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I. Introduction

BREAST cancer is the most common malignancy among
females in North America. Statistics show that in the

United States alone, about 200,000 new cases are diagnosed
every year and about 50,000 women die annually from the
disease. Worldwide, the approximate figures are about 10-
fold higher (1). Overall, about 15% of all women will be
diagnosed with breast cancer during their lifetime. Despite

intense research efforts, which are increasing worldwide, the
pathogenesis of the disease is still largely not well under-
stood. Although diagnosis is now more effective through
mammographic screening, mortality rates remain almost un-
changed. Steroid hormones, including estrogens, androgens,
and progestins, have long been implicated in the pathogen-
esis and progression of breast cancer. Early efforts to control
breast cancer included either hypophysectomy or ovariec-
tomy, which represent an attempt to remove the steroid
hormones from the tumor environment. Such efforts, which
are still used but with utilization of pharmacological agents
instead of surgery, have clearly beneficial but mostly tran-
sient effects. A convincing finding that directly implicates
steroid hormones in breast cancer development and pro-
gression is that women who have bilateral oophorectomy at
an early age (,40 yr) are at markedly reduced risk of sub-
sequently developing breast cancer; the earlier oophorec-
tomy is done, the greater the risk reduction (1). Added to this
finding are the well known modifying risks of breast cancer
related to age at first full-term pregnancy, age of menarche
and menopause, number of menstrual cycles in a lifetime,
oral contraceptive use, number of pregnancies, etc. However,
despite the wealth of literature on steroid hormone involve-
ment in breast cancer, we do not as yet have definitive an-
swers to even simple questions such as: Are steroid hor-
mones carcinogens? Do steroid hormones control breast
cancer cell proliferation and growth rates (2)? More recently,
it has become evident that steroid hormones not only have
direct actions on certain types of cells, but they can trigger
additional effects through growth factors that are regulated
by them; the latter act on neighboring cells in an autocrine/
paracrine fashion (3). Lately, it has also been shown that
steroid hormones are produced locally by cells that then use
them intracellularly. Usually, the parent molecules are pre-
cursor steroids produced by the adrenals. This mode of hor-
mone action is now referred to as ‘intracrine‘ and further
expands the possible implications of steroid hormones in
breast cancer pathogenesis in humans (4, 5).

In males, the breasts are rarely affected by breast cancer.
The androgenic dominance over estrogens in males keeps the
breasts underdeveloped throughout life. However, even for
male breast cancer, the major contributing role of steroid
hormones is evident from clinical observations. For example,
a number of conditions have been established, almost all
related to hypoandrogenism, that increase the risk of breast
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cancer in males. These include Klinefelter’s syndrome, tes-
ticular atrophy, orchitis, undescended testes, testicular
trauma, infertility, and defects in androgen receptor (AR)
genes (6).

Prostate cancer is the most common malignancy among
males in North America. In the United States, about
200,000 new cases are diagnosed every year and about
45,000 men die annually from the disease. Overall, about
one in every nine men will be diagnosed with prostate
cancer during their lifetime. These numbers are strikingly
similar to those already mentioned for breast cancer (7).
Similarly to breast cancer, the pathogenesis of the disease
is also obscure. Major risk factors include age, ethnicity,
family history, and steroid hormones. While the rate of
increase of breast cancer incidence declines postmeno-
pausally in women (1), the rate of increase of prostate
cancer incidence increases continually with age. This phe-
nomenon is likely linked to the continuation of testicular
function in males throughout life and the cessation of
ovarian function during the female menopause. The in-
volvement of steroid hormones in the pathogenesis and
progression of prostate cancer has been suggested for
many years. Huggins, as early as 1940, was able to achieve
transient remission of prostate cancer with orchiectomy
and with administration of estrogens (8, 9). Currently,
pharmacological androgen ablation therapy is achieved
either by blocking androgen production or activity by
administration of antiandrogens or other agents. Males
who have diminished androgen production due to cas-
tration, hypogonadism, or enzyme defects of androgen
metabolism (e.g., 5a-reductase) have minimal risk for pros-
tate cancer.

We and others have hypothesized that breast and prostate
cancer may represent, in some aspects, homologous cancers
in females and males, respectively. Breast and prostate can-
cer are now the two most common cancers with a roughly
equal lifetime risk. They are both influenced strongly by
steroid hormones, gonadal removal reduces the risk dramat-
ically in both sexes, and antiestrogens are beneficial and
possibly preventive for breast cancer while antiandrogens
are beneficial and possibly preventive for prostate cancer
(10). Additionally, these two cancers have parallel incidence
rates in various countries, and there is evidence suggesting
that they are both influenced by the same dietary factors (e.g.,
fat consumption). Macklin, as early as 1954, provided evi-
dence for a significantly higher frequency of prostate cancer
among relatives of breast cancer patients and proposed for
the first time that prostate cancer may be the male equivalent
of some female breast cancers (11). In the last few years,
additional epidemiological, genetic, and biochemical find-
ings support the view that these two cancers have many
similar features. Here, we review the current knowledge,
focusing on common features, in an attempt to understand
these malignancies better and possibly trigger some new
thinking into their pathogenesis and progression. The reader,
however, should be aware that there may be a bias in our
presentation since we have selected literature that cites a
connection between the two cancers. Other literature that
either does not cite a connection or cites a connection of
breast or prostate cancer with other cancers was not system-

atically reviewed since it falls outside the scope of our manu-
script. This biased presentation may be specially relevant in
the discussion of the putative genetic and biochemical ab-
normalities shared by breast and prostate cancer, since many
of the associations described in the literature are not exclu-
sive of these tumors and could merely reflect the general
process of carcinogenesis. Thus, in the case of genetic ab-
normalities, it is well known that breast and prostate cancer,
as well as other human carcinomas, result from the accu-
mulation of genetic lesions in a variety of oncogenes and
tumor suppressor genes. However, none of these genes is
exclusively damaged in breast and/or prostate carcinomas,
thus limiting their value in the context of this review. Con-
sequently, we have focused the discussion on those few
genes like AR or breast cancer susceptibility genes BRCA1
and BRCA2, which have a high degree of specificity for one
of the two tumors (prostate or breast cancer, respectively),
but whose involvement in the other tumor (breast or prostate
cancer) has been suggested through epidemiological, bio-
chemical, or mutational analysis. Nevertheless, it must be
emphasized that the contribution of common genetic factors
to the overall incidence of both tumor types may be low in
quantitative terms and circumscribed to a specific subgroup
of patients. A similar consideration must be done in the
discussion of putative common biochemical features shared
by breast and prostate carcinomas. In this case, the finding
of commonalities in the expression pattern of diverse bio-
markers associated with the development and progression of
breast and prostate cancer may be only a consequence of
general alterations of critical cell functions occurring during
the malignant transformation of human cells, but not spe-
cifically of mammary or prostatic epithelial cells. Therefore,
we have focused the discussion on those biochemical mark-
ers that may be of special interest for the biology of these two
carcinomas because of their relative specificity of expression
in breast or prostate carcinomas when compared with tu-
mors from other sources, or by the occurrence of shared
mechanisms of hormonal control mediating their up- or
down-regulation in these two hormone-sensitive cancers.
Likewise, the discussion of commonalities in the expression
and regulation of growth factors associated with breast and
prostate cancer may be of limited value because many
growth factor pathways are universally altered in most hu-
man malignancies. Consequently, and as in the case of bio-
chemical markers discussed above, we have focused our
attention on those growth factors that may be of special
relevance in the context of breast and prostate cancer by both
the relative specificity of the alterations and the finding of
common hormonal networks underlying their effects on
these carcinomas. Taken together, we must conclude from
these observations that, based on data of the few comparative
analyses currently available, the existence of common factors
in breast and prostate cancer is still speculative in many
aspects. The next sections present a summary of available
epidemiological, genetic, and biochemical data supporting
associations between both tumors, with a special emphasis
on describing the common hormonal aspects underlying the
observed associations.
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II. Epidemiological Evidence Associating Breast and
Prostate Cancer

The first observations regarding a familial association be-
tween breast and prostate cancer were performed more than
four decades ago by Macklin (11) who, in her pioneering
work designed to look for the genetic basis of human breast
cancer, found a significantly higher frequency of prostate
cancer among relatives of women with breast cancer than
among relatives of control groups. According to these results,
she proposed that prostate cancer could be the male equiv-
alent of at least some female mammary carcinomas. Since
then, several genetic epidemiological studies performed by
different groups in different populations have provided fur-
ther support to this original proposal.

