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Abstract

Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent
attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular
processes. Although ubiquitination was initially associated with protein degradation, it is
becoming increasingly evident that proteins labeled with polyUb chains of specific topology
and length are activated in an ever-expanding repertoire of specific cellular processes. In
addition to their involvement in the classical protein degradation pathways they are involved in
DNA repair, kinase regulation and nuclear factor-kB (NF-kB) signaling. The sorting and
processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding
domains (UBDs), which are found in proteins that execute disparate biological functions. The
involvement of UBDs in several biological pathways has been revealed by several studies which
have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional
impairment of UBDs in key regulatory pathways has been related to the development of
pathophysiological conditions, including immune disorders and cancer. In this review, we
present an up-to-date account of the crucial role of UBDs and their functions, with a special
emphasis on their functional impairment in key biological pathways and the pathogenesis of
several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for
developing novel therapeutic strategies against many diseases is also discussed.

Abbreviations: AD: Alzheimer’s disease; Ab: amyloid-b peptide; BARD: BRCA1-associated RING
domain protein; BRCA1: breast cancer susceptibility protein 1; CUE: coupling of ubiquitin
conjugation to endoplasmic reticulum degradation motif; DUB: deubiquitinase; EPS15:
epidermal growth factor receptor pathway substrate 15; FA: Fanconi anemia; FANCD2:
Fanconi anemia complementation group D2 protein; FANCI: Fanconi anemia complementation
group I protein; hHR23A: human homologue Rad23A; IAP: inhibitor of apoptosis; IsoT:
isopeptidase-T; LUBAC: linear ubiquitin assembly complex; LUBID: linear ubiquitin-binding
domain; MDM2: murine double minute oncogene; MIU: motif interacting with ubiquitin; MVB:
multivesicular bodies; NEMO: NF-kB essential modulator; NF-iB: nuclear factor-kappa B; NOA:
NEMO Optineurin ABIN; PCNA: proliferating cell nuclear antigen; PD: Paget’s disease of bone;
PTM: post-translational modification; RAP80: receptor-associated protein 80; RUZ: Rabex-5
ubiquitin-binding ZnF; TC-NER: transcription-coupled nucleotide excision repair; TLS: transla-
tion synthesis; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin binding in ABIN and
NEMO; UBD: ubiquitin-binding domain; UBI: ubiquitin-binding inhibitor; UBZ: ubiquitin-
binding zinc finger; UIM: ubiquitin-interacting motif; UQ1: ubiquilin-1; UPS: ubiquitin-
proteasome system; USP: ubiquitin-specific protease; ZnF: zinc finger; Clastogenic: capable
of causing chromosomal breakages; Oncogenic: causing development of a tumor.
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Introduction

The functional diversity and dynamics of the eukaryotic

proteome is mainly attributed to post-translational modifica-

tions (PTMs) of proteins such as phosphorylation, methyla-

tion, acetylation and ubiquitination. The first three

modifications involve the addition of a small chemical

group (phosphate, methyl and acetyl groups, respectively),

whereas the latter entails the conjugation of a small protein,
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namely Ub, to a target protein. Ubiquitination was initially

recognized as the trigger for protein degradation through the

Ub-proteasome proteolytic pathway. Currently, almost 40

years after its discovery, ubiquitination constitutes a funda-

mental regulatory mechanism involved in several key eukary-

otic cellular processes (reviewed in references1–6), including

protein degradation7, vesicular trafficking8, DNA repair9,

endocytosis10 and transcription and gene silencing11.

