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Abstract—This article reviews the use of time-resolved fluorimetric detection of lanthanide
chelate luminescence as a detection method for ultrasensitive bioanalytical assays. Assay formats
and detection methods, and the principle of time-resolved fluorimetric detection, are described.
Detection systems, assay formats, reagents, and instrumentation for time-resolved fluorimetric
detection are outlined. A review of published and commercially available immunoassays and
DNA hybridization assays using time-resolved fluorimetric detection of lanthanide chelate
luminescence is given.
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1. INTRODUCTION: ULTRASENSITIVE BIOANALYTICAL ASSAYS
1.1. Background

Ultrasensitive bioanalytical assays are used routinely in the medical and biological sciences for such
applications as cytology, disease diagnostics and monitoring of therapeutic drugs and drugs of abuse.
Such assays can determine the concentration or presence of one or more analytes, in cells, serum,
urine and other biological fluids, or tissues, at concentrations typically ranging from micrograms to
picograms/millilitre. The analyte may be endogenous or exogenous, and can vary in size from a small
organic molecule to a macromolecule. A labeled specific binding reagent (SBR), such as an antibody
or nucleic acid fragment, is used to permit selective detection of analytes in highly complex samples
in the presence of a host of possible interfering species.

The ideal bioanalytical assay would be reliable, accurate. rapid, inexpensive and simple. A critical
factor in assay performance is the detection method, that is, the nature of the specific signal generated
by the labeled SBR and how it is detected. A variety of highly sensitive detection systems have been
developed. most of which rely upon the absorption or emission of electromagnetic radiation by the
label itself or by molecules upon which it acts. These include radioisotopic, colorimetric. fluorimetric
and chemiluminometric methods. This review covers the current status of bioanalytical assays that
use time-resolved fluorescence (luminescence) detection of lanthanide, or other, metal chelates as an
ultrasensitive detection method.
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1.2. Types of Assays
1.2.1. Immunoassays

Immunoassays (Gosling, 1990; Diamandis, 1990) are based on the specific binding reaction of an
antibody to a particular antigen (the analyte); they are used for detection and quantitation of any
analyte to which antibodies can be raised, in the size range of small molecules to macromolecules,
typically in the concentration range of 10--10~"> mol/L. Immunoassays can be quantitative,
semi-quantitative or qualitative. Immunoassays are used routinely in the medical sciences for
monitoring levels of hormones, toxins, infectious agents, drugs, tumor markers and other proteins,
or metabolites, in serum and other biological fluids, as well as in the field of cytology, hematology,
pathology, immunology, veterinary medicine and environmental monitoring.

1.2.2. Nucleic Acid Hybridization Assays

Nucleic acid hybridization assays (Diamandis, 1990; Syvanen, 1986, Matthews and Kricka, 1988)
are based on the specific binding reaction between a labeled DNA or RNA fragment and its
complementary nucleic acid sequence (the analyte). The fragment may be either a short, synthetic
oligonucleotide or a long nucleic acid sequence. Nucleic acid hybridization assays are usually
semi-quantitative. They are typically used for diagnosis of genetic, malignant or infectious disease,
to study disease predisposition or for forensic identification.

1.2.3. Enzyme Assays

Enzyme assays (Tijssen, 1985) measure a specific enzymatic reaction between an enzyme and its
substrate. The analyte can be the enzyme, whose enzymatic activity is determined, or the substrate
or enzyme cofactors. Such assays are used commonly in clinical biochemistry, hematology and
cytology.

1.3. Assay Formats
1.3.1. Homogeneous, or Nonseparation

This is procedurally the simplest and the most desirable assay format, in which detection
reagents are added to a known volume of the sample in solution, and a signal is generated with known
relationship to the concentration of analyte. Enzyme assays are typically homogeneous. However,
specific binding reactions of antibodies or nucleic acids do not easily permit distinguishing between
bound and unbound detection reagent without a separation step. Thus, the homogeneous format
has limited applicability in binding assays (immunoassays and nucleic acid hybridization assays);
detection systems that do work usually do not permit sensitivities below 10-° mol/L, and in addition,
there are a host of possible interferences in biological samples that may alter the assay performance.

1.3.2. Heterogeneous, or Separation

This is the most common format for binding assays. The analyte is separated in some way from
the remainder of the sample; this is performed by immobilization of the analyte on a solid phase either
by a specific binding process, which separates only the analyte, or by adsorption or by chemical
reaction, which also separates chemically similar species. Labelled detection reagents which bind
specifically to the analyte can be included or subsequently added. At the end, excess unbound
detection reagent is washed away. Reliability and sensitivity are usually improved compared with
a homogeneous format due to removal of possible interferents, reduced backgrounds due to
nonspecific binding and simpler detection reagents.
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1.3.3. Noncompetitive

The detection SBR is labeled and binds to the analyte either directly or indirectly through other
binding reagents. (a) In a heterogeneous format, the analyte is immobilized on a solid surface either
directly or in a sandwich format by binding to a different immobilized SBR; excess labeled detection
reagent is washed away and the signal is proportional to the concentration of detection reagent and,
hence, analyte. Sandwich formats require that the analyte has at least two different sites capable of
specific binding with two separate reagents. (b) In a homogeneous format, the bound detection
reagent may generate either more or less signal than unbound detection reagent; the signal is then
proportional or inversely proportional, respectively, to the concentration of bound detection reagent
and, hence, analyte.

1.3.4. Competitive

These are performed as either homogeneous or heterogeneous immunoassays for small mol-
ecules that do not have two different potential specific binding sites. A known concentration of
labeled analyte is added to the sample, which competes with unlabeled analyte for binding to a specific
antibody. (a) In a heterogeneous format, excess reagents are washed away, and the signal is
proportional to the concentration of immobilized labeled analyte and, hence, inversely proportional
to concentration of analyte in sample. (b) In a homogeneous format, signal from the labeled analyte
can be quenched or enhanced by binding. These are all generally less sensitive formats, as a low
concentration of analyte corresponds to a small change in a large ‘blank’ signal.

1.3.5. Nucleic Acid Amplification

The natural function of nucleic acids permits their replication and thus, an assay format can be
devised that permits an exponential amplification of their original concentration. This amplification
step can be performed specifically for a particular nucleic acid sequence before applying any
of the usual assay formats. The most common type of nucleic acid amplification assay uses
the polymerase chain reaction (PCR). Such assays are highly sensitive and specific. A number of
methods have been developed recently that permit quantitation of the number of copies of the original
sequence, for example, via the amplification of an internal standard sequence, or an added
competitive template sequence, either of which is present in known concentration in the starting
sample.

1.3.6. Common Assay Formats

A typical heterogeneous format for a microwell-based binding assay is the ‘sandwich’ format in
which one SBR for the analyte is bound to the microwell surface; a different labeled SBR subsequently
binds to the bound analyte. Alternately, in the ‘dot blot’ format, the analyte is bound directly to a
nylon or nitrocellulose membrane and detected on the surface with one labeled SBR. The ‘Western’,
‘Southern’ and ‘Northern’ blot formats for proteins, DNA and RNA, respectively, are an extension
in which the analyte is first spatially separated from other similar species by gel electrophoresis,
producing a variety of bands of protein or nucleic acid; then the bands are blotted onto a membrane
for subsequent detection of the analyte with labeled SBR.