Thiessen (12), in 1974, after analysis of the familial inci-
dence and distribution of all malignancies in a group of 145
breast cancer patients, compared with that of 139 random-
ized control patients, reported that significantly higher in-
cidences of only uterine, prostatic, and breast cancer were
found among both maternal and paternal relatives of the
breast cancer patients. On this basis, he proposed that the
mammary gland is part of an integrated genital organ system
whose different parts share unique biological and patholog-
ical characteristics, including hormone responsiveness and
cancer susceptibility. He also hypothesized the existence of
some common etiological factor that could operate in the
development of tumors in diverse reproductive organs, in-
cluding breast and prostate. In 1982, Cannon et al. (13), in a
study of genetic epidemiology of prostate cancer in a pop-
ulation from the Utah Mormon genealogy, showed a signif-
icant coaggregation of prostate cancer with breast cancer.
More recently, in case-control studies based on anamnestic
data, Andrieu et al. (14) and Rosenblatt et al. (15) did not find
evidence of association between these two tumors. By con-
trast, Tulinius et al. (16) in a large cohort study including 1539
Icelandic women with breast cancer, reported that the risk of
prostate cancer was significantly raised for all male relatives,
as well as for first-degree relatives, and second-degree rel-
atives of breast cancer patients. It is noteworthy that in this
study the information concerning which family members
had cancer was obtained from the Icelandic Cancer Registry,
whereas genealogical trees were constructed by using infor-
mation from records of the genetics committee of the Uni-
versity of Iceland, thus avoiding possible bias generated by
directly asking the family members about the structure and
cancer cases in their families. Similarly, Anderson and Bad-
zioch (17) found that a family history of prostate cancer in
male breast cancer patients resulted in a 4-fold increased
breast cancer risk in first-degree female relatives compared
with that in male breast cancer families with no history of
prostate cancer. By contrast, a family history of lung cancer,
colon cancer, or melanoma had no effect on increasing risk
of breast cancer. Finally, a series of recent studies concerning
the putative familial clustering of breast and prostate cancer
have provided opposite results. Thus, Isaacs et al. (18) in a
study of families selected because of the presence of prostate
cancer did not find increased risks for cancer at other sites,
such as breast, ovary, or endometrium. Similarly, Negri et al.
(19) did not observe an elevated risk of prostate cancer in

relatives of breast cancer patients. By contrast, Sellers et al.
(20), in a large prospective cohort study of Iowa women,
noted that a family history of breast and prostate cancers is
a stronger risk factor for postmenopausal breast cancer than
is a family history of breast cancer alone. The reasons for the
discrepancies between the different epidemiological studies
are unclear, although Anderson and Badzioch (21) have
pointed out a number of potential explanations, including
differences in the study populations, variability in the size of
families, or some peculiarity of sampling. It is also possible
that methodological aspects could influence the final results,
since coaggregations between breast and prostate cancers
were specially noted in those studies involving very large
pedigrees in which only those relatives with medically doc-
umented tumors were considered eligible for the study.

Therefore, it seems clear that not all data on the potential
association between breast cancer in females and prostate
cancer in males are univocal. However, a number of studies
performed by different groups in populations of different
geographic origin appear to indicate that a family history of
breast cancer may have a significant influence on prostate
cancer risk and vice versa. This observed association between
breast cancer and prostate cancer suggests that, at least in
some cases, both tumors may share common factors, either
genetic or epigenetic, that could finally lead to the develop-
ment and progression of these malignancies. Among the
different factors that can be shared by breast and prostate
cancers, three of them deserve special attention. First, and
considering that both carcinomas arise in hormonally regu-
lated tissues, it is conceivable that common hormone alter-
ations could play a role in the development or progression
of both tumors. On the other hand, and since the above
mentioned studies suggested a familial coaggregation of
breast and prostate cancer in different populations from dif-
ferent origins, it seems clear that in addition to being hor-
monally related, these tumors may also share some genetic
abnormalities that could contribute to the acquisition of the
malignant phenotype by both mammary and prostatic epi-
thelial cells. Finally, it is also possible that the coaggregation
of these highly prevalent tumors may be also influenced by
a number of lifestyle and environmental factors, including
dietary factors, whose importance in the development of
human cancer is becoming increasingly apparent.

III. Incidence of Breast and Prostate Cancer in
Different Countries: Dietary Factors

Another epidemiological element linking breast and pros-
tate cancer is the incidence rate of these two cancers among
different countries. Prentice and Sheppard published age-
adjusted cancer incidence rates of males and females of ages
55-69 during years 1978-1982, in 21 countries with reputa-
tions for accurate cancer registries (22). We have plotted these
data in simple linear regression formats to examine whether
there is any correlation of the incidences of various cancers
with those of breast and prostate cancer. The observed cor-
relation coefficients are summarized in Table 1. The highest
correlation between cancer incidences was observed be-
tween breast and prostate and breast and endometrial can-
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cers (Fig. 1 and data not shown). The lowest incidence rates
of both breast and prostate cancers were found in Japan and
Hong Kong and the highest incidence rates were found in the
USA and Canada. Similar data were obtained for endome-
trial cancer (not shown). These indirect findings, taken to-
gether with migrand studies, which suggest that cancer in-
cidence rates change within two to three generations when
low risk populations migrate to countries with high risk,
suggest that common environmental factors may be respon-
sible for these cancers.

Dietary factors are widely believed to play an important
role in determining the risk of many cancers, including those
of breast and prostate. Vitamin A and carotenoids are con-
sidered anticarcinogenic in experimental systems. Fruits and
vegetables seem to confer protection (23). Heterocyclic
amines, consumed with charbroiled food, have carcinogenic
potential (24). Plant estrogens found in soy products such as
tofu have been suggested to confer protection against breast
cancer in Asian populations (25, 26). Vitamin D has been
proposed as an anticarcinogenic compound for breast (27)
and prostate cancer (28). High circulating levels of 1,25-di-
hydroxyvitamin D were associated with low incidence of
prostate cancer. In the United States, it was found that pros-
tate cancer mortality rates exhibit a marked North-South
gradient with higher rates observed in the North (29, 30). This
gradient correlates well with ambient levels of UV radiation,
giving rise to the hypothesis that low UV exposure may be
a risk factor for prostate cancer. Many reports suggest that
vitamin D has potent antitumor properties, and its analogs
may be modifiers of the growth of various cancers including
those of breast and prostate (27, 28, 31-34). A recent report
suggests that the higher levels of vitamin D in men at low risk
of developing prostate cancer are associated with vitamin D
receptor polymorphisms (35).