Crucial to the function of Ub as a signaling motif is its

non-covalent association with modular protein domains

known as UBDs. These motifs are found in proteins known

as Ub receptor proteins, which execute disparate biological

functions; for example, UBDs are present in the degradation

machinery proteasome 26S and in the endocytic machinery

EPS15 (epidermal growth factor receptor pathway substrate

15), which function in all eukaryotes. In addition, UBDs are

present in E2-conjugating enzymes11–13. Therefore, this non-

covalent interaction between Ub and UBDs, may promote the

covalent attachment of Ub to a target protein and the

formation of polyUb chains of specific length and topology,

as well as direct the fate of ubiquitinated proteins leading to

regulation of many cellular processes. The latter include

proteasome degradation, endocytosis, autophagy, DNA repair

and damage tolerance, multivesicular bodies biogenesis and

NF-kB signaling. Accumulated knowledge about the func-

tional and structural diversity of UBDs and their role in

modifying protein function has been recently summarized in

a review by Dikic et al.13

The aim of this review is to present a critical account of the

current knowledge on the involvement of UBDs in the

pathogenesis of several human diseases such as cancer and

immunodeficiency disorders. In addition, special emphasis

will be devoted to discussing the different classes of UBDs,

the importance of the non-covalent Ub-UBD interactions in

multiple cellular processes as well as the consequences of

their dysregulation. Most of the accumulated knowledge that

highlights the role of UBDs in human disorders is discussed

in terms of their functional impairment in key cellular

pathways, such as the DNA repair and the DNA damage

response pathways. In this context, an up-to-date account of

the role of UBDs in the pathogenesis of several human

diseases, including cancer and immunodeficiency disorders,

will be presented and discussed in relation to the respective

pathways that are dysregulated mainly due to alterations in

UBDs, which subsequently give rise to these disorders.

Moreover, the still under-investigated topic of Ub-UBD

interactions as targets for developing novel therapeutic

strategies against many diseases will be highlighted.

Ubiquitin and ubiquitination

Ub is a 76–residue protein (�8.5 kDa) that is ubiquitously

expressed in eukaryotic organisms and is highly conserved

among the eukaryotes. Its secondary structure is defined by

a 3.5-turn a-helix, a 310 helix and a 5-stranded b-sheet

(Figure 1a). The human and yeast Ub share a 96% sequence

homology, with 73 out of 76 amino acids located at the same

position1, which leads to the conclusion that the primary

structure, and thus the secondary structure of Ub, are essential

for its biological functionality. Indeed, key functional features

of the Ub protein include its C-terminal and the seven lysine

(Lys) residues, located at positions 6, 11, 27, 29, 33, 48 and

63, which permit the formation of polyUb chains. These Ub

multimers can be both homogeneously linked (i.e. moieties

having the same linkage throughout the chain, for example,

Lys48- or Lys63-linked) and mixed-linked (i.e. chains con-

taining different Lys linkages, for example, a mixture of

Lys48- and Lys63-linked). The structure, assembly and

function of Ub as a signaling motif have been recently

reviewed by Komander and Rape14.

Ubiquitination is catalyzed by a triplet of enzymes, namely

E1, E2 and E3, and leads to the formation of an isopeptide

bond between the C-terminal glycine (Gly) carboxyl group of

Ub and, most often, a Lys residue in the target protein (Figure

2). However, covalent attachment of Ub to a target protein

through the substrate’s N-terminus15, the thiol group of

cysteine (Cys) (formation of thioester bond)16 and the

hydroxyl group of serine (Ser) or threonine (Thr) residues17

have also been reported. The ubiquitination cycle starts with

the activation of the C-terminus of Ub by an E1 activating

enzyme. The activated Ub moiety is then attached to a Cys

residue of an E2-conjugating enzyme, and finally transferred

to an amino group (usually "-amino group of a Lys residue)

of the substrate through the E3 Ub protein ligase enzyme. The

ligation of Ub to the target protein can be catalyzed via two

pathways (herein referred to as pathways A and B), depending

on the type of E3 enzyme that participates (Figure 2).

Particularly, in pathway A the HECT-domain E3s form a

thioester bond with Ub prior to substrate attachment. In

contrast, in pathway B the RING or U-box domain E3s,

instead of forming a straight interaction with Ub, function as a

bridge between an activated E2 and the substrate14,18.

Repetition of the ubiquitination cycle leads to the forma-

tion of polyUb chains by utilizing any of the seven Lys

residues of the Ub monomer, as well as Ub’s N-terminus

(linear polyUb chains). Strong evidence is emerging that

proteins labeled with polyUb chains of a specific topology

and length are channeled to a specific cellular process

Figure 1. Cartoon and surface representations
of Ub. (a) The secondary structure of Ub is
defined by a 3.5-turn a-helix, a 310 helix and
a 5-stranded b-sheet. (b) Surface representa-
tion of Ub showing the Ile44 hydrophobic
patch, the polar patch Asp58 and the
C-terminal Gly76 residue. Protein Data Bank
(PDB) identifier (ID): 1D3Z151.
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(Figure 3). For example, Lys48-linked chains classically

signal the target protein for degradation by the proteasome19,

whereas Lys63-linked chains act as an activation trigger in a

variety of pathways, including DNA damage tolerance20, the

inflammatory response21, protein trafficking22 and regulation

of protein synthesis23. In addition, it has been reported that

Lys11-linked chains serve as potent proteasomal degradation

signals24. Studies on the BRCA1-BARD (breast cancer

susceptibility protein 1 – BRCA1-associated RING domain

protein) complex have shown that Lys6-linked polyUb chains

are likely to be involved in DNA repair25,26. Moreover, the

linear polyUb chains also known as head-to-tail, which are

assembled by a specific ligase complex named linear Ub

chain assembly complex (LUBAC)27,28, are critical for NF-kB

signaling28–30. A recent study by Nakasone et al. also revealed

that mixed-linkage tri-Ub chains, containing both Lys48 and

Lys63 linkages, preserve the signaling properties of each

linkage31. The intrinsic importance and functions of polyUb

chains of diverse linkage are extensively discussed in other

recently published reviews32–34.