1.4. Detection Methods

Detection limits for the various labels used in ultrasensitive assays range from 10~ to 102 mol
(6 x 10° to 6 x 10’ molecules), with enzyme labels generally having the best detection limits (Beck
and Koster, 1990; Carlson et al., 1990; Diamandis and Christopoulos, 1992a). The types of labels
and detection methods associated with them are outlined below.
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1.4.1. Radioisotopic Labels

These are radioactive isotopes, typically  and y particle emitters, such as '*I, *P or ’'H, which can
replace nonradioactive atoms in the SBR with little or no loss of binding affinity or specificity. This
detection method has been the workhorse of ultrasensitive bioassays and the benchmark against
which reliability and sensitivity are now measured for replacement nonisotopic methods. Low
backgrounds, high labeling efficiencies and SBR specificity result in excellent detection limits of
analyte (down to 10~ '® mol). However, the replacement of isotopic methods is inevitable for several
reasons. Isotopic labels are environmentally unfriendly, difficult and potentiaily dangerous to handle,
and labeled reagents can have short shelf-life due to radioactive decay. In addition, the method does
not support the highest possible sensitivity because an isotopic label generates only one detectable
signal event (decay) within its lifetime; as a result, in order to achieve the best detection limits, the
measurement times must be prolonged to minutes and in some cases, hours or days.

1.4.2. Fluorescent Labels (Hemmild, 1989, 1991)

In fluorescence, a single photon of light is absorbed by a molecule (excitation) and re-emitted at
a slightly lower energy, or longer wavelength. In theory, this should be the most sensitive detection
method, compared with absorption, chemiluminescence or radioisotopic decay. A single label can
be measured many times during a relatively short measurement interval, thus increasing its
detectibility. Sufficiently sensitive detection of fluorescence emission permits even single molecule
detection. Fluorescently labeled reagents usually have excellent stability. However, in addition to the
label, many species in a sample can generate fluorescence emission, and in some cases, nonspecific
background signals can overwhelm specific signals.

Typical fluorescent labels, such as fluorescein, are small aromatic organic molecules. High labeling
efficiencies are not usually possible due to the excessive chemical modification of SBR, resulting in
loss of binding affinity; also, self-quenching of the fluorescence from the label will usually occur.
Background fluorescence problems tend to be severe.

Metal chelates, e.g. lanthanide chelates, consist of an organic molecule bound to a metal ion. They
have advantages over organic labels; their different emission characteristics make possible selective
detection and excellent background rejection. Disadvantages include potentially unstable
metal—chelator binding and low fluorescence yields relative to organic labels. These advantages and
disadvantages are discussed in more detail in Section 2.2.

1.4.3. Chemiluminescent Labels (Beck and Koster, 1990)

Such a label consists of an organic molecule, which, when triggered by a chemical reaction,
decomposes into an excited fluorescent molecule; a single detectable event per label is given as
the original chemical state cannot be regenerated. Low backgrounds are usually achievable and
reagents are usually stable on storage.

1.4.4. Enzymes (Tijssen, 1985)

Enzymes, such as alkaline phosphatase (ALP), horseradish peroxidase (HRP) and fi-galactosidase,
are widely used as labels. A single enzyme molecule can act upon its substrate (present in large excess)
to generate many product molecules in a short time (conversion rates of 1001000 molecules per
enzyme molecule per second). Product molecules are detected by their characteristic fluorescence,
chemiluminescence or light absorption. The result is many detectable events per single enzyme label.
This signal amplification yields greatly improved detection limits. Backgrounds are generally
associated with the method of signal detection and nonspecific binding of the SBR. Enzyme reagents
vary in stability.

JPT 66.2—C
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1.4.5. Directly and Indirectly Labeled Detection Reagents

Labels may be attached directly to the SBR, e.g. labeled antibody or nucleic acid fragment, or to
the analyte (for a competitive format). Alternately, two SBRs may be utilized, e.g. biotin-labeled
antibody and enzyme-labeled streptavidin, using the additional specific binding reaction between
biotin and streptavidin (Diamandis and Christopoulos, 1991b).

2. TIME-RESOLVED FLUORESCENCE
2.1. Fluorescence

Luminescence is the most general term for light emission from a chemical species. Fluorescence
is a specific type of luminescence, namely light absorption (excitation of an electron from its ground
state to an excited state) followed by rapid light emission, from the lowest singlet excited state
(generally, but not necessarily, the same as the absorbing state) to the ground state. The emitted light
is at a longer wavelength (lower energy) than the absorbed light, as some energy is usually lost to
vibrations; usually the emitted energy is spread over a broad band (for organics) in the ultraviolet
to visible range of the electromagnetic spectrum. The timescale of the emission is on the order of
107" to 10~*sec (psec to usec); the yield is up to 1 photon emitted per photon absorbed.

Also possible, but generally much less probable, is phosphorescence emission from the lowest
excited triplet state to the ground state. The wavelength of this emitted light is in the same
approximate range as fluorescence, but, on average, of lower energy; the timescale is 10 to 1 sec;
and the yield is usually very low in the liquid phase, as the siower speed of emission makes for a lower
probability of occurrence (other competing deactivation processes will be faster).

Processes involving light-emitting transitions between other types of states are usually termed
‘luminescence’, which covers all such transitions; the term fluorescence is sometimes used loosely to
include other such transitions.

2.2. Time-Resolved Fluorescence or Time-Resolved Luminescence

2.2.1. Fundamental Principles (Gudgin Dickson et al., 1994; Diamandis, 1988, Soini and Lovgren,
1987, Wieder, 1978)

All processes involving light emission or luminescence do not occur on the same timescale,
as discussed in Section 2.1. If excitation is performed in a repetitive timed fashion (using pulsed light),
the subsequent emission by different species may have different decay rates dependent on the lifetime
of each species. Luminescence from any long-lived species can then be detected selectively by delaying
measurement until such time after the excitation pulse that all short-lived species have decayed. Such
‘time-gated’ or ‘time-resolved’ measurements can discriminate selectively for long-lived species.

If a sufficiently long-lived luminescent molecule is used as label, the time-resolved fluorometric
principle can be utilized in bioassays. Typical background emission in biological samples is due to
organic fluorophores and is short-lived. An appropriate long-lived label would have an emission
lifetime in the microsecond to millisecond range, with a reasonable fluorescence yield in an
environment suitable for the detection step of the assay. In addition, favorable emission wavelength
characteristics, such as a large wavelength gap between excitation and emission energies (Stokes’
shift) or narrow emission bands, permits additional discrimination against normal fluorescence
backgrounds or scattered excitation light, through the use of appropriate wavelength filtering.
Application of this principle to detection of lanthanide chelate luminescence is outlined in more detail
in the next section.

2.2.2. Lanthanide Chelates and Other Long-Lived Fluorophores

Various metal ion chelates can satisfy some or all of the aforementioned criteria. Such chelates
consist of a metal ion bound to a chelator, which is an organic aromatic chromophore bearing several
metal-binding groups. such as nitrogens and carboxyls. One or more additional chelators or
metal-binding species may also be bound to the metal ion to compose the entire fluorescent chelate.
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Fig. 1. The structure of a luminescent Eu(IIl) chelate, Eu(IIT) 4’-(3-amino-4-methoxyphenyl)-
6,6"-bis(N,N-bis(carboxymethyl)aminomethyl)-2.2":6",2"-terpyridine.

In particular, the chelates of the luminescent lanthanides Eu(III), Tb(III) and Sm(III), and of Ru(1I),
have been used. The structure of a luminescent Eu(1II) chelate used as a label is shown in Fig. 1.
The light-absorbing chromophore consists of the substituted terpyridine portion, which transfers the
excitation energy to the bound Eu(II) ion; chelation is performed by the nine nitrogen and carboxyl
groups at the metal binding site.