Among all dietary factors, fat consumption has received
the greatest attention (36). The connection between high-fat
diet and increased cancer risk is supported by animal studies
(37). In humans, breast cancer risk (22, 36) and prostate
cancer risk (22, 38, 39) were found to increase with increased
fat consumption. Although such associations are consistent
between many studies, others question the validity of the

data because of the presence of many confounders and the
poor accuracy of obtaining food intake data (40, 41). It is
expected that the role of dietary fat in the development of
breast cancer will be further elucidated when a primary
prevention trial among women age 50-79 is complete (1, 10).
The Women’s Health Initiative is a randomized, placebo-
controlled trial with three different interventions, one of
which is dietary, aiming to reduce fat intake to 20% of total
calories (from about 40% currently) and to increase intake of
fruits and vegetables. In the same trial, another intervention
includes vitamin D and calcium supplements (1). Other che-
moprevention trials are underway in many countries (10).
Prentice and Sheppard calculated, based on fat disappear-
ance data, that a 50% reduction in fat consumption may
reduce the relative risk of women of age 55-69 yr for breast
cancer from 1.00 to 0.39 and in men for prostate cancer from
1.00 to 0.17. Such benefits, they postulate, may also be seen
for endometrial, colon, rectal, and ovarian cancer (22). The
biological basis of fat consumption and risk for breast and
prostate cancer is not known, but there is evidence that fat
intake alters steroid hormone concentration in serum. For
example, it has been reported that plasma estradiol levels are
reduced in postmenopausal women on low-fat diets (42).
Also, there is evidence that a low-fat diet may reduce tes-
tosterone levels in adulthood (43) or may modify 5a-reduc-
tase activity (39).

The association between breast cancer and fat consump-
tion has recently been reviewed, and it was concluded that,
in the absence of data from dietary intervention trials, the
weight of available evidence suggests that the type and
amount of fat in the diet is related to postmenopausal breast
cancer (44). The associations between diet and breast and
prostate cancer are also evident from migrant studies. Mi-
grant groups usually adopt dietary patterns similar to those
of their new country within a few years after migration.

FIG. 1. Correlation between breast cancer and prostate cancer inci-
dence rates in 21 countries listed in Table 1. Data are from Ref. 22.
Lowest incidence rates for both breast and prostate cancer are found
in Japan and Hong Kong and highest incidence rates are found in the
United States and Canada.

TABLE 1. Correlation between breast and prostate cancer
incidence rates and incidence rates of other cancers in 21
countriesa

Cancer (x) Cancer (y) Pearson correlation
coefficient

Breast Prostate 0.81
Endometrium 0.81
Ovary 0.77
Colon 0.74
Rectum 0.65

Prostate Endometrium 0.78
Ovary 0.71
Colon 0.64
Rectum 0.40

a Countries are Australia, Canada, Denmark, Germany, Finland,
France, Hong Kong, Hungary, Israel, Italy, Japan, New Zealand,
Norway, Poland, Romania, Spain, Sweden, Switzerland, United King-
dom, United States, and Yugoslavia. Detailed data are reported in
Ref. 22.
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Statistical analysis has shown that dietary fat alone can pro-
vide an explanation for the major changes in cancer risk that
followed Japanese migration to the United States. For ex-
ample, Tominaga (45) reported relative risks (RR) of 3.5 and
5.7 for breast and prostate cancer, respectively, in Japanese
migrants to the United States. The calculated higher risks,
based on changes in fat consumption alone, are 2.9 and 7.2,
respectively, in close agreement with the observed risks.

The current epidemiological data suggest that the epi-
demic of breast and prostate cancer may be partially attrib-
utable to increased fat consumption, increased caloric intake
during growth, low fiber, vegetable, and fruit consumption,
and other lifestyle factors including exercise, alcohol, and
smoking (22, 41, 43). Refinements in our knowledge regard-
ing fat consumption and its connection to cancer suggest that
specific fatty acids (e.g., the n-6 polyunsaturated fatty acids)
may be more potent tumor enhancers than other unsaturated
or saturated fatty acids (46-49). Hopefully, the studies that
are now underway will provide us with more insights that
will be useful in designing successful prevention strategies.

IV. Genetic Abnormalities Common to Breast and
Prostate Cancer

The epidemiological findings showing a potential associ-
ation between breast and prostate cancers have prompted
studies directed to search the putative molecular factors com-
mon to these two highly prevalent tumors. Similar to other
tumors, a large number of factors, including oncogenes, tu-
mor suppressor genes, or hormonal receptors, may be altered
in breast and prostate carcinomas. In fact, acquired or in-
herited abnormalities in a wide variety of genes have been
implicated in the pathogenesis of these tumors (reviewed in
Refs. 50-53). However, it should be emphasized that most of
these genetic abnormalities, including those recently de-
scribed in the PTEN/MMAC1 gene (54-56), are not exclusive
of breast and prostate carcinomas and represent alterations
in oncogenes or tumor suppressor genes commonly mutated
in human tumors from different origins. Thus, until more
data become available, our presentation on this issue should
be regarded at present as speculative. Nevertheless, muta-
tional studies on some genes, including the AR gene and
those involved in hereditary breast cancer (BRCA1,BRCA2),
have provided some results that may be of relevance in the
context of putative genetic abnormalities common to breast
and prostate cancer. The interest in AR as a potential factor
common to both tumors arises from recent observations in-
dicating that genetic abnormalities in this hormonal receptor
are shared by these two hormonally dependent tumors, but
admittedly in only a small proportion of patients (53-62).
Similarly, genetic epidemiological data have suggested that
some cases of prostate cancer could be linked to the recently
described breast cancer-associated genes BRCA1 (63-68) and
BRCA2 (67-74). Finally, and since it seems clear that these
genes are not the only molecular factors that may be common
to breast and prostate cancers, in the last part of this section,
we examine other candidate genes that could contribute to
establish associations between these two highly prevalent
malignancies.

A. AR alterations in prostate cancer

The AR is a transcription factor that plays an essential role
in a wide number of biological functions, from development
and maintenance of male reproductive functions to modu-
lation of immune responses or development of neural tissues
(75). Like other nuclear receptors, AR exerts its biological
effects after binding of circulating androgens mainly trans-
ported to target tissues by carrier proteins (76). Androgen
binding induces a conformational change in the AR that
facilitates receptor homodimerization, nuclear transport,
and interaction with DNA. The binding of the AR to the
hormone response elements (HRE) present in target genes
results in the regulation of their transcriptional activity (77).
The structure of the AR is also similar to that of the other
members of the steroid-receptor family of ligand-dependent
transcription factors, with an N-terminal transactivating do-
main (exon A), a central DNA-binding domain (exons B and
C), and a C-terminal hormone-binding domain (exons D
through H) (78).