Role of UBDs in the ubiquitin pathway

Recognition of discrete Ub signals and their subsequent

channeling to specific cellular processes is mediated by

non-covalent interactions of Ub (or ubiquitinated substrates)

with modular protein domains known as UBDs. Several

UBDs have been identified and categorized in more than

20 families. Members of the same family show structural

similarities and it is believed that they interact with the same

region of Ub to form a non-covalent Ub-UBD complex

(reviewed in references11–13). For instance, Ub-associated

(UBA) domains belong to the family of a-helical UBDs and

are known to non-covalently bind Ub via a hydrophobic patch

located in the b-sheet region of Ub, known as the Ile44

hydrophobic patch (Figures 1b and 4a). Examples of these

Figure 2. The ubiquitination pathway. The
C-terminus of a Ub moiety is activated by an
E1 enzyme via an ATP-dependent step that
initially forms a Ub-adenylate intermediate
(not shown), which leads to the formation of
a thioester bond between a side chain of a
Cys residue of an E1 enzyme and the
C-terminus of Ub. The activated Ub moiety is
then attached to a Cys residue of an E2-
conjugating enzyme. Ligation of Ub to the
target protein can be catalyzed by either the
HECT-domain E3s (pathway A), which form
a thioester bond with Ub prior substrate
attachment, or by the RING-domain E3s or
U-box E3s (pathway B), which functions as a
bridge between an activated E2 and the
substrate.

Figure 3. Cellular pathways associated with
polyUb chains of a specific topology.

282 K. Sokratous et al. Crit Rev Clin Lab Sci, 2014; 51(5): 280–290

C
ri

tic
al

 R
ev

ie
w

s 
in

 C
lin

ic
al

 L
ab

or
at

or
y 

Sc
ie

nc
es

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 o

n 
01

/2
3/

15
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



include the UBA domain of ubiquilin-1 (UQ1), a protein that

acts as a presenilin regulator35, and the two UBA domains

(UBA1 and UBA2) of the human homologue Rad23A

(hHR23A), a protein that mediates the delivery of substrates

to the 26S proteasome36, the regulation of p5337 and

nucleotide excision repair38. Similar to the three-helix

bundle UBA domains, the single a-helix ubiquitin-interacting

motif (UIM) domains, including motif interacting with Ub

(MIU) and double-sided UIM, also bind Ub via Ub’s Ile44

hydrophobic patch39–42. Nevertheless, a recent study showed

that point mutations in Ub’s hydrophobic core can cause

specific effects upon functions of Ub43. Particularly, it was

shown that the point mutations Leu67Ser and Leu69Ser,

located in Ub’s buried core, disturb interactions of Ub with

the UIM domain of the proteasomal Ub receptors S5a and

Rpn10, whereas interactions with the UBA domain of the

receptor proteins Rad23 and hHR23A remain unimpaired.

In contrast to a-helical domains, zinc finger (ZnF) domains

bind to Ub via three different regions (Asp58, Ile44 and

Gly76) located on the surface of Ub (Figure 1b). For example,

association of the vesicular trafficking protein Rabex-5 with

Ub is mediated by a Rabex-5 Ub-binding ZnF (RUZ) domain

(Figure 4c), which interacts with an Asp58-centered region

and by a MIU domain that binds the Ile44-centered patch on

Ub44. Similarly, two other members of the ZnF family, the

nuclear protein localization 4 ZnF (NZF) domain and the

Ub-binding ZnF (UBZ) domain, bind to Ub via its hydro-

phobic surface around Ile44 (Figure 4b).