Figure 2 outlines the principle of utilization of time-resolved luminescence to detect lanthanide
chelate luminescence selectively. The particularly favorable emission characteristics of lanthanide
chelates are due to the combination of the organic chromophore portion of the chelate, which absorbs
the excitation light, with the lanthanide ion, which accepts the excitation energy and emits it at much
longer wavelengths. The lanthanide ion luminescence (the transitions do not strictly correspond to
fluorescence or phosphorescence) is mainty from a single excited state to a variety of lower states
of the ion, and the width of the bands due to the individual transitions is generally in the range of
1-20 nm. The large Stokes’ shift permits excellent wavelength filtering against nonspecific
background signals arising from scattered excitation light and other luminescent species. The
lanthanide chelate lifetime is typically in the range of microsecond to millisecond, and the chelate
can have a reasonable luminescence yield because there are unusually few competing deactivation
processes. One noteworthy competing or quenching process that does exist is radiationless
deactivation of the lanthanide ion by bound water molecules; thus, design of a lanthanide chelate
that luminesces with significant yield in water is difficult. The yield of luminescence is also significantly
dependent on the efficiency of the energy transfer step, a parameter that is difficult to predict

Scattered excitation light
Background fluorescence
Lanthanide luminescence bands

Selected spectral and temporal region
A /for detection

. 0 Time / microseconds
300 400 500 600
Wavelength / nm

Fig. 2. Principles of time-resolved luminescence measurement. Reproduced from Gudgin
Dickson, 1993, J. Photochem. Photobiol. B 17: 293-297, with permission of the copyright
holder, Elsevier Sequoia S.A., Lausanne.
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Table 1. Advantages and Disadvantages of Organic and Lanthanide Chelate Fluorescent Lubels

Fluorescent species Advantages Disadvantages
Typical organic Chemically stable, high fluorescence ~ Small Stokes’ shift and short fluorescence
labels such as yield lifetime; results in interference from
fluorescein Can be used with conventional background signals
fluorescence instrumentation Fluorescence yield temperature and
environment sensitive
Lanthanide chelates Large Stokes’ shift, narrow-band Metal-complex stability may be low;
emission and long luminescence requires special handling to ensure chelate
lifetime binding
These properties permit selective Relatively low fluorescence yield compared
discrimination against usual with the best organic fluorophores
background signals by wavelength Specifically tailored time-gated
and temporal filtering instrumentation required for selective
Luminescence relatively insensitive detection

to environment, temperature

theoretically. The spectra, lifetimes and yields are relatively insensitive to fluctuations in
environmentor temperature compared with many conventional organic fluorophores. The major
advantages and disadvantages of time-resolved detection of lanthanide chelate labels compared with
typical organic labels are outlined in Table 1.

2.2.3. Instrumentation

As outlined in Fig. 3, for a time-resolved fluorimetric measurement of a typical lanthanide chelate,
the instrumentation must consist of: (i) a pulsed or time-gated light source, such as a flashlamp or
laser; (ii) suitable wavelength filtering of the excitation light, if necessary, to provide ultraviolet
excitation of the chelator; (iii) a holder to position the sample container or solid support for right
angle or surface detection of luminescence, as appropriate; (iv) suitable wavelength filtering of the
emitted light (narrow-band or long-pass filters in the visible region, appropriate to the metal ion
emission); and (v) a time-gated detector, such that detection is only performed during the period,
appropriate to the luminescence lifetime of the metal ion, when the light source is off and short-lived
luminescence in the sample has decayed away.

There are a variety of instruments that have been specifically designed to meet these criteria, which
are discussed in Section 4. The principles of time-resolved fluorimetric detection with respect to
instrumentation components and practical problems in design have been reviewed thoroughly (Soini
and Lovgren, 1987).

wavelength
excitation filter

light \ sample

O_ 42 - /mitted light
pulsed or — wavelength
gated l:::l filter
ultraviolet v
light source

synchronously ~ output
gated device

detection
medium

Fig. 3. General layout of time-resolved luminescence instrumentation.
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Fig. 4. Heterogeneous assay format using a directly luminescent lanthanide chelate-labeled
specific binding reagent.

3. DETECTION SYSTEMS UTILIZING LANTHANIDE CHELATES AND
OTHER LONG-LIVED FLUOROPHORES

Desired design characteristics for a time-resolved luminescence-based label and detection system
suitable for ultrasensitive bioassays include: high luminescence yield of the chelate; high chelate
binding stability; simple chemical synthesis of the chelate reagents; simple labeling methods;
solubility of reagents forming the chelate in an aqueous or nonaqueous medium; good reproducibility
of the method; low nonspecific binding of the labeled reagents to the solid phase; good homogeneity
of the solid phase, if measurements are carried out directly on the solid phase; freedom from
interferences caused by constituents of the sample or contamination by the environment; reliable,
inexpensive instrumentation; the fewest and shortest possible required assay steps; and stable
reagents, including resistance to chemical- or light-induced degradation of the chelate.

These requirements have been difficult to meet in a single system. Each system devised has had
its strengths and weaknesses; research continues in an effort to achieve the ideal candidate for the
task. This section outlines the lanthanide and ruthenium chelates that have been used in detection
systems for bioassays. Section 4 describes the types of instrumentation that have been used for
time-resolved luminescence detection, with emphasis on specialized and commercially available
instrumentation.

3.1. Labelling with Luminescent Lanthanide Chelates for Heterogeneous Assay Formats

Figure 4 illustrates the principle of using a directly luminescent lanthanide chelate-labeled SBR
in a heterogeneous sandwich format. This type of labeled reagent is the most desirable for use in
heterogeneous and homogeneous assays because of the potential simplicity, stability and minimal
susceptibility to contamination of the detection reagents. If the binding constant of lanthanide ion
to the chelate is sufficiently high (e.g. = 10" M), the lanthanide ion can be carried quantitatively
through the assay in the bound form, and there is no need for addition of the lanthanide ion at the
end of the assay. There is no problem of contamination by exogenous lanthanide ions because signal
is proportional to the quantity of the chelator present, and excess lanthanide ion will not generate
more signal. Signal remains spatially localized at all times in heterogeneous assays. In situ cellular
detection should be possible with a suitable detection reagent. So far, however, no one luminescent
lanthanide chelate label that can be used in all types of potential heterogencous assay formats has
been demonstrated. Common problems are: relatively low luminescence yield, which can result in
poor detection limits, or require heavy labeling of the SBR, with potential resulting modification of
its specific and nonspecific binding properties; unsuitability for aqueous detection; and insufficiently
high chelate stability, requiring excess chelate components to be added in the final step to promote
formation of the luminescent chelate. Thus most reagents have been optimized for one specific assay
format.

The possible assay formats and labels that have been used are outlined below, and a selection of
representative direct labels and chelate reagents from this list and their properties are given in Table 2.
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Table 2. Luminescence Characteristics and Detection Limits of Some of the Labels and Chelates that have been
used in Time-Resolved Fluorescence-Based Assays

Emission
maximum of  Lifetime of
Label or detectable strongest metal Detection limit
species band/nm complex/usec of single label Reference
Eu(IIT) TBP 618 600 NR* Prat et al., 1991;
Mathis, 1993
Th(III) 1-(p-benzene- NR 1000 NR Kuo er al., 1985
diazonium)-EDTA
Tb(IIT) DTPA-pAS 545 NR 10-"m Siepak, 1989
Eu(IIl) terpyridine-bis- 615 1400 3 x10-"mol  Saha er al., 1993
(methyleneamine)tetra-
acetic acid
Eu(III) BCPDA 613 400-700 107" M Evangelista et al., 1988
Tb(IlI) phosphor particles 546 500 NR Beverloo et al., 1992
Eu(IIT) phosphor particles 612-616 700-2000 NR Beverloo et al., 1992
Ru(II) tris-(bathophen- 616 1-8 107" M Bannwarth er al., 1988
anthroline) (broad)
Eu(IIT), detected in 613 700-900 3.5x 1074 Xu et al., 1992b;
enhancement solution Hemmili, 1988b
Tb(I11), detected in 543 500 34x 10°%"mM  Xueral, 1992b;
enhancement solution Hemmild, 1988b
Sm(I1I}, detected in 643 60 79 x 107"M  Xu et al., 1992b;
enhancement solution Hemmild, 1988b
Dy(III), detected in 573 approximately 1 4.6 x 10°"M  Xu et al, 1992b;
enhancement solution Hemmili, 1988b
ALP; — — 2 x 10" M; Evangelista et al., 1991;
product fluorosalicylic acid- 546 1200 I x107°m Christopoulos and

Eud(ID)-EDTA Diamandis, 1992

*Not reported.