Because of the essential participation of AR in the regu-
lation of prostate growth and in the maintenance of prostatic
function, over the last years many groups have tried to define
the potential role of this hormone receptor in the develop-
ment and progression of prostate cancer. The first studies in
this regard were based on analysis of the AR functionality in
prostate carcinomas by using ligand-binding activity assays
and immunohistochemical techniques (79, 80). However, re-
sults of a series of structure-function relationship studies of
mutated ARs have revealed that ligand binding or immu-
noreactivity are not the most appropriate indicators of AR
functionality. Thus, investigators have described the occur-
rence of mutant ARs that do not bind androgens but are
constitutively active, or receptors that bind steroids with
high affinity but are nonfunctional as transcription factors
(81, 82). As a consequence of these observations, more recent
studies have examined the possibility that alterations in the
integrity of the AR gene in prostate carcinomas could be a
more accurate index of the AR functionality in these tumors
(83) (Fig. 2). The first indication that structural changes in the
AR could be important in the progression of prostate cancer
was provided by the detection in LNCaP prostate cancer cells
of a point mutation in the ligand-binding domain of this
receptor (84). Interestingly, this mutation (Thr877Ala) leads
to a decrease in steroid-binding specificity and completely
reverses the effect of commonly used antiandrogens (84).
After these findings in established cancer cell lines, several
groups have attempted to demonstrate the putative occur-
rence of AR gene mutations also in tumor tissue specimens.
The first description of an AR abnormality in human prostate
cancer was done by Newmark et al. in 1992 (85). These au-
thors found a point mutation (Val730 Met) in 1 of 26 early-
stage prostatic carcinomas. Thereafter, other groups have
reported that AR mutations may also occur in a small per-
centage of advanced cancers (86-92). By contrast, Ruizeveld
de Winter et al. (93) did not detect mutations in AR genes
from 18 patients with hormone-resistant, locally progressive
prostate cancer. Although these studies appear to indicate
that the frequency of AR mutations is low, even in advanced
prostate cancer, recent work using improved strategies for

August, 1998 COMMON FEATURES OF BREAST AND PROSTATE CANCER 369



mutational analysis of AR have found a higher proportion of
genetic abnormalities in either latent prostatic carcinomas or
in metastatic disease. Thus, Takahashi et al. (94) have found
that a significant proportion of latent prostate carcinomas
from Japanese men contain genetic alterations in the AR gene
(18 of 79), while no such mutations were found in 43 latent
carcinomas from American men. On the other hand, Gad-
dipati et al. (95) have shown the presence of the above de-
scribed mutant Thr877Ala, in 6 of 24 prostatic tissue speci-
mens obtained from patients with metastatic prostate cancer,
providing the first evidence that a mutational hotspot may
occur in the AR gene in a subset of these tumors. More
recently, Taplin et al. (96) have shown the presence of AR
gene mutations in metastatic cells from 5 of 10 patients with
androgen-independent prostate cancer, which has led them
to conclude that mutations in this gene are not as rare as
previously considered by other authors. Consistent with this,
Tilley et al. (97) have found somatic mutations in 44% of
primary prostate tumors taken before initiation of androgen
ablation therapy. The presence of AR amino acid substitu-
tions was found not only in the hormone-binding domain,
which is the region examined in most studies mentioned
above, but also in the remaining functional domains of this
protein. In fact, about 50% of the mutations found by Tilley
et al. in prostatic tumors were within exon A of the AR, which
encompasses 58% of the coding region of the gene, but whose
integrity has not been examined in virtually any mutational
study of the AR gene. These results demonstrate the need to
examine the complete AR-coding region before any conclu-
sion on the structural integrity of the AR gene in prostate
carcinomas can be reached. It is also remarkable that Tilley
et al. (97) have provided evidence that mutations found in AR
are not a consequence of the generalized genetic instability
inherent to different malignant processes, suggesting that
they have functional relevance and do not simply reflect the
neoplastic state. In fact, these authors have observed that the
occurrence of the AR mutations in the studied prostatic car-
cinomas was associated with a rapid failure of subsequent
hormonal therapies. Therefore, it seems that AR gene mu-
tations may occur commonly in advanced prostate cancers
before endocrine treatment, thereby contributing to the ob-
served altered androgen responsiveness of these tumors, and
finally leading to their progression to androgen indepen-

dence. Finally, two germline point mutations in the 59-
untranslated region of the AR gene have been recently
described in men with prostate cancer. It has been proposed
that these mutations may contribute to the disease by altering
rates of transcription and/or translation of this gene (98).

In addition to all these point mutations detected in dif-
ferent prostatic carcinomas, other types of AR structural
alterations have been found in specimens of these tumors.
These genetic abnormalities include the somatic contraction
of the polymorphic CAG microsatellite present in exon A of
the AR gene (99) and the amplification of the AR gene in a
series of hormone-refractory tumors (100, 101). The first of
these alterations was described by Schoenberg et al. (99) after
a study designed to evaluate whether the polymorphic CAG
repeats that encode the polyglutamine region of the AR pro-
tein were altered in prostatic carcinomas. This study led to
the identification of a patient with metastatic disease having
24 CAG repeats in this region of the AR gene from normal
tissue but a mixture of 24 CAG and 18 CAG in the AR gene
from tumor tissue. Interestingly, this patient manifested a
paradoxical agonistic response to hormonal therapy with the
antiandrogen flutamide. The possibility that a reduction of
the number of CAG trinucleotide repeats in the AR gene
could be of importance in prostate cancer is in good agree-
ment with previous in vitro studies indicating that elimina-
tion of the CAG repeats results in increased transcriptional
activity of the receptor (102). In contrast, expansion of the
CAG tract, as observed in Kennedy’s disease, results in par-
tial loss of AR function (103). Kennedy’s disease, also known
as X-linked spinal bulbar muscular atrophy, is a form of
adult-onset progressive motor neuron degenerative disease
associated with male hypogonadism. Signs of androgen re-
sistance, which generally appear after the third decade of life,
include development of gynecomastia, azoospermia, impo-
tence, and testicular atrophy (76). Also in relation with al-
terations in CAG repeats in the AR gene, a series of epide-
miological studies have suggested that the increased risk of
developing prostate cancer in Black Americans is related to
a reduced frequency of CAG repeat numbers in this popu-
lation (104). Similar findings associating shorter CAG repeat
lengths with the development and progression of prostate
cancer have been reported by different groups (105-108).
Hakimi et al. (109) have recently studied both CAG and GGC

FIG. 2. AR abnormalities identified in prostate and breast carcinomas. The eight exons (A to H) of the AR gene and the three functional domains
(transactivation, DNA binding, and ligand binding) identified in the AR protein are represented in the figure. Alterations described in breast
carcinomas including point mutations at residues Arg 607 and Arg 608 and deletion of exon C (del exC) are boxed. AR gene abnormalities
identified in prostate carcinomas include point mutations, contraction of CAG trinucleotide repeats in exon A (Q24Y18), frameshifts (L547fr,
P554fr, G743fr), and generation of premature stop codons (W741st, W751st, W796st).
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repeats in patients with prostate cancer and found that AR
alleles with shorter CAG repeats define a subpopulation of
patients with aggressive cancer, and AR alleles with shorter
GGC repeats define a subpopulation of men who are at
higher risk of developing prostate cancer. Finally, Koivisto et
al. (100) have shown that amplification of the AR gene plays
a role in the progression of some recurrent, hormone-refrac-
tory tumors. These authors have also suggested that AR
amplification emerges during androgen deprivation therapy
and facilitates tumor cell growth in low androgen concen-
trations (100, 101).