UBDs are also present in E2 Ub-conjugating enzymes

(UBC), which promote the assembly of polyUb chains of

specific linkage topology. For example, it is known that the

UBC13/MMS2 heterodimer mediates the assembly of Lys63-

linked polyUb chains45, whereas the UBE2S catalyzes the

formation of Lys11-linked polyUb chains46. A recent study

Figure 4. The structures of several Ub-UBD
complexes. (a) Cartoon representation of Ub
in complex with the triple-helix bundle UBA
domain of UQ1 (PDB ID: 2JY6)62.
(b) Cartoon representation of Ub in complex
with the NZF domain (PDB ID: 1Q5W)152.
(c) Cartoon representation of Ub in complex
with the RUZ and MIU domains of Rabex-5.
The RUZ domain binds to an Asp58-centered
surface and the single-helix domain, MIU,
binds to the Ile44 hydrophobic patch (PDB
ID: 2FIF)41. (d) Cartoon representation of Ub
in complex with the ZnF domain of IsoT. The
domain binds to the carboxyl terminus of Ub.
(e) Cartoon representation of Lys48-linked
diUb in complex with the UBA2 domain of
RAD23A (PDB ID: 1ZO6)60. (f) The UBAN
domain in NEMO forms a coiled coil, which
binds two linear diUb (PDB ID: 2ZVO)30.

DOI: 10.3109/10408363.2014.915287 UBDs in human pathophysiology 283
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suggested that the synthesis of Lys48-linked polyUb chains,

which is carried out by the E2-25K enzyme47, is directed by

the C-terminal UBA domain of E2-25K48. Interestingly, it was

shown that E2-25K is a crucial mediator of amyloid-b peptide

(Ab) neurotoxicity49, which is linked to the pathogenesis of

Alzheimer’s disease (AD)50. In addition, the frameshift

mutant of Ub B (UBB+1) is a potent inhibitor of the Ub-

proteasome system (UPS) that is often observed in AD

patients51–53. Recent structural data showed that the UBB+1

interacts with the UBA domain of E2-25K and forms a

complex that promotes the accumulation of UBB+1-anchored

polyUbs, which in turn leads to proteasomal inhibition and

neurotoxicity54. Furthermore, aggregation of extended poly-

glutamine proteins that result in proteasomal inhibition and

development of neurotoxicity in Huntington’s disease has

been associated with interactions of the E2-25K UBA domain

with huntingtin55.

The deubiquitinating (DUB) enzyme isopeptidase-T (IsoT

or USP5) carries out the dissociation of free polyUb chains

into monoUb moieties. Since this interaction is mediated

by a ZnF Ub-protease (UBP) domain, which recognizes the

C-terminal Gly residue of Ub56, it is believed that the ZnF

UBP domain of IsoT has no preference for polyUb chain

length or topology (Figure 4d). Indeed, a recent mass

spectrometry study has shown that ZnF UBP binds mono-

Ub and di-Ub modules with similar affinity57. The specific

recognition of polyUb chain length and topology by UBDs is

only now beginning to emerge. For instance, it has been

shown that the hHR23A-UBA domains show a clear select-

ivity for Lys48-linked (Figure 4e) over Lys11-, Lys27-,

Lys29- and Lys63-linked polyUb chains36,57–61. In contrast,

the UQ1-UBA domain does not possess any binding prefer-

ence for polyUb chain linkage57,59,61,62. It has been suggested

that UBDs that interact with polyUb chains in a linkage-

independent manner may be particularly useful for capturing

the totality of ubiquitinated proteins from complex protein

mixtures59. Accumulated knowledge about UBDs’ preferen-

tial binding to polyUb chains of diverse linkage has been

summarized in a recent review by Husnjak and Dikic33.

Role of UBDs in human pathophysiology

The intrinsic importance of UBDs is being increasingly

recognized as they have been associated with a variety of

pathological conditions, including cancer and immunodefi-

ciency disorders (Table 1). As described above, the range

of disorders in which dysregulation of UBDs plays a major

role in their pathogenesis will be discussed in terms of the

respective pathways in which UBDs are mechanistically

involved. For example, functional impairment of UBDs in the

NF-kB pathway leads to the development of several disorders,

including B-cell lymphomas, autoimmune diseases and

Paget’s disease of bone (PD). In this context, the role of

UBDs in the pathogenesis of human diseases will be

discussed in relation to their functional impairment in the

following five pathways:

� UBDs and the NF-�B pathway,

� UBDs and the DNA damage response pathway,

� UBDs and the nucleotide excision repair pathway,

� UBDs and the Fanconi anemia (FA) pathway and

� UBDs and the translation synthesis (TLS) pathway.

