionally, none of the
proteins investigated in the present study showed any
significant association with prognosis in the ER-negative
subgroup of patients. Given that in our initial selection we
focused only in ER-positive patients, this finding was
anticipated. The absence of statistical significant results (even
using p value <0.05) in the ER-negative patient group is
encouraging. Nevertheless, this is a preliminary study, and an
independent study with larger number of samples should be
performed to verify the findings.
Two proteins previously reported as prognostic biomarkers

for breast cancer, DDX1 and MARCSL1, were included in our
verification. The protein levels of DDX1 were assessed by

immunohistochemistry in a study of 113 tumor samples, and
cytoplasmic localization of DDX1 was found to correlate with
increased risk of recurrence in breast cancer, independently of
other prognostic markers such as ER and grade.21 In our study,
although we were able to develop an SRM method for DDX1,
the protein levels in the cohort of samples analyzed were below
the level of detection. Levels of MARCSL1 were successfully
measured in our cohort. Jonsdottir et al. evaluated the
expression of this protein by immunohistochemistry in a
cohort of 305 operable lymph-node-negative breast cancer
patients. High expression of MARCKSL1 was correlated with
an increased risk for metastasis and a worse prognosis.20

However, this association was not observed in our study. This
could be attributed to the definition of “high” MARCSL1
expression in the study by Jonsdottir et al. The authors, using
the optimal cutoff value from the ROC-analysis to stratify
patients in good or bad prognosis, identified 28 out of 305
patients with high levels of MARCSL1 (IHC score >7) and
significantly worse outcome. In the present study, comparisons
were performed based on the median values.
Two proteins were found to be overexpressed in ER-positive

patients with poor prognosis when compared with favorable
prognosis patients: karyopherin alpha 2 (KPNA2) and CDK1.
The karyopherin family includes more than 20 members that
participate in several nuclear transport pathways into and out of
the nucleus. Nuclear import of proteins via the classical
pathway is mediated by heterodimers of members from the
karyopherin beta and karyopherin alpha families. KPNA2 is one
of seven described members of the karyopherin alpha family.
KPNA2 is highly expressed in multiple cancer types, and its
aberrant expression is often associated with adverse patient
outcomes. The first connection between breast cancer and
KPNA2 was provided by Dahl et al. by performing gene
expression profiling of laser-microdissected cancer and
corresponding benign breast tissues.49 The authors found that
KPNA2 mRNA levels were up-regulated (fold change >2) in
32% of analyzed tumor/normal pairs. Additionally, immuno-
histochemical assessment of KPNA2 in a cohort of 272 breast
cancer patients showed negative correlation between KPNA2
expression in the primary tumor and overall survival in lymph-
node-positive but not node-negative patients. The same group
went on to evaluate KPNA2 expression in invasive breast
cancer and matched ductal carcinoma in situ in 83
clinicopathologically characterized cases.50 Nuclear KPNA2
staining was significantly correlated with higher tumor stage,
grade, and lymph node status. Consistent with their previous
results, survival analysis revealed that patients with KPNA2-
positive invasive breast carcinomas had significantly shorter
DFS. Notably, the authors report an association between
KPNA2 expression and ER-negative disease. Additionally, in an
independent study, KPNA2 was shown to predict poor survival
in patients with advanced (lymph node-positive) breast
cancer.51 We are the first to report the prognostic potential
of KPNA2 in early stage breast cancer and particularly in the
subset of ER-positive patients.

■ CONCLUSIONS
In summary, by integrating transcriptomic and proteomic
information, we identified 20 proteins as potential prognostic
biomarkers in the subset of ER-positive breast cancer patients.
We were able to develop an SRM method for monitoring
simultaneously the relative levels of 20 candidate biomarkers in
breast cancer tissues. The prognostic potential of the candidate
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biomarkers was preliminarily investigated in a cohort of 96
breast cancer patients with primary early-stage disease. Two
proteins were identified that show potential to discriminate
between ER-positive patients of high and low risk of disease
recurrence. The role of these proteins in breast cancer
prognosis warrants further investigation.
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