In conclusion, it appears that AR gene alterations in pros-
tate carcinomas and in metastatic tissue derived from these
tumors are much more frequent than originally suggested.
These genetic defects include point mutations, gene ampli-
fication, or variations in the length of trinucleotide repeats.
At present, there is a lack of compelling evidence associating
receptor variants with response to endocrine therapy, or
clinical course of the disease. However, functional analysis of
AR variants appear to indicate that they confer upon this
receptor a broadening of ligand specificity, making it capable
of activation by estrogens, progesterone, antiandrogens, and
adrenal androgens in addition to testicular androgens (57, 84,
86, 90-92, 96, 97, 110). This is in marked contrast with the
findings in other diseases involving abnormalities in the AR
gene, such as androgen insensitivity syndromes or diseases
generated by trinucleotide expansion in the CAG region of
the AR, which are usually accompanied by loss of AR func-
tion (76). As a consequence of these gain-of-function muta-
tions detected in prostatic carcinomas, tumor cells may pro-
liferate in an androgen-deficient environment or during
antiandrogen therapy. Therefore, these findings may explain
why these carcinomas become refractory to endocrine ther-
apy and could lead to the development of more effective
hormonal therapeutic strategies as well as predictive tests for
therapy failure.

B. AR alterations in breast cancer

Since, according to the above mentioned data, there was
a significant body of epidemiological evidence suggesting an
association between breast and prostatic cancer, it seemed
likely that if AR gene alterations are important in the de-
velopment of prostate cancer, similar abnormalities could
also occur in some cases of breast cancer. The first indication
that AR may also be altered in breast carcinomas was pro-
vided by Wooster et al. (58) who reported an AR germline
mutation in two brothers with breast cancer and Reifenstein
syndrome, a partial androgen insensitivity syndrome orig-
inally described as an X-linked familial syndrome of hypo-
spadias, infertility, and gynecomastia in association with
normal 17-ketosteroid excretion and high FSH levels (76).
The mutation results in the substitution Arg607Gln, within
the region encoding the DNA-binding domain of the recep-
tor. More recently, Lobaccaro et al. (59, 60) identified another
germline mutation in the AR gene, in a man with lobular
carcinoma of the breast and partial androgen insensitivity
syndrome. This mutation leads to an Arg608Lys substitution,
also in the DNA-binding domain of the receptor and is iden-
tical to an alteration previously described in a patient with

partial androgen insensitivity syndrome (111). Two main
hypotheses have been proposed to explain breast cancer
development linked to AR mutations (58-60). The first one
involves the loss of a putative protective effect of androgens,
which could explain the low incidence of breast carcinomas
in males. However, in light of the above observations in
prostate carcinomas, it is also possible that the development
of breast carcinomas associated with AR mutations could be
a consequence of the acquisition of additional properties by
the mutated AR proteins. Thus, they could have an altered
pattern of hormone responsiveness, including the acquisi-
tion of the ability to bind ligands other than testicular an-
drogens, thereby extending their transactivating properties.
In any case, elucidation of the potential role of AR in the
development of some breast carcinomas will require the
identification of additional cases and functional studies with
the identified mutant receptors. Finally, it would also be of
interest to look for the presence of somatic AR gene alter-
ations in sporadic cases of breast carcinomas in both males
and females. In this regard, Hiort et al. (112) have recently
reported the absence of mutations in exons 2-8 of the AR gene
in breast carcinomas from 11 males without clinical evidence
of androgen insensitivity, suggesting that AR gene mutations
do not play a major role in the development of sporadic male
breast cancer. By contrast, one should note the recent iden-
tification of an exon 3-deleted splicing variant AR in breast
cancer cell lines and tissues (62). This AR variant is expressed
at high levels in some breast carcinomas (7 of 31), whereas
in normal breast tissues its expression is undetectable. Also,
recent immunohistochemical analysis in breast tumor spec-
imens has suggested that structurally altered forms of the
receptor, including amino-terminal truncated variants, may
be present in a significant proportion of breast carcinomas
(61).

In summary, a series of recent studies performed by dif-
ferent groups has revealed that inherited and acquired AR
alterations may occur in breast carcinomas (58-62). The num-
ber of described AR abnormalities in breast cancer is low,
suggesting that these would only affect a small subgroup of
patients. However, it is also remarkable that this field has
been largely unexplored and few studies have specifically
addressed the role of AR mutations in breast cancer. Nev-
ertheless, these preliminary mutational data, together with
the finding of abnormalities in androgen levels in patients
with breast cancer (113-115) and the widespread expression
of AR in primary breast carcinomas (61, 116, 117), suggest
that AR-mediated pathways may be of biological and clinical
relevance in breast cancer. Further studies and functional
characterization of AR variants in breast carcinomas, in a
similar fashion to studies performed in prostatic carcinomas,
will be required to clarify the putative contribution of AR to
breast cancer cell growth and response or resistance to hor-
monal therapies.

C. BRCA1 and BRCA2 alterations in breast cancer

Evidence for a genetic component in breast cancer risk was
first noted by Paul Broca more than one century ago, when
he described four generations of breast cancer in his wife’s
family (118). Since then, extensive epidemiological analyses
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of breast cancer cases that appear to be clustered in families
have been reported. The results of these analyses suggest that
about 5% of breast carcinomas may be explained by inherited
mutations in one or more genes. Despite the genetic heter-
ogeneity of breast cancer and the high prevalence of sporadic
disease, several breast cancer susceptibility loci have been
identified (119). The first of these genes, named BRCA1, was
mapped in 1990 to chromosome 17q21 by genetic linkage
analysis of large families that included many cases of early-
onset breast carcinomas (120) and has been recently identi-
fied by Miki et al. (121) using positional cloning methods.
BRCA1 is composed of 22 coding exons distributed over
more than 100 kb of genomic DNA and encodes a 1863-amino
acid protein, with two RING finger domains at its N-terminal
part, which are thought to be involved in DNA-binding or in
protein-protein interactions. In addition, BRCA1 shares a
conserved region with 53bp1 (a p53-binding protein) and
rad9 (a yeast protein involved in the control of the DNA
damage-induced cell cycle arrest), which has suggested that
BRCA1 is likely to function in the cell nucleus and may be
involved in one or more cell cycle checkpoints (122). In
marked contrast with this proposal, it has also been sug-
gested that BRCA1 may play a role as a secreted protein,
exhibiting properties of a granin (123). To date, the function
of BRCA1 remains unclear, although a recent study has
shown that this protein inhibits the growth of breast epithe-
lial cells (124). In addition, studies on the developmental
pattern of BRCA1 expression in mice suggest that it is in-
volved in the process of proliferation and differentiation in
multiple tissues, notably in the mammary gland in response
to ovarian hormones (125). Furthermore, analysis of
BRCA12/2 mutant mice has suggested that this protein may
be a positive regulator of the cellular proliferative processes
that occur in early embryonic development (126). On the
other hand, Chapman and Verma (127) have recently re-
ported that the carboxy-terminal fragment of BRCA1 acts as
a strong transcriptional activator when fused to the GAL4
DNA-binding domain. In addition, this activity is completely
abolished in sequences corresponding to four different mu-
tations found in BRCA1-linked families, thus providing di-
rect evidence for the possible function of BRCA1 as a tran-
scription factor. Finally, a new insight into BRCA1 function
has has been provided by the observation that it associates
with the DNA-repair protein Rad51, suggesting that BRCA1
may be a component of the double-strand-break DNA repair
pathway (128-130).