UBDs and the NF-kB pathway

NF-kB, a transcription factor formed by Rel proteins, is

involved in vital cellular processes, including gene expres-

sion, skin homeostasis and immunity. In the canonical

pathway, NF-kB factors are retained in an inactive state by

binding to the inhibitor of NF-kB, IkB. Upon cell stimulation,

IkB is sequentially phosphorylated by the IkB kinase complex

IKK, ubiquitinated and finally directed to the proteasome for

degradation. The IKK complex consists of two kinases, IKKa
and IKKb, and the regulatory component NF-kB essential

modulator (NEMO) also known as IKKg. This complex is

activated by an upstream kinase known as TAK1, which

is activated in response to tumor necrosis factor-a (TNF-a)

or IL-1 receptor stimulation63.

Several studies have reported the presence of a UBD in

NEMO, commonly referred to as Ub binding in ABIN and

NEMO (UBAN), which was initially thought to preferably

bind to Lys63-linked polyUb chains64–67. A more recent

study, however, has shown that NEMO demonstrates signifi-

cantly higher binding affinity towards linear polyUb chains

compared with Lys63-linked chains68. Another study has

provided structural and functional evidence about the prefer-

ential binding of UBAN to linear polyUb chains (Figure 4f),

revealing the key role of the UBAN motif of NEMO in the

activation of the canonical NF-kB pathway30. In particular, it

was shown that the UBAN motif binds linear polyUb chains,

mainly via hydrophobic interactions with Ub’s hydrophobic

patch residue Ile44, in addition to the formation of salt bridges

and hydrogen bonds. Previous studies showed that the

development of X-linked anhidrotic ectodermal dysplasia

with immune deficiency syndrome is related to Asp311Asn,

Table 1. Impaired signaling pathways and resulting pathologies related to UBDs.

UBD Protein Related pathway Related pathophysiology References

UBA E2-25K UPS Alzheimer’s and Huntington neurodegenerative diseases 54,55

UBAN NEMO NF-kB X-linked anhidrotic ectodermal dysplasia with immunodeficiency 30,69,70

ZF7 A20 NF-kB B cell lymphoma 85–87

UBA IAP NF-kB Tumorigenesis 89

UBA P62 NF-kB PD 90–94

UIM RAP80 DNA damage response Tumorigenesis 102

UMI RNF168 DNA damage response Tumorigenesis 108,109

UBD CSB TC-NER Cockayne Syndrome B 113

CUE FANCD2 FA Bone marrow failure; cancer susceptibility 127

UBM TLS polymerases TLS Increased UV sensitivity 134,135

UBZ TLS polymerases TLS Increased UV sensitivity 134,135

284 K. Sokratous et al. Crit Rev Clin Lab Sci, 2014; 51(5): 280–290
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Glu315Ala and Arg319Gln NEMO alleles69,70. According to

Rahighi et al. any of these mutants will attenuate the ability of

UBAN (thus NEMO) to recognize and bind linear Ub chains,

which will consequently inhibit the activation of NF-kB

pathway30.

The Ub-editing protein A20 modulates NF-kB activation

through a variety of cell surface receptors such as TNF

receptors71, toll-like receptors72, CD4073, as well as viral

proteins, e.g. the Epstein-Barr virus latent membrane protein

1 (EBV LMP1)74. Recent genetic studies have revealed

putative associations of polymorphic A20 (also known as

TNFAIP3) alleles with systemic lupus erythematosus75,76.

The vital role of A20 has also been highlighted by recent

studies which showed a linkage between A20-deficiency

and the development of pathophysiological conditions,

including IBD (inflammatory bowel disease) associated

arthritis77, experimental colitis78, rheumatoid arthritis79 and

autoimmune disorders80,81. A study by Shembade et al.

showed that A20 can inhibit the E3 ligase activities of TNF

receptor-associated factor 6 (TRAF6), TNF receptor-

associated factor 2 (TRAF2) and cIAP by antagonizing

interactions with the E2 Ub-conjugating enzymes Ubc13

and UbcH5c. In this way, ubiquitination of signaling proteins

can be indirectly inhibited by A2082.

The regulatory activity of A20 is mainly attributed to its

Ub-editing functions carried out by UBDs. The N-terminus

of A20 contains an ovarian tumor (OTU) UBD domain

that specifically recognizes Lys63-linked polyubiquitinated

substrates, whereas the C-terminus consists of seven ZnF

domains that confer E3 ligase activity to A2083. Particularly,

A20 cleaves Lys63-linked polyUb chains on receptor-

interacting protein 1 (RIP1) and conjugates Lys48-linked

polyUb chains, thus targeting RIP1 for proteasomal degrad-

ation83. Interestingly, it has been shown that mutations in ZnF

domains of A20 (hereinafter referred to as ZnF-A20),

particularly in ZnF4-A20 and ZnF7-A20, decrease the E3

Ub ligase activity of A20 and also diminish the recruitment of

A20 to NEMO following TNF stimulation84. Recently,

Verhelst et al. have demonstrated the key role of the ZnF7-

A20 domain in the negative regulation of NF-kB activation by

A2085. The study showed that the ZnF7-A20 domain prefer-

entially binds linear polyUb chains in vitro, identifying it as a

linear Ub-binding domain. Therefore, A20 inhibits LUBAC-

induced NF-kB activation by establishing interactions with

the LUBAC complex mediated by its ZnF7-A20 domain.