3.1.1. Direct Solid Phase Detection

The commercially available FIAgen™ detection system uses Eu-BCPDA (4,7-bis-(chlorosulfo-
phenyl)-1,10-phenanthroline-2,9-dicarboxylic acid) as label. In this system, Eu-BCPDA
luminescence is typically detected from the labeled SBR immobilized and dry on an opaque solid
phase such as a white microtiter well. Synthesis and characterization of BCPDA (Evangelista et al .,
1988) and general labeling procedures (Diamandis and Morton, 1988) have been reported. A variety
of Eu-BCPDA-protein labels have been used in the FIAgen™ detection system, including directly
multiple labeled antibodies, multiple labeled protein-conjugated antibodies, multiple labeled
streptavidin, multiple labeled thyroglobulin-streptavidin and macromolecular complexes of the
latter reagent (Diamandis e a/., 1989b; Morton and Diamandis, 1990; Diamandis, 1991; Reichstein
et al., 1988). Detection limits improve 5-50 times by using the thyroglobulin-containing reagents or
macromolecular complexes compared with directly BCPDA-labeled streptavidin reagent
(Diamandis, 1991).

A europium chelator of unspecified structure, W1014, has been reported for use in
immunocytochemistry (Soini et al., 1988b). It is recommended for dehydrated histological
sections, as water quenches the signal. It has a lower signal and lower signal stability than
fluorescein for comparable staining protocol, when viewed in a steady-state UV
microscope.

Europium trisbipyridine cryptate, TBP(Eu(Ill)), (Prat e a/.. 1991; Lopez et al., 1993), has been
used to label an anti-DNA-hybrid antibody for use in DNA hybridization assays.

A chelate that combines most of the desirable properties of a direct label, Eu(I1l) terpyridine-bis-
(methyleneamine)tetraacetic acid (Saha er al., 1993), has been synthesized recently and used to label
DNA and antibodies. It has a good luminescence yield and long lifetime, as well as a high Eu(I1I)
binding constant. It has shown excellent detection limits in the preliminary report.

An immunoassay for human choriogonadotropin has been demonstrated using the Eu(Ill)
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cryptate-type complex of 7,10-bis(chlorosulfophenyl)-2,15-diaza[3.3](2,9)-1,10-phenanthrolineno-
phane-N?,N'-diacetic acid as label (Sasamoto ef af., 1992).

The ternary complex Tb(II1)-p-aminosalicylic acid—diethylenetriaminepentaacetic acid (Tb-pAS-
DTPA) and related complexes have been used as labeling reagents (Bailey er a/., 1984; Siepak, 1989),
and immunoassays performed (Canfi er a/., 1989). The same reagents have been used for labeling
DNA for gel electrophoresis detection (Saavedra and Picozza, 1989) with detection by extraction of
the labeled DNA from the gel. A similar Tb chelate-labeled psoralen has been used for photolabeling
of oligonucleotides (Oser et al., 1990). RNA detection has been performed with a similar label (Bush
et al., 1991).

Tb(I1I) aminophenylpyridine labels have been used in immunoassays (Dakubu er /., 1988) and
compared with the dissociative enhancement method.

Tb(I1I) 2-alkoxy-4,6-bis-(N,N.N’,N’-tetraalkyl)-aminotriazines have been used for labeling
oligonucleotides (Sherman er al., 1992).

Tb(III) (1-p-benzene-diazonium)-ethylenediaminetetraacetic acid has been used as a label for
competitive immunoassay (Kuo er al., 1985); a competition step was performed between labeled
antigen and unlabeled antigen for immobilized antibody, followed by solution detection of the
remaining unbound labeled antigen.

In addition, a large variety of chelators forming luminescent complexes with Eu(IIl) or Tb(III)
have been reported by various groups and patented for use in binding assays or as labeling reagents;
these are generally based on substituted phenols, phenylpyridines. phenylterpyridines and
phenanthrolines (examples include Hinshaw er a/.. 1983; Hale and Solas, 1986; Kankare et a/., 1986;
Wieder and Hale, 1987; Toner, 1989; Sherman er al., 1992).

3.1.2. Immunocomplex Dissociation Assavs

In such assays, the immunocomplex is dissociated from the solid phase and the luminescence of
the lanthanide chelate-labeled SBR is detected in solution. Such assays have the advantage of a
homogeneous solution phase distribution of detected signal compared with the distribution on the
dry solid phase, which may vary, depending on experimental conditions; this improves the assay
precision.

Immunocomplex dissociation assays have been performed using BCPDA as label with biotinylated
antibody and Eu-BCPDA-thyroglobulin-labeled streptavidin or Eu-BCPDA-labeled streptavidin
detection reagents (Kropf er a/.. 1991; Papanastasiou-Diamandis et a/., 1992b).

A patent for a similar type of immunocomplex dissociation-based assay has been reported using
another Eu(Ill) chelate. The chelator is a derivative of 4-aminophenylethynyl-2,6-bis-[N.N-bis-
(carboxymethyl)-aminomethyl]-pyridine isothiocyanate disulfide, which has been reacted to bind
with a monoclonal anti-thyrotropin (TSH) antibody (Kankare, 1992).

3.2. Labelling with Nonluminescent Lanthanide Chelates and Dissociative Enhancement

This has been the most popular of time-resolved fluorometric detection systems, and is
commercially available as DELFIA* (Dissociation-Enhanced Lanthanide Fluoroimmunoassay;
Wallac Oy, Turku, Finland). The principle of the method for heterogeneous assay formats is outlined
in Fig. 5. In general (Hemmild, 1988b), the SBR is labeled with a nonluminescent lanthanide chelate,
for example, diazophenyl-ethylenediaminetetraacetic acid-Eu(IIl). The lanthanide ion is carried
quantitatively through the assay bound to the chelator. As the final step of the assay, the lanthanide
ion is dissociated from the nonluminescent complex by reducing the pH to <3, which reduces the
chelator binding affinity for the lanthanide. The lanthanide ion is solubilized into a micelle containing
additional reagents that form a luminescent chelate with the lanthanide ion. These reagents include
energy transfer reagents, such as fluorinated aromatic f-diketones, to promote absorption and energy
transfer to the lanthanide ion, and synergistic reagents, to increase the luminescence yield. The
DELFIA® assay (Hemmild er al., 1984) is characterized by excellent reproducibility and sensitivity.
The main disadvantages of the method are the necessity for solution phase detection, which results
in the loss of spatial localization of signal, and susceptibility to exogenous Eu(III) contamination.
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Fig. 5. Heterogeneous assay format using an SBR labeled with a nonluminescent lanthanide
chelate, with detection of lanthanide luminescence by dissociative enhancement.

Subsequent improvements on the DELFIA* and other dissociative enhancement assays include
the use of stronger chelating reagents, more than one lanthanide ion in multianalyte assay formats,
and modified enhancement solutions, as outlined below.

Labelling reagents originally employed the chelator ethylenediaminetetraacetic acid to bind the
lanthanide ion (Hemmild, 1988b); this chelating group has been replaced with DTPA, which binds
the lanthanide ion more strongly, ensuring that it will be carried quantitatively through the assay
procedure (Mukkala er al., 1989).

The use of Sm(I1I) ion as label has been reported (Bador er «l., 1987), but the sensitivity is at least
10-fold inferior in comparison with Eu(IH). Dual labeling has been performed with Eu(IIl) and
Sm(III) (Saarma er af., 1989; Stahlberg, 1993) or Eu(I1I) and Tb(III) (Siitari, 1990; Hemmil4, 1988b;
Hemmild et al., 1987) to permit simultaneous detection of two different antigens in immunoassay.
Quadruple labeling has been performed with Eu(111), Tb(II1), Sm(III) and Dy(I1T) (Xu et af., 1992b);
the different lanthanides were measured simultaneously using different filters and gating times,
appropriate to each. The detection limits of the various luminescent lanthanide ions in this format
are given in Table 2.