Mutations in the BRCA1 gene are thought to account for
about half of the families susceptible to early-onset breast
cancer and for at least 80% of families with clustered breast
and ovarian cancers (131, 132). To date, germline BRCA1
mutations have been reported in more than 200 families from
different geographic origins (131, 132). Germline BRCA1 mu-
tations have also been found in young women with breast
cancer who do not belong to families with multiple affected
members (133). All classes of mutations are represented in
these reported cases, including missense mutations, non-
sense mutations, deletions, insertions, or intronic mutations,
although the majority result in the production of a truncated
protein. The finding of this large percentage of loss-of-func-
tion mutations is consistent with the hypothesis that BRCA1

acts as a tumor suppressor gene. It is also remarkable that
most of the reported BRCA1 gene mutations have been iden-
tified in a single family, but a small number have been de-
tected repeatedly. Of particular interest is a frameshift mu-
tation caused by deletion of an AG dinucleotide (185delAG),
which has been identified in more than 20 families of Ash-
kenazi Jewish descents and is estimated to occur at a fre-
quency of about 1% in this population (134, 135).

The observation that less than half the families with mul-
tiple cases of breast cancer showed linkage to BRCA1 led to
the proposal that there was at least an additional gene as-
sociated with breast cancer susceptibility. This result
prompted another genomic linkage search and a second
breast cancer susceptibility gene, named BRCA2, was located
on chromosome 13q12 (136) and subsequently cloned (69,
137). BRCA2 is composed of 27 exons and encodes a protein
of 3418-amino acid residues, which does not appear to be
significantly similar to other proteins. Recent studies have
shown that BRCA2 expression is coordinately regulated with
BRCA1 expression during proliferation and differentiation in
mammary epithelial cells, suggesting that both genes may act
in the same pathway (138). Similarly to BRCA1, BRCA2 in-
teracts with Rad51, providing additional support to the pro-
posal that these proteins may be essential cofactors in the
Rad51-mediated DNA repair of double-strand breaks (139).
In fact, Connor et al. (140) have found evidence of a DNA
repair defect in mice with a truncating BRCA2 mutation.
Clinical studies have revealed that BRCA2 probably accounts
for a proportion of early-onset breast cancer roughly equal
to that resulting from BRCA1, and it may be of special im-
portance in families with a high incidence of male breast
cancer, but not in those with multiple cases of ovarian cancer.
Mutational analysis of the BRCA2 gene in different popula-
tions has revealed that as in BRCA1, the identified mutations
are widely distributed throughout the coding sequence of the
gene, although evidence of some recurrent mutations has
also been found (71, 141-144). Also of interest is the finding
that BRCA2 mutations in families with the highest risk of
ovarian cancer relative to breast cancer are clustered in a
single exon of this gene (145). Finally, and also in common
with BRCA1, diverse studies have shown that BRCA2 is a
very infrequent target for somatic inactivation in breast and
ovarian cancers (144-148).

D. BRCA1 and BRCA2 alterations in prostate cancer

As mentioned above, genetic epidemiological studies have
provided evidence for clustering of prostate and breast can-
cer in some families. In addition, there is preliminary evi-
dence that some plausible prostate cancer genes, like AR,
may be altered in some breast tumors. Therefore, it seemed
of interest to evaluate the possibility that genetic abnormal-
ities in breast cancer susceptibility genes, such as BRCA1 and
BRCA2, may also be associated with an increased risk of
prostate cancer in men. The first of these studies was per-
formed by Arason et al. (63) in seven large Icelandic breast
cancer families, two of which showed evidence of linkage to
BRCA1. These authors found that among presumed paternal
carriers of mutant breast cancer gene alleles, 7 of 16 (44%) had
developed prostate cancer, which led them to conclude that
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breast cancer genes may predispose to prostate cancer in
male carriers (63). Additional evidence regarding the poten-
tial associations between BRCA1 and prostate cancer risk
comes from an analysis of 33 BRCA1-linked families per-
formed by Ford et al. (64). This analysis attempted to explore
whether BRCA1 gene carriers are at increased risk of cancer
at sites other than breast or ovary. According to the obtained
results, there were statistically significant excesses of pros-
tate cancer and colon cancer in BRCA1 carriers but not of
cancer at any other sites. The maximum likelihood estimate
of the relative risk of prostate cancer in BRCA1 carriers com-
pared with the general population was 3.33. More recently,
Gao et al. (65) in a study designed to establish the possible
involvement in prostate cancer of BRCA1 and other potential
tumor suppressor genes on chromosome 17q, have reported
a high frequency of loss of heterozygosity at loci D17S856 and
D17S855 (intragenic to BRCA1) in prostate cancer. These
results suggest that BRCA1 and possibly other genes located
within this region (149) may be important in this cancer.

Although these studies seemed to confirm the hypothesis
that some connection could exist between breast cancer sus-
ceptibility genes and prostate cancer, very recent work per-
formed by Langston et al. (66) has provided more definitive
evidence. These authors, in a study aimed at directly exam-
ining the potential role of BRCA1 mutations in the etiology
of prostate cancer, have screened for germ-line BRCA1 mu-
tations in a subset of men with prostate cancer. The subgroup
of cases selected included men in whom genetic factors were
most likely to be relevant, including early-onset and family
history of both breast cancer and prostate cancer. Interest-
ingly, a total of seven germ-line alterations in a series of 49
cases were found. One of them corresponded to the above
mentioned frameshift mutation (185delAG), which is the
most common germ-line BRCA1 mutation reported to date
(134, 135). In addition, five structural abnormalities were
identified in six patients but not in the 145 population-based
controls. One of them is a 12-bp insertion in intron 20, which
was identified in two different cases, and which had previ-
ously been found in a woman diagnosed with cervical cancer
and breast cancer (133) and also in a woman with a history
of breast and ovarian cancer (150). Although the functional
consequences of this genetic alteration are unknown, it seems
likely that this 12-bp insertion may affect RNA processing.
The remaining four sequence variants have not been re-
ported previously and are located in both coding and non-
coding sequences. The fact that none of the sequence variants
was identified in DNA from the control population suggests
that they may represent alleles predisposing to disease. Fi-
nally, Struewing et al. (151) have also detected a BRCA1
frameshift mutant (5256delG) in a male patient affected with
both breast and prostate cancer.

In addition to these genetic alterations in the first breast
cancer susceptibility gene, studies of families linked to
BRCA2 have revealed that prostate cancer risk is significantly
increased in these families (67-74). Further analysis of some
of these families has shown that in three of four BRCA2-
linked Icelandic families, all prostate cancers tested are car-
riers of a 5-bp deletion in exon 9 (999del5), which is a re-
current mutation in Icelandic patients (71). Interestingly,
prostate cancer patients carrying this mutation have signif-

icantly worse survival, which suggests that the BRCA2 mu-
tation may be a possible marker for an aggressive disease in
prostate cancer patients (73). Taken together, these data ap-
pear to indicate that mutations in the BRCA2 gene may also
confer some risk of developing other malignancies, including
prostate cancer, although detailed BRCA2 mutational studies
in prostate carcinomas need to be done before more defin-
itive conclusions can be reached.

Although it is clear that the basis for the hypothesis of
common genetic features between some breast and prostate
cancers is still speculative, two recently published studies
have provided new and interesting insights. Struewing et al.
(67), in an extensive study of the risk of cancer in a large
group of Ashkenazi Jews, found a significantly elevated es-
timated risk of prostate cancer among carriers of BRCA1 or
BRCA2 mutations. According to these data, the authors sug-
gest that prostate cancer is part of the phenotype for these
carriers. Similarly, Khan et al. (68), after analysis of germline
BRCA1 and BRCA2 mutations in prostate carcinomas from a
different population of Ashkenazi Jews, have concluded that
mutations in these breast cancer susceptibility genes may
increase the risk of prostate cancer.