Importantly, the study proposed a significant physiological

role of the ZnF7-A20 domain in NF-kB suppression based on

previous studies which have identified A20 mutants lacking

the ZnF7-A20 domain in B cell lymphomas86,87. In addition,

the authors implied a potential therapeutic use of ZnF7-A20

polypeptides or peptidomimetics against B cell lymphoma

and autoimmune diseases85.

Several studies have shown that the inhibitor of apoptosis

proteins (IAPs) are often overexpressed in cancer, and that the

levels of IAPs are implicated in contributing to tumorigenesis,

chemo-resistance, disease progression and poor patient sur-

vival88. A recent study has revealed the presence of a UBA

domain in IAP that promotes preferable interactions with

Lys63-linked polyUb chains89. The authors concluded that the

UBA domain is essential for the oncogenic potential of cIAP,

to maintain endothelial cell survival and to protect cells from

TNF-a-induced apoptosis. In addition, according to the study,

the UBA domain can modulate NF-kB signaling by binding to

polyubiquitinated NEMO or RIP189.

PD is a rare, chronic skeletal disorder that causes abnormal

bone growth. Several studies have linked mutations affecting

the scaffold protein p62/SQSTM1 with the development of

PD. It has also been shown that a number of mutations are

clustered within the UBA domain of p6290–93. Although the

precise functional implications of p62/SQSTM1 in the

pathogenesis and progression of PD remain to be revealed,

it is apparent that p62/SQSTM1 is involved in the regulation

of ubiquitinated protein turnover and in the activation of

NF-kB. It is believed that mutations within the UBA domain

of p62 inhibit p62 ubiquitination which may result in the

dysregulation of TRAF6 ubiquitination and downstream

NF-kB signaling. Furthermore, a recent structural and

biophysical study suggested that the common p62 mutations,

Pro392Leu, Ser399Pro, Met404Val/Thr, Gly411Ser and

Gly425Arg, which are found in PD patients and are located

within the C-terminal UBA domain of p62, hinder p62

ubiquitination via a complex mechanism involving the full-

length protein rather than the isolated UBA domain of p6294.

Recent advances in the understanding of the molecular basis

of PD, with respect to the functions of p62/SQSTM1 protein,

have been recently reviewed by Goode and Layfield95 and by

Rea et al.96.

UBDs and the DNA damage response pathway

Recently, it has become apparent that proteins involved in the

DNA repair pathway are ubiquitinated in response to DNA

damage. Examples include the proliferating cell nuclear

antigen (PCNA)97, the replication factor Rfc298, the histones

H2A and H2AX99 and the Fanconi pathway proteins FA

complementation group D2 protein (FANCD2) and FA

complementation group I (FANCI)100. As anticipated, many

UBDs have been found to be involved in the regulation of the

DNA repair pathway, by recognizing and processing ubiqui-

tinated proteins (reviewed by Hofmann101).

A study by Kim et al. has revealed that the BRCA1, which

participates in the DNA damage response, is regulated by

receptor-associated protein 80 (RAP80)102. Particularly, it

was shown that RAP80 relocalizes to damage-induced foci in

response to DNA damage and mediates BRCA1 functions

after DNA damage. Importantly, the study identified the

presence of a tandem UIM domain in RAP80, which mediates

interactions with Ub and is required for the localization of

RAP80 to sites of DNA breaks, and thus for the regulation of

BRCA1102. The authors suggest that RAP80, as a protein

involved in the DNA damage response pathway, may function

as a tumor suppressor protein, and that dysregulation or

mutations of RAP80 could trigger human pathophysiology.

Furthermore, several studies have demonstrated that in

response to DNA damage, the histones H2A and H2AX are

ubiquitinated at the site of damage by two Ub ligases known

as RNF8 and RNF168103–107. The importance of two UBDs,

namely MIU1 and MIU2, for RNF168 localization and thus

RNF168 activity, has also been demonstrated106,107. Pinato

et al. have recently identified a novel UBD, the UMI (UIM-
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and MIU-related UBD), present in the Ub ligase RNF168108.