The original enhancement reagent for Eu(lll) consisted of 15 um f-napthoyltrifluoroacetone,
50 um trioctylphosphine oxide and 0.1% Triton X-100 detergent in 0.1 M phthalate buffer, pH 3.2
(Hemmild er al., 1984). Alternate fluorescence enhancement reagents have been developed, for
example, using a different synergistic reagent (Degan et a/., 1990) or energy transfer reagent (Keelan
et al., 1987) or using co-fluorescence enhancement, in which the enhancement solution contains
an alternate synergistic reagent and, in addition, an enhancing lanthanide ion such as Y(III),
which forms additional chelates acting as energy donors (Xu ez a/., 1991, 1992a; Xu. 1992; Xu and
Hemmila, 1992a.,b).

3.3. Homogeneous Assays

A variety of approaches has been used to design homogeneous assay formats with time-resolved
fluorimetric detection. All involve some form of luminescence signal enhancement or quenching as
a result of a binding reaction between the analyte and at least one SBR. To the sample containing
the analyte may be added two labeled SBRs, in two-site binding format, or alternately, in a
competition format, labeled analyte and an SBR are added.

3.3.1. Energy Transfer to Lanthanide Ion Cryptates

This method utilizes energy transfer from a lanthanide ion cryptate (the donor), which absorbs
the excitation light. but has a low (but non-zero) luminescence yield itself, to an organic chromophore
(the acceptor), which also has low luminescence yield in the absence of the donor. This energy transfer
can only occur when the donor and acceptor are reasonably close to each other.
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For homogeneous immunoassays, this requirement is satisfied in a two-site binding assay when
donor and acceptor are used to label different SBRs to the same analyte and the ternary SBR complex
with the analyte is formed. Thus, signal enhancement from the acceptor occurs only in the presence
of the analyte.

This principle has been demonstrated with the donor—acceptor pair (TBP-Eu(I1)) (the donor) and
allphycocyanin (APC, the acceptor) (Mathis, 1993) (see Fig. 6). APC has an absorption band
overlapping the TBP-Eu(l1I) emission. One monoclonal antibody against the analyte is labeled with
TBP-Eu(Ill), another with APC:; in the presence of analyte, the donor and acceptor are close enough
for energy transfer to occur. In this detection system, the emission has the spectral characteristics
of the acceptor (broad-band organic-type emission monitored at 665 nm); however, because of the
energy transfer process, the APC emission timescale is delayed to match the lifetime of TBP-Eu(11I)
(lifetime ca. milliseconds). Thus, time-resolved fluorimetric detection at two different wavelengths
can be used to monitor the donor and bound acceptor emission; the free acceptor emission is not
measured as its lifetime is short.

This format overcomes many of the problems associated with interference due to light absorption
by serum components. This is a feature of the simultaneous dual-wavelength monitoring of donor and
acceptor emission (the instrumentation required is described in Section 4.1). Because the amount of
free donor is always far in excess of that bound in the analyte complex, the free donor concentration
can be taken as a constant and the luminescence contribution from the bound donor is minor. The
luminescence from the free donor, at 620 nm, thus can be monitored as a reference intensity. This
reference intensity may vary due to absorption of the excitation light by interfering serum
components, as will the bound acceptor emission. However, the ratio of the acceptor to donor signal
is unaffected by interfering absorption, and depends only on the concentration of the analyte.
Detection limits in this immunoassay are reported to be comparable to heterogeneous immunoassay
with radioisotopic detection, thus this detection system seems to be very promising.

3.3.2. Ternary Chelate Formation

In this format, signal is generated by a luminescent ternary lanthanide ion complex, which is formed
only when the ion is near the two other components of the ternary complex. Two different SBRs
must react with the analyte: one is labeled with a strongly bound, nonluminescent lanthanide ion

long-tived (0.25 ms
long-lived (0.25 ms) borr;gd ban<(j )

narrow band APC emission

EIL; teectn:(s’s;?gzo ., Energy (detected at 665 nm)
transfer rJJ
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T e s
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Fig. 6. Emission characteristics of bound and unbound reagents present in a homogeneous
two-site binding assay, using detection by energy transfer from a lanthanide ion cryptate.
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Fig. 7. A homogeneous competitive quenching assay.

chelate (just as in a dissociation enhancement-based assay); the other is labeled with the additional
chelating agent responsible for light absorption and energy transfer. With the proper assay design,
the ternary luminescent complex is formed only when both SBRs are bound to the analyte. A ternary
Tb(III) complex has been used to detect nucleic acid hybridization, where two oligonucleotides, one
labeled with p-AS and one with Tb(III)-DTPA, are bound to the analyte, a single template
complementary strand (Oser and Valet, 1990). The two oligonucleotide-label pairs are oriented such
that if the oligonucleotides are both bound, the ternary Th(III) complex is formed and luminescence
can occur. The detection limit of template DNA is 1 nm.

3.3.3. Competitive Quenching Assay

This assay format, illustrated in Fig. 7, has been reported using W1174, a fluorescent
europium chelate, as label (structure not given) (Hemmild et al., 1988); the chelate luminescence is
quenched by the binding of the antibody, permitting homogeneous assay detection. The method was
deemed to be appropriate for assays that would benefit from rapidity, but do not require high
sensitivity.

3.4. Enzyme-Amplified Lanthanide Luminescence

The principle of this method (Gudgin Dickson, 1993) is outlined in Fig. 8. An enzyme is
used as label. In the usual configuration, the enzyme substrate is a species that is incapable of forming
a luminescent lanthanide chelate; upon conversion by the enzyme, the resulting product species forms
a luminescent chelate when a lanthanide ion and possible co-chelators are added. The requirement
of this system is that the chemical alteration sufficiently changes the chelating or spectroscopic
characteristics of the substrate/product pair to permit efficient distinction between the two by
time-resolved luminescence detection (Evangelista ef al., 1991). This method has potentially the
highest sensitivity of all existing lanthanide-based detection systems, because of the very high
amplification factors possible using enzyme labels; this method has demonstrated the best single label
detection limit compared with other reported time-resolved fluorimetric detection methods (see
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Fig. 8. Heterogeneous assay format using enzyme amplified lanthanide luminescence.

Table 2). Enzyme-amplified lanthanide luminescence (EALL) is potentially flexible, and has been
demonstrated for assays in which signal localization is desirable. Substrates potentially can be
designed for a variety of enzyme assays in which the enzyme is the analyte or the label. One
disadvantage is the requirement for an extra signal development step during which substrate to
product conversion takes place, before the addition of lanthanide ion to form the luminescent chelate.

Assays that use an ALP label and various substrates based on phosphates of salicylic acid
(SA)derivatives have been reported (Gudgin Templeton et al., 1991, 1992; Yu and Diamandis, 1993).
Commercially available substrate reagents include; fluorosalicylphosphate or diflunisal phosphate,
for solution phase detection. or tert-octylsalicylphosphate for assays requiring spatial localization
of signal, ¢.g. membrane-based detection. The product of the enzymatic reaction, i.e. fluorosalicylic
acid, diflunisal or tert-octylsalicylic acid, is detected subsequently as the luminescent ternary complex
with Tb(IIl) ion and EDTA, at basic pH; the detection step also terminates the enzymatic reaction.
This reaction can also be followed by monitoring the blue fluorescence of the dephosphorylated
organic product, but sensitivity is inferior compared with time-resolved detection (Evangelista et a/ .,
1992). 4-Methylumbelliferone phosphate has been used as an ALP substrate in a TSH assay, in a
reverse manner from the usual EALL format. In this application, the substrate forms a luminescent
Eu(IIT) complex and the product does not (Diamandis, 1992).