In summary, there are some data indicating that alter-
ations in the structural integrity of breast cancer suscepti-
bility genes may indeed occur in prostate carcinomas. Nev-
ertheless, according to available information, it appears that
the contribution of germline BRCA1 or BRCA2 mutations to
the overall incidence of prostate cancer is very small. In
addition, the genetic association between breast and prostate
cancer, due to BRCA1 and BRCA2, seems somewhat diluted
by the fact that mutations in these genes also play a role in
other tumors, including ovarian (150-153) and pancreatic
carcinomas (154). Further studies and identification of ad-
ditional prostate cancer patients with genetic alterations of
BRCA1 and BRCA2 will be necessary to clarify the putative
involvement of these genes in at least some cases of prostate
cancer.

E. Other genes associated with breast or prostate cancer

In addition to the above described alterations in AR and
BRCA genes, acquired or inherited abnormalities in other
genes may occur in breast and prostate cancer. Analysis of
reported alterations in oncogenes and tumor suppressor
genes in both breast and prostate carcinomas reveals that
somatic abnormalities are heterogeneous in terms of in-
volved genes and mechanisms operating for their generation
(reviewed in Ref. 50-53). The class of genes that is altered
during the progression of normal mammary or prostatic cells
to hormone-independent or to highly aggressive metastatic
cancer cells includes classic tumor suppressor genes
(p53,RB1) and oncogenes (ras, myc, neu) (50-53, 155-159), as
well as genes involved in other processes such as cell-cycle
inhibition, cell-cell adhesion, angiogenesis, DNA repair, and
apoptosis (160-167). The mechanisms underlying these al-
terations are also diverse and include point mutations, allelic
deletions, high-level amplifications, or de novo DNA meth-
ylation (50-53, 155-160, 168-173). This heterogeneity is con-
sistent with the idea, as originally proposed for colorectal
cancer (174), that breast and prostate carcinomas result from
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the accumulation of genetic changes affecting a variety of
genes associated with critical cell functions. However, it must
be emphasized again that most of these genetic abnormalities
are not exclusive to these tumors and have lesser value in the
context of this review, which attempts to bring together
factors common preferentially to breast and prostate cancer.
Nevertheless, it is clear that new oncogenes and tumor sup-
pressor genes important in the pathogenesis of these tumors
are yet to be identified. In this regard, it is noteworthy that
very recent studies from different groups have led to the
identification in breast or prostate carcinomas of a series of
candidate oncogenes, tumor suppressor, or metastasis sup-
pressor genes, including H-cadherin (175), maspin (176),
MDC (177), PCTA1 (178), PTI1 (179), MXI1 (180), PAC1 (181),
KAI1 (182), and thymosin b15 (183), whose relevance to the
respective tumor processes has not as yet been definitively
established. In this context, it will be interesting to explore
the possibility that alterations in some of the new candidate
genes associated with breast cancer may be also found to
occur in prostate carcinomas and vice versa, thus helping to
extend the genetic associations between these two hormone-
sensitive tumors. It is also remarkable that the vast majority
of genetic changes reported in both breast and prostate car-
cinomas arise in somatic cells but inherited defects may also
predispose to both cancers. Interestingly, studies of familial
aggregation in both diseases have revealed that the same
percentage of breast or prostate cancers (;5%) may be di-
rectly attributable to inherited cancer susceptibility alleles
(50-53). Familial breast and prostate cancer genes have now
been mapped and, in the case of breast cancer-susceptibility
genes, some associations with prostate cancer have been
reported (63-74). Therefore, it will also be of future interest
to evaluate the possibility that alterations in the familial
prostate cancer gene (HPC1), recently mapped to the long
arm of chromosome 1 (184), may also occur in a subset of
breast carcinomas. Of interest is the preliminary report of a
modest increase in the occurrence of breast cancer in HPC1
families (185). Further studies directed to examine the pu-
tative genetic commonalities between breast and prostate
cancers could provide better insights into the mechanisms of
progression of these hormonally dependent tumors and gen-
erate novel ideas to improve therapeutic strategies.

V. Common Biochemical Features of Breast and
Prostate Cancer

The accumulation of the above mentioned genetic lesions
in mammary or prostatic epithelial cells could lead to un-
controlled cell proliferation, disruption of normal pathways
of cell differentiation, hormone responsiveness or pro-
grammed cell death, and, ultimately, promotion of mecha-
nisms that facilitate tumor invasion and metastasis. These
functional alterations may be connected to the biosynthesis
of specific proteins that could be very useful as biochemical
markers of the respective tumor processes. In recent years,
molecular and biochemical analyses of breast or prostate
carcinomas have led to the identification of a number of
proteins that could be useful for predicting the clinical course
of these diseases or monitoring their response to hormonal

therapy. Among the growing list of tumor markers of po-
tential interest in these malignancies, we have noticed that
some of them, including prostate-specific antigen (PSA),
pepsinogen C, apolipoprotein D, Zn-a2-glycoprotein (Zn-a2-
gp), and GCDFP-15, show a striking parallel expression in
both breast and prostate cancers. Importantly, such expres-
sion is either very low or absent in other tumors. Thus, all of
them are up-regulated or down-regulated in a significant
percentage of tumors of both sites and in most cases, their
production appears to be dependent of common regulatory
hormonal mechanisms. This section summarizes the current
evidence in the literature supporting our proposal that these
five proteins may represent examples of biochemical simi-
larities between breast and prostate cancer.

A. PSA

PSA was initially discovered in seminal plasma in the
1970s (186, 187). Purification was first achieved by Sen-
sabaugh (188). PSA was found to be a prostatic protein in
1977 (189) and was identified in serum shortly afterward. Of
paramount clinical importance were the findings that serum
PSA is increased in patients with prostate cancer in com-
parison to normals and that changes of serum PSA concen-
tration are associated with cancer metastasis, recurrence, re-
sponse to treatment, and survival (190, 191). Currently, PSA
is considered to be the most valuable tumor marker due to
its tissue specificity and it is used widely for prostate cancer
screening, diagnosis, and management. Several reviews ex-
amine these issues in detail (192-196).

PSA is a 30-kDa serine protease that shares significant
protein and gene sequence homology with pancreatic/renal
kallikrein (hK1) and glandular kallikrein (hK2). PSA is also
known as hK3. The PSA gene has been extensively charac-
terized (197). The 59-untranslated region contains regulatory
elements, two of which are androgen response elements
(ARE I and ARE II), and the other is a strong enhancer (198,
199). PSA gene transcription in the prostate is known to be
regulated by androgens through the action of the AR (197-
200) (Table 2). In seminal plasma, in which PSA is present at
very high amounts (;1-2 g/liter), it appears that the role of
PSA is proteolytic cleavage of the sperm motility inhibitor
semenogelin, resulting in semen liquefaction post ejaculation
(193, 194, 201). However, other substrates for PSA have been
proposed including insulin-like growth factor binding pro-
tein 3 (IGFBP-3) (202), protein C inhibitor (203), transforming
growth factor-b (TGF-b) (204), PTH-related peptide (205),
and an unknown precursor protein that releases a putative
vasoactive peptide (206). In male serum, PSA is present as a
complex with a1-antichymotrypsin (PSA-ACT), a2-macro-
globulin (PSA-A2M), and as free PSA (207, 208).