This study has shown that the UMI domain plays a critical

role for the proper localization and function of RNF168 and

for the ubiquitination of nuclear proteins, including histone

H2A. Several studies have linked abnormalities in histone

ubiquitination with the pathogenesis of human diseases,

including cancer (reviewed by Cao and Yan109). Also, it

was demonstrated that inactivation of the UMI domain

prevents the recruitment of the downstream mediator 53BP1

at the DNA damage response foci, which is vital for the

activation of the downstream effectors of the DNA damage

response108.

UBDs and the nucleotide excision repair pathway

Cockayne syndrome is a rare autosomal-recessive disorder

characterized by progressive neurodevelopmental abnormal-

ity, premature aging and UV sensitivity110. It is associated

with defects in the nucleotide excision repair (NER) pathway,

particularly in the transcription-coupled NER (TC-NER) sub-

pathway, caused by defects in either of the Cockayne

syndrome groups A and B genes (CSB and CSA, also

known as ERCC6 and ERCC8, respectively)111. TC-NER

specifically removes transcription-blocking DNA damage

from the transcribed strands of active genes, thereby

promoting the recovery of RNA synthesis after UV irradi-

ation112. Although the molecular mechanism that governs the

TC-NER function in human cells remains to be clarified,

strong evidence supports the notion that CSA and CSB

proteins are key regulators of the TC-NER pathway. A recent

study by Anindya et al. revealed the presence of a UBD in the

C-terminal region of CSB protein, which mediates inter-

actions of CSB with Ub113. The study showed that cells

expressing CSB protein lacking the UBD have phenotypes

similar to those of CSB-deficient cells; this highlights the

essential role of Ub binding for CSB function. The authors

also suggested that TC-NER requires protein ubiquitination

and subsequent recognition by CSB’s UBD113.

UBDs and the FA pathway

FA is a chromosomal instability disorder resulting in the

accumulation of DNA damage at an increased rate. The

dramatic effects of this disorder upon human health are well

demonstrated by the wide range of pathophysiological

conditions associated with FA. These include bone marrow

failure, congenital abnormalities (including skeletal defects

and hypopigmentation) and hematologic malignancies114.

Interestingly, FA proteins along with the BRCA1 gene

product cooperate in the FA-BRCA pathway, which regulates

the cellular response to DNA damage and also suppresses

cellular transformation pathways115. It has also been shown

that disruption of the FA-BRCA pathway leads to cellular

hypersensitivity to the cytotoxic and clastogenic effects of

DNA interstrand crosslinking agents116. Crucial to the

activation of the FA-BRCA pathway is the covalent mono-

ubiquitination of FANCD2 and FANCI proteins, which

is mediated by the FA core complex100,117,118. Mono-

ubiquitinated FANCD2 and FANCI proteins are subsequently

driven to distinct chromatin-associated nuclear foci and

associate with other key DNA repair proteins, such as

BRCA1117, RAD51119 and FANCD1/BRCA2120. Recent

studies have also shown that mono-ubiquitinated FANCD2

protein is involved in the mechanism that mediates the

recruitment of FAN1 and SLC4/FANCP endonucleases to

sites of DNA damage121–126. A recent study has revealed the

presence of a coupling of Ub conjugation to endoplasmic

reticulum degradation motif (CUE) domain in the N-terminus

of FANCD2 protein. The same study has shown that the CUE

domain mediates the heterodimerization of FANCD2 with

FANCI via non-covalent interaction with the Ub moiety that

is covalently attached to K523 residue of FANCI127. In

addition, the authors suggested that the interaction between

FANCD2 and FANCI protects mono-ubiquitinated FANCD2

from polyubiquitination and proteasomal degradation.

Importantly, the study highlighted the crucial role of the

CUE domain in the regulation of FANCD2 protein, which is

involved in bone marrow failure and cancer susceptibility127.

UBDs and the TLS pathway

Many studies have shown that dysregulation of components of

the ubiquitination pathway, including E3 Ub ligases128–131

and DUBs132,133, is linked to tumorigenesis. The intrinsic role

of UBDs in cancer development has also been revealed.

Mammalian cells replicate across DNA lesions via the TLS

pathway, which is regulated by either the Ub-binding motif

(UBM) or the UBZ domains, which are located at the

C-terminus of the Y-family of TLS polymerases (pols)134.