A variety of detection reagents for other enzymes have been reported (Evangelista er al.. 1991).
These include the glucose oxidase substrate 1,10-phenanthroline-2,9-dicarboxylic acid dihydrazide,
giving the detectable chelate Eu(I1I)-phenanthroline—decarboxylic acid, and the xanthine oxidase and
f-galactosidase substrates salicylaldehyde and salicyl-f-galactoside, respectively, both giving the
detectable chelate Tb(I1I)-EDTA-SA.

3.5. Less Commonly Used Labels or Assay Formats
3.5.1. Enzyme Amplified Covalent Attachment Assay

In this assay, the immunoreactants are labeled with HRP. A typical solid-phase sandwich or
competitive assay is performed and the HRP-SBR immobilized on the solid phase. The HRP is then
provided with substrate, a biotin—tyramine conjugate, catalyzing the covalent attachment of biotin
to the solid-phase immobilized proteins; the biotin is quantified with BCPDA-labeled streptavidin
macromolecular complex reagent (Diamandis et al., 1991).

3.5.2. Liposome- or Target-Cell Encapsulated Lanthanide

Eu-DTPA has been encapsulated in liposomes, and conjugated to antibodies for immuno-
assays (Vonk and Wagner, 1991); Eu(IIl) is released and detected by a typical dissociative
enhancement step. Numerous patents have been filed on signal amplification with the use of latex
beads or liposomes loaded with Eu(III) chelates (Frank and Sundberg, 1981; Burdick and Danielson,
1986; Schaeffer et al., 1986; Wagner and Baffi, 1987a,b). Target cells have been labeled by incubation
with Eu(III) ions, and used in cytotoxicity assays (Maley and Simon, 1990; Granberg et al., 1988;
Volgmann et al., 1989) in which Eu(IIl) ion is released and measured in enhancement solution.
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Fig. 9. Typical layout of a time-resolved luminescence microwell reader.

3.5.3. Ruthenium Labels

Ru(I]) tris-(bathophenanthroline) complexes (Bannwarth es al., 1988) have been used as labels for
time-resolved fluorimetric detection, for example linked to DNA strands that have been modified
with an aminoalkyl arm. The properties of a typical ruthenium-based label are outlined in Table 2.
A ruthenium-tris-(phenanthroline)’*-based reagent has also been used for protein labeling
(Thompson and Vallarino, 1988) and immunoassays (Mueller and Schmidt, 1986).

A ruthenium dipyridophenazine complex has been used to label oligonucleotides and detect
sequence-specific sections of single-stranded DNA, as it is only luminescent when intercalated in
double-stranded nucleic acid after hybridization (Jenkins and Barton, 1992).

3.5.4. Lanthanide Phosphors

These consist of charge-stabilized suspensions of 0.1-0.3 um phosphor particles (e.g. yttrium
oxysulphide activated with europium or terbium, along with others doped with other metals)
(Beverloo et al., 1990, 1992); the suspensions are stabilized with polycarboxylic acids. Proteins are
conjugated to the surface of the particles by physical adsorption. Properties of some of the phosphor
labels are outlined in Table 2.

Immunocytochemistry has been performed on lymphocytes or erythrocytes by indirect labeling
using a primary antibody, and a secondary antibody to it labeled with phosphor particles. Multiple
labeling was also performed using different SBRs (avidin and antidigoxigenin antibodies) conjugated
to different color phosphors. The progress of immunoreaction could be monitored directly under a
time-resolved microscope. This method is not suitable for in situ hybridization inside cells, because
the phosphor particle exceeds 1 nm in size and hence, will not penetrate the cell.

4. TIME-RESOLVED LUMINESCENCE INSTRUMENTATION
4.1. Tube, Cuvette or Microwell Readers

A number of commercially available multi-purpose spectrofluorometers are capable of
time-resolved detection in the microsecond to millisecond regime using single-sample cuvettes. In
addition, a number of instruments have been modified or designed for time-resolved detection of
lanthanide chelate luminescence. The typical layout of such readers is illustrated in Fig. 9. Typically,
the excitation conditions are fixed, with potentially varying emission conditions, i.e. one or more
emission filters or time gates may be possible. The majority are designed to observe luminescence
at right angles to the excitation beam through a transparent sample holder. The original designs were
test tube readers for solution-phase fluorescence; variations included a tube reader using a nitrogen
laser for excitation (Dechaud et al., 1986) and the use of a flashlamp for ultraviolet excitation in the
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original commercial tube reader (Soini and Kojola, 1983) for DELFIA®. A conventional
photon-counting fluorimeter that accepted cuvettes was modified with a chopped He-Cd laser at
325 nm, and delayed chopped detection at 550 nm, for quantitation of Tb(III)-labeled materials (Kuo
et al., 1985).

The DELFIA"™ tube reader subsequently was modified to automatically read transparent
microwell strips (Soini and Lovgren, 1987). A commercial microwell plate reader (Diamandis et a/.,
1989a) for the FIAgen™ system (CyberFluor Inc., Toronto, Canada) was developed for surface
fluorescence measurement using pulsed nitrogen laser UV excitation at 337 nm and electronically
gated detection. In this case, the labeled SBR is immobilized on an opaque microwell bottom. This
instrument has also been modified to scan membranes (Christopoulos ez al., 1991) and agarose gels
(Chan ez al., 1993). An instrument that also measures surface fluorescence in microwells, using a
flashlamp for excitation, has been reported (Prat e al., 1991). A double wavelength emission
detection plate reader has been developed recently (Mathis, 1993) for the homogeneous energy
transfer assays with TBP-Eu(IIl) as donor and APC as receptor; this reader uses a nitrogen laser for
excitation and two filtered, gated detectors at right angles; detection of the emission of both Eu(I1l)
and APC allows for correction for light filtering effects of the biological sample in homogeneous
assays. A fluorescence particle concentration time-resolved microwell reader for use with polystyrene
capture beads has been reported (Bush et al., 1991).

Most recently, the commercial AutoDELFIA™ system (Wallac Oy, Finland) has been
developed, with assays fully automated for batch processing and random access of up to 423 sample
tubes, with up to 8 tests performed per tube. This represents an advance in the utility of time-resolved
fluorescence-based detection for routine applications in both large and small clinical iaboratories.

4.2. Photographic Detection

A commercial unit for time-resolved photography (Gudgin Templeton et af., 1992) has been
reported (see Fig. 10), with pulsed UV excitation from two flashlamps and gated emission detection
in the visible, selectable by filter; two different time-gating settings are available. The excitation and
emission light are gated by a rotating chopper; in the chopper position shown in the figure, the
excitation light is passed by the apertures, while the emitted tight is blocked by the chopper wheel.

high speed instant film

flashlamp flagshlamp

rotating _—

[V | had iﬂ

sample

A: visible wavelength emission filter; B: ultraviolet
excitation filters; C: excitation apertures; D:
emission aperture

Fig. 10. Time-resolved photography unit. In the position of the rotating chopper wheel shown,

the lamps irradiate the sample through apertures C while the camera is blocked. As the wheel

rotates, the lamps are blocked while aperture D moves under the camera to permit the
time-delayed luminescence to be detected.
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Subsequently, when the emission aperture rotates to permit the emitted light to strike the film, the
flashlamps are gated off. This sequence is repeated as needed to sufficiently expose the film. The
instrument records time-resolved lanthanide emission using fast instant film in order to obtain a
qualitative or semi-quantitative picture of the distribution of signal on a membrane or gel surface
or in a microwell plate. It is suitable for use with long-lived chelates such as those of Tb(1ll) and
Eu(III). Its use has been reported for membrane and microwell DNA hybridization assays (Gudgin
Templeton et al., 1991) and microwell enzyme and immunoassays (Evangelista et a/., 1991).

4.3. Microscope

The time-resolved luminescence microscope (Beverloo et al., 1990, 1992) is similar in concept to the
time-resolved photography unit, and has been used for observing phosphor labels in situ. It is an
epifluorescence microscope, modified with pulsed excitation light and emitted light gated by a
rotating chopper wheel at the eyepiece. It possesses broad-band UV excitation and detects all species
emitting at > 430 nm, within a specified gating interval; typically this interval consists of a 300 usec
delay (available range 100-2000 usec), and approximately 4.5 msec observation window. A cooled
CCD camera has been used to record images. A non-time-resolved far-UV microscope has also been
used to observe multiple phosphor labels.

4.4. Other Detection Instrumentation

Quantitation of tetracycline has been performed of a Eu-tetracycline micellar stabilized complex
by using a HPLC with a time-resolved fluorescence detection attachment (Duggan, 1991).

5. REVIEW OF PUBLISHED AND COMMERCIALLY AVAILABLE ASSAYS
5.1. Immunoassays
S.1.1. Background

A text on fluorescence immunoassay principles has been published by Hemmild containing
an exhaustive review of published immunoassays that have used lanthanide-based detection up
to 1990 (Hemmila, 1991). The principles of time-resolved fluorescence-based immunoassays and the
DELFIA® and FIAgen™ immunoassay detection systems have been extensively reviewed
(Diamandis, 1988; Soini, 1984; Hemmild, 1985, 1988a,b; Ekins and Dakubu, 1985; Soini and
Lovgren, 1990).

A wide variety of immunoassays has been developed and evaluated, with the majority using
the dissociative enhancement principle for detection. The types of antigens detected cover a broad
spectrum, including infectious agents, proteins and enzymes, hormones, drugs and toxins. There has
been comparatively little work in the field of cytochemistry and in situ hybridization, due to the dearth
of suitable labeling systems; the optimum labeling system for this application would require a direct
labeling reagent, containing multiple luminescent lanthanide chelates with extremely high binding
constants, exhibiting low nonspecific binding and good cellular penetration, and luminescence in
aqueous solution around neutral pH. One possible new candidate Eu(III) label has been reported
recently (Saha er al., 1993).

5.1.2. Practical Applications to Heterogeneous and Homogeneous Assay Formats

References to representative methods for development and evaluation of immunoassays in
standard heterogeneous or homogeneous formats utilizing time-resolved fluorimetric detection,
in particular covering 1990 and subsequently, are tabulated in the following sections (see Tables 3,
4 and 5). The type of lanthanide-based detection system is noted for each reference, as follows: D
(DELFIA™ or dissociative enhancement based assay, using Eu unless otherwise stated); F (FIAgen™
or BCPDA-based); EALL; or other, as described.
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Table 3. Representative Reported Immunoassays using Time-Resolved Fluorimerric Detection: Infectious Agent
Antigens and Antibodies

Analyte Detection method References
Simultaneous adenovirus and D, dual-label Eu(III) and Tb(III) Siitari, 1990
rotavirus

Brown et al., 1990

Lombardi et af., 1992; Siitari et al.,
1990; Roberts er al., 1991

Halonen ef al., 1983

Enteric adenoviruses

Human immunodeficiency
virus antibodies

Rotavirus, adenovirus,
respiratory viruses

Influenza A and B

Hepatitis B

Potato viruses

Nikkari et al., 1989
Siitari et al., 1983
Sinijarv et al., 1988;

, dual labeling Eu(IIl) and Sm(III)  Saarma et a/., 1989
Schroeder and Kuhlmann, 1991
Shankaren et al., 1990
Meurman et al., 1982

Tetanus antitoxin
Rubella virus antibodies

ivichviviviviviviNw ey

5.1.3. Immunocytochemistry

Antigens in peripheral blood lymphocytes and erythrocytes have been visualized (Beverloo et a!.,
1992} using time-resolved microscopy. Immunological reagents labeled with Eu(III)-W1014 have
been used to visualize human smooth muscle myosin, in a fluorescence microscope without
time-resolved detection (Soini ez al., 1988b).

5.1.4. Western Blot and Related Assays

A Western blot assay has been performed using FIAgen™ reagents in assays for mouse
immunoglobulin G, x-fetoprotein, carcinomebryonic antigen and ferritin (Diamandis et a/., 1992).
These reagents have also been applied successfully in detecting the same antigens immobilized in
microwells subsequent to HPLC separation (Diamandis and Christopoulos, 1991a).

5.2. DNA Hybridization Assays

A review on this subject has appeared recently (Diamandis, 1993). A number of papers
covering general labeling methods and protocols for use in hybridization assays have also been
published.

A variety of labeling methods for oligonucleotides and DNA with luminescent and non-
luminescent lanthanide or ruthenium chelates have been reported. These include: a Th(IIl)
reagent for labeling of oligonucleotides (Sherman er a/., 1992); a Tb(I11)-pAS DNA-labeling reagent
for gel electrophoresis detection (Saavedra and Picozza, 1989), with extraction of the labeled band
from the gel and measurement in solution in a time-resolved fluorometer; a similar Tb(III)-chelate
substituted psoralen for photolabeling of oligonucleotides (Oser et al., 1990); FIAgen™-based (F)
labeling methods for PCR-based detection in gels (Chan e al., 1993); a Ru(II) bathophenanthroline
reagent for labeling of oligonucleotides and hybridization (Bannwarth er af., 1988); and
Eu(III) labeling methods for DELFIA™-type (D) detection (Hurskainen et a/., 1991; Sund et al.,
1988).

The following general protocols for a number of detection systems have also been published, with
the detection method indicated in brackets (see Section 5.1 for abbreviations of detection methods).
A treatise on nonisotopic DNA probe protocols includes chapters on microwell hybridizations, PCR
and labeling of long probes and oligonucleotides (D) (Lovgren er al., 1992); membrane
hybridizations (F) (Diamandis and Christopoulos, 1992b); and microwell and membrane dot blot
and Southern hybridizations (EALL) (Gudgin Templeton et al., 1992). Methods and assays for
typical DNA dot blots or microwell assays and Southern blots inciude detection of: adenovirus in
mucus by sandwich hybridization in microwells (D) (Syvanen er al., 1986); adenovirus in a model
assay in microwells (D) (Dahlén, 1987); adenovirus by dot blot on nitrocellulose filters (D) (Dahlén
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Table 4. Representative Reported Immunoassays using Time-Resolved Fluorimetric Detection: Hormones

Analyte Detection method References
Progesterone, estradiol D Lovgren, 1987; Sjoeblom et al., 1990
Progesterone D Tus et al., 1989, 1993
D Bacigalupo et al., 1990
F Kakabakos and Khosravi, 1992; Dechaud et a!.,
1988
17-a-Hydroxyprogesterone D Gonzalez et al., 1990
Estrone-3-glucuronide Homogeneous W1174 label  Barnard er al., 1989b,c
Estrogen D Thomas er al., 1990
Estriol D Tus e al., 1991, 1993
Testosterone D Canlfi et al., 1989; Lovgren ef al., 1984
Cortisol F Diamandis et al., 1988
D Lovgren ef al., 1984; Eskola et al., 1985
Triiodothyronine and F Tan et al., 1990
uptake F + immunocomplex Eskola et al., 1985
dissociation
Thyroxin D Nuutila ef al., 1990
Homogeneous W1174 Hemmili et a/., 1988
TSH EALL Papanastasiou-Diamandi er al., 1992a
F Reichstein et al., 1989
D Lawsonetal., 1986; Patersoner al., 1985; Arends
and Nprgaard-Pedersen, 1986; Kaihola et al.,
1985; Lovgren et al., 1984; Suonpda et al., 1992
Gonadotropin D Alfthan, 1986; Pettersson et al., 1983; Alfthan
et al., 1988; Bieglmayer and Fischl, 1987,
Iwasawa et al., 1992
F Khosravi and Diamandis, 1987
Follitropin D Bador et al., 1987; Madersbacher et al., 1993;
Suonpad et al., 1992
Lutropin F Khosravi ef al., 1988b
D Loévgren et al., 1984
Simultaneous lutropin D, dual label Eu(III) Hemmili ez al., 1987
and follitropin and Tb(III)
Somatotropin F Kahan et a/., 1990
D Albertsson-Wikland et al.. 1993; Strasburger
et al., 1989
Corticotropin D Dobson et al., 1987
Prolactin D Mathis, 1993; Dechaud et al., 1986
Insulin D Toivonen et al., 1986
Simultaneous lutropin, F, stick method, solid- Kakabakos er al., 1992
follitropin, gonadotropin phase fluorimetric reading
and prolactin
Simultaneous TSH D, quadruple label Xu et al, 1992b
172-hydroxy-progesterone,  Eu(III), Tb(III), Sm(II),
trypsin and creatine Dy(III)