More specifically, the PCNA is mono-ubiquitinated in

response to certain types of DNA damage. Subsequently,

recognition of mono-ubiquitinated PCNA by the UBM and

UBZ domains of TLS polymerases results in the accumula-

tion of the low-fidelity polymerases pol i and pol Z (error-

prone TLS polymerases) at stalled replication forks and

eventually in the replacement of the high-fidelity polymerase

pol d; this procedure induces bypass of the DNA lesion134.

Studies have shown that mutations in either the UBZ or the

UBM domain are related to increased UV sensitivity134,135.

Importantly, it has been shown that patients suffering from

Xeroderma pigmentosum variant (XP-V), a syndrome char-

acterized by an increased sensitivity to UV-induced DNA

lesions and increased incidence of cancer, are lacking a

functional pol Z136,137.

Targeting the ubiquitin pathway

The Ub-proteasome pathway, which degrades the majority of

intracellular proteins and thus maintains normal cellular

homeostasis, is mediated by the proteasome holoenzyme, Ub

ligases and DUB enzymes1. Non-lysosomal proteolysis relies

on the ability of Ub to label substrates for protein degradation

by the proteasome. Previous studies have linked the patho-

genesis of various human diseases with deregulation of the

Ub-proteasome pathway128,138. Inhibition of this regulation

mechanism, either at the level of the proteasome, ubiquitina-

tion or DUB enzymes, provides new targets for the develop-

ment of novel therapeutic strategies. Indeed, bortezomib, a

boronic acid dipeptide139, is the first proteasome inhibitor that

has been approved for the treatment of multiple myeloma

patients. A crystal structure of the yeast 20S proteasome in

complex with bortezomib has shown that the latter blocks the
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activity of the proteolytically active Thr21 residue; the boron

atom of bortezomib is covalently attached to the nucleophilic

oxygen lone pair of Thr21140.

In addition to proteasome inhibitors, more recent studies

have focused on the discovery and development of inhibitors

of the ubiquitination cycle (via inhibition of E1 and E3

enzymes) and of DUB enzymes, which have recently been

linked to several human diseases, including cancer and

immune disorders132,133,141,142. Moreover, a recent study has

reported the inhibition of the DUB enzyme, Ub-specific

protease 7 (USP7), by the small molecule P5091 (2-acetyl-4-

nitro-5-(2,3-dicloro-phenylsulfanyl)-thiophene)143. USP7 sta-

bilizes murine double minute oncogene (MDM2) levels,

which consequently mediates p53 ubiquitination and thus its

proteasomal degradation. The study has also suggested that

P5091 inhibits USP7 activity without blocking proteasome

function directly. This inhibition approach, according to

the authors, is less likely to trigger off-target activities and

associated toxicities.

The Ub-UBD interaction has also been considered as

a potential target for the design of novel anticancer drugs.

It has been shown that a class of small molecules, known as

ubistatins, can prevent the recognition of ubiquitinated

proteins by UBDs which are present in the proteasome

receptors RPN10 and RPN13144,145. Particularly, ubistatins

target the hydrophobic patch of Lys48-linked chains, which is

used to regulate interactions of Lys48-linked chains with

multiple UBD-containing proteins144. Recently, it has been

reported that the NF-kB pathway, which is involved in innate

and adaptive immunity, oncogenesis and development146–149,

can be selectively inhibited by a peptide inhibitor, termed

Ub-binding inhibitor (UBI)150. The study showed that UBI

disrupts the interaction between NEMO Optineurin ABIN

(NOA) UBD of NEMO and Lys63-linked polyUb chains,

resulting in the inhibition of NF-kB activation.

Conclusions

Ubiquitination, a fundamental PTM resulting in the covalent

attachment of Ub to a target protein, is implicated in several

key cellular processes. Substantial evidence currently shows

that proteins labeled with polyUb chains of specific topology

and length are driven to a specific cellular process. Therefore,

the diversity of ubiquitination can be attributed to the ability

of Ub to utilize any one of its seven Lys residues or its

N-terminus to form polyUb chains of specific Lys linkage.

The sorting and processing of distinct Ub signals is carried

out by small protein motifs, known as UBDs, which are found

in proteins that execute disparate biological functions.

Functional impairment of UBDs in key regulatory pathways

is associated with human pathophysiology and development

of disease. Interestingly, the involvement of UBDs in the

pathogenesis of human disorders makes the Ub-UBD inter-

action a potential target for the development of novel

therapeutic agents. In this review, we presented an updated

account of the escalating importance of UBDs and their

functions, with a special emphasis on their roles in the

pathophysiology of several disorders. Finally, current studies

targeting the inhibition of specific Ub-UBD interactions were

discussed.
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