kinase MM isoenzyme

et al., 1988); and B-lactamase gene in Escherichia coli in a microwell sandwich assay (D) (Dahlén
etal., 1987). Model assays for plasmid DNA include: a nitrocellulose filter dot blot (Oser et al., 1988)
(using the ternary Tb(III)-pAS-DTPA label); a microwell assay (D) (Oser and Valet, 1988); on
nitrocellulose membranes or in microwells (using Eu(IH) cryptate label) (Prat er al., 1991); in a
Southern blot on membrane (using Ru(II) bathophenanthroline as label) (Bannwarth et al., 1988);
in microwells and on membranes for Southern and dot blots (EALL) (Gudgin Templeton e al.,
1991); and on nitrocellulose in dot and Southern blots (F) (Christopoulos et /., 1991).

A homogeneous oligonucleotide sandwich-type assay has been demonstrated using energy
transfer-based detection with a ternary Tb(IIl) chelate (Oser and Valet, 1990).

Nucleic acid amplification assays have been performed typically using PCR, with sandwich
hybridization in solution, followed by capture onto solid support using an SBR. The general
methodology for use of Eu(1lI)-labeled PCR probes (D) has been reported (Dahlen et al., 1991a).
Published assays include: E. co/i rRNA (using ternary Tb(III)-EDTA-chelate label, on beads) (Bush
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Table 5. Representative Reported Immunoassays using Time-Resolved Fluorimetric Detection: Other, Including
Proteins, Enzymes, Toxins, Peptides, Antigens, Metabolites, Drugs

Analyte

Detection method

References

a-Fetoprotein

a-Fetoprotein and free f-subunit of
choriogonadotropin

Ferritin

Fibronectin

p53 Tumor suppressor gene protein

p53 Tumor suppressor gene product
Myoglobin and carbonic anhydrase

Human pancreatic isoamylase
Human pancreatic phospholipase A

174-Hydroxysteroid dehydrogenase
Creatine kinase MB isoenzyme
Trypsinogen

Somatomedin binding protein

Sex hormone binding globulin
Placental protein 5
B2-Microglobulin

Human albumin

Prostaglandin F»,
Prostate-specific antigen

Prostate-specific antigen and its
complex with aj-antichymotrypsin

Nerve growth factor

Vasular permeability factor

Immunoglobulin M-rheumatoid factor

Aflatoxin

Carcinoembryonic antigen

Tumor necrosis factor « and
interleukin-6

Cysteine proteinase inhibitors

Ovarian carcinoma-associated antigen
CA-125

Urinary metabolites

Advanced glycosylation end products

5-Methyl-2’-deoxycytidine and
methylated DNA

Digoxin

Zidovudine

EALL
F

D
D, dual label using
Eu(IIl) and Sm(III)
F

F + immunocomplex
dissociation

EALL

EALL

D, dual label Eu(Ill) and
Sm(11I)

I;OU mogoooomo o

LL

o

D, dual label Eu(Ill) and
Sm(1II)

o o™ Ug@ (vAvEEvisilviviviv)
-
-

Christopoulos and Diamandis, 1992
Chan et al., 1987; Christopoulos et al.,
1990

Suonpda et al., 1985

Pettersson et al., 1993

Khosravi et al., 1988a
Kropfer al., 1991

Angelopoulou et al., 1994; Hassapo-
glidou er al., 1993; Levesque et al.,
1994

Hassapoglidou and Diamandis, 1992;
Angelopoulo and Diamandis, 1993
Vuori et af., 1991

Diamandis et al., 1989¢

Eskola er al., 1983;

Nevaleinen and Eskola, 1989
Maentausta et al., 1991

Lianidou et al., 1990

Itkonen et al., 1990

Kolstinen er al., 1987

Soini et al., 1988a; Tomas et al., 1987
Butzow et al., 1988

Tienhaara er al., 1990

Diamandis and Ogilvie, 1990; Canfi
et al., 1989

Nesbet er al., 1993

Lueke and Schlegel, 1990

Yu and Diamandis, 1993; Yu er al.,
1994

Vihko et al., 1990

Leinonen ef al., 1993

Arumae et al., 1989

Yeo et al., 1992

Van der Sluijs Veer and Soons, 1992
Degan er al., 1989

Bhayana and Diamandis, 1989

Ogata et al., 1992

Joronen er al., 1986
Boerman et al.. 1987

Barnard er al., 1989a
Papanastasiou ef al., 1994
Vilpo et al., 1986; Rasi et al., 1989

Papanastasiou-Diamandi et al., 1989
Helsingius et al., 1986; Paterson and
Stewart, 1987

Tadepalli and Quinn, 1990

et al., 1991); human immunodeficiency virus Type 1 suitable for automation (D in microwells)
(Dahlén et al., 1991b); detection of point mutations demonstrated with detection of the Z mutation
leading to a;-antitrypsin deficiency (D in microwells) (Dahlén er al., 1993); papilloma virus in smears
(TBP(Eu(III)) label on microwells) (Lopez et al., 1993); direct labeling of PCR products followed
by gel electrophoretic separation and quantitation in the gel or after blotting (F) (Chan et a/., 1993).

JPT 66;2—-D
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5.3. Other

Cytolytic and cytotoxic activity of, for example, killer cells and cytotoxic agents has been
determined using Eu(lIl)-labeled cells as targets (Maley and Simon, 1990; Volgmann et al., 1989;
Granberg et al., 1988).

6. FUTURE DIRECTIONS

Because of its unique features and the variety of labeling and detection systems, lanthantde chelate
luminescence detection has the potential for adaptation to many different assay formats and diverse
applications.

In the area of improvement of the labeling methods, more stable and luminescent direct labeling
reagents, such as the recently reported Eu(III) chelate (Saha er al., 1993), are needed. In particular,
application to in situ analysis would be facilitated.

The development of a variety of EALL-type reagents could yield improved detection limits and
flexibility in selecting the enzyme label; increased application of ALP-based EALL detection should
be possible given the availability of ALP-labeled reagents.

Most clinical assays will require automation, and reagents easily adaptable to automated formats
will likely dominate. Multiple analyte analysis is particularly well-suited to lanthanide-based
detection because of the variety of lanthanide ions that can be detected simultaneously. The use of
the four luminescent lanthanides for nucleic acid sequencing applications 1s an interesting possibility.

The homogeneous assay format is the method of choice in many cases because of its
simplicity. Homogeneous time-resolved fluorimetric assays should be successful if high sensitivities
can be demonstrated, as for example, using energy transfer to lanthanide ion cryptates (Mathis, 1993).

Tb(IIT) and Eu(11I) chelates have been used as luminescent stains or labels for nucleic acids (Topal
and Fresco, 1980) and proteins (Banville er a/., 1993); the potential exists for lanthanide-based stains
with improved sensitivities or background rejection compared with traditional fluorescent staining
methods. Such reagents might be particularly appropriate to in situ formats.

We conclude that lanthanide chelate luminescence is a rapidly growing field with diverse
applications, which will further evolve in the near future as the technique is reaching maturation and
acceptance. In the future, lanthanide-based reagents should have a secure place amongst nonisotopic
detection methods for bioanalytical application, due to their versatility and robustness compared
with many other conventional methods.
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