The tissue specificity of PSA was not challenged until our
first publication in 1994 (209). Earlier literature focused on
single or a few case reports that were presented as exceptions
to the rule that PSA is expressed only in the prostate. For
example, PSA was reported in salivary gland neoplasms
(210), ovarian teratomas (211), and in some apocrine breast
carcinomas, but PSA was not found at that time in the most
common form of breast cancer, the ductal carcinomas (212).
Moreover, these findings were usually explained as artifacts
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of polyclonal antibodies since the results could not be con-
firmed by immunohistochemistry with PSA-specific mono-
clonal antibodies. Nonprostatic tissues that produce PSA
include the periurethral glands (213-216). Female periure-
thral glands are positive for PSA, and their histological struc-
ture is similar to that of male prostate, but they remain
underdeveloped due to lack of androgenic stimulation (217).
The study of PSA expression in nonprostatic tissues has been
greatly improved by the introduction of ultrasensitive PSA
assays and PCR-based assays that facilitated measurement of
PSA protein and mRNA levels with extreme sensitivity. Us-
ing such assays (218-220), we were able to produce substan-
tial new information on PSA in breast tissue. We first de-
termined that PSA protein is present in at least 30% of breast
tumors and that PSA presence is not a random event but is
associated closely with the presence of steroid hormone re-
ceptors (209, 221). We now know that, with newer PSA assays
exhibiting detection limits of approximately 1 ng/liter, about
70% of breast tumors contain measurable PSA protein (219).
Breast tumors containing PSA are more frequently steroid

hormone receptor positive, are smaller, have low S-phase
fraction, and are diploid and patients have earlier stage dis-
ease. Moreover, such patients appear to live longer and re-
lapse less frequently (222). There is little doubt that PSA is a
favorable prognostic marker in breast cancer, and this par-
allels data available for other androgen-regulated genes (see
further discussion later in this review). Importantly, PSA is
also present in extracts from normal female breasts, and we
provided evidence for overexpression induced by progestin-
containing oral contraceptives (223). These and other data
listed below suggest that in breast cancer, the regulation of
PSA is disturbed and the expression may be reduced or lost
as the cells lose differentiation. Highest expression of PSA
was seen in tissue extracts from patients with benign breast
diseases (224). PSA is also present in breast fluids. The breast
epithelial cells produce and secrete PSA into the lumen,
under the influence of steroid hormones. A tissue culture
system has shown that, in some breast carcinoma cell lines,
PSA expression is induced by androgens and progestins and
to a lesser extent by glucocorticoids and mineralocorticoids.

TABLE 2. Biochemical markers common to breast and prostate cancer

Protein Function
Hormonal regulation

Breast cancer Prostate cancer

PSA Proteinase Up-regulated by androgens, progestins, and
glucocorticoids in T-47D and BT-474 breast
cancer cells.

Up-regulated by androgens in LNCaP prostate
cancer cells.

Produced by breast carcinomas, marker of
favorable clinical prognosis.

Highly sensitive marker for monitoring prostate
cancer progression and response to therapy.

Apolipoprotein D Lipocalin Up-regulated by androgens and glucocorticoids
in T-47D, MCF-7, and ZR-75-1 cells. Steroid-
induced expression inversely correlated with
cell proliferation.

Up-regulated by androgens in LNCaP cells.
Expression inversely correlated with cell
proliferation.

Overexpression in prostate carcinomas.
Produced by breast carcinomas, marker of

favorable clinical prognosis.
Zn-a2-glycoprotein Soluble HLA? Up-regulated by androgens and glucocorticoids

in T-47D cells.
ND. It is a major glycoprotein in human

prostatic fluid.
Produced by breast carcinomas, marker of

favorable clinical prognosis.
Produced by benign and malignant prostatic

tumors.
GCDFP-15 Immune response? Up-regulated by androgens and glucocorticoids

in T-47D and ZR-75-1 cells.
ND. Present in seminal fluid and normal

prostate.
Produced by breast carcinomas. Correlation with

AR levels in breast carcinomas. Marker of
favorable clinical prognosis.

Produced by prostatic carcinomas.

Increased levels in serum from androgen-treated
breast cancer patients.

Pepsinogen C Proteinase Up-regulated by androgens and glucocorticoids
in T-47D, MFM-223, SK-BR3, and ZR-75-1
cells.

ND. Present in seminal fluid and normal
prostate.

Produced by prostatic carcinomas.
Correlation pg C expression with AR status of

breast cancer cells.
Produced by breast carcinomas, marker of good
clinical prognosis.

HRE in pgC gene very similar to those
mediating androgen induction of PSA and
glandular kallikrein in prostate cancer cells.

AIGF Growth factor Up-regulated by androgens in SC-3 mouse
mammary cancer cells, and in MDA-MB-231
human breast cancer cells.

Produced by LNCaP, and PC-3 prostate cancer
cells. Strict androgen dependence not
demonstrated.

Mitogenic for breast cancer cells. Overexpressed in high grade prostate
carcinomas.

Mitogenic for prostate cancer cells.
KGF Growth factor ND. Produced by breast carcinomas. Up-regulated by androgens in normal and tumor

prostatic cells.
Mitogenic for mammary epithelial cells. Promoter activity induced by androgens in

LNCaP cells.
Induces mammary adenocarcinomas in

transgenic mice.
Overexpressed in hormone insensitive prostate

carcinomas.

ND, Not done; HRE, hormone response element.
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Estrogens not only do not induce expression but block the
action of androgens and progestins (225, 226). Breast dis-
charge fluid obtained by nipple aspiration contains very high
levels of PSA (up to ;5,000 mg/liter; about 1,000-fold higher
than normal male serum). We found reduced levels of PSA
in nipple aspirate fluid obtained from women who are either
at high risk or have breast cancer (227). These data provide
evidence that PSA may have some value in assessing breast
cancer risk.

PSA has also been detected in the milk of lactating women
(228) or women with prolactinoma (our unpublished data),
in breast cyst fluid (229), and amniotic fluid (230). In female
serum, PSA is present at levels approximately 1,000-fold
lower than male serum (231). We failed to find any associ-
ation between total serum PSA and clinicopathological fea-
tures of breast cancer (232). However, PSA in serum increases
during pregnancy (233). More recently, we were able to de-
termine the molecular forms of PSA in female serum and
concluded that: 1) in serum of normal women or women
without breast pathology (e.g., hirsute women), the predom-
inant form is always PSA-bound to a1-antichymotrypsin
(PSA-ACT); 2) in presurgical sera from breast cancer patients,
about half of them have free PSA as the major molecular
form. Similar data were found for women with benign breast
diseases (Ref. 234 and unpublished results). These data sug-
gest that serum-free PSA, which is an enzymatically inactive
form of PSA, is overexpressed in patients with benign or
malignant breast disease. The mechanism of such changes is
unknown but the data are in contrast to changes in prostate
cancer where serum PSA-ACT increases and free PSA de-
creases in cancer patients in comparison to patients with
benign prostatic hyperplasia (207). Finally, we identified
some similarities between PSA expression in the breast and
expression of the BRCA1 protein, which is believed by some
to be a granin (123). Thus, we speculated that BRCA1 may
be a substrate for PSA but as yet there is no experimental
evidence for this proposal (235). Furthermore, a protein that
appears to be immunologically identical to BRCA1 has been
found in seminal plasma (236).

How is PSA regulated in the breast and in breast tumors?
We have evidence that PSA is up-regulated by progestins in
vivo (223) and in vitro (225, 226). Similar data exist for glu-
cocorticoids (225, 237). In vitro, androgens up-regulate PSA
at levels as low as 10211 m, similarly to progestins (226). We
have also generated evidence that PSA up-regulation by
androgens occurs in vivo because women with hyperandro-
genic states have higher PSA than normal controls (238).
Other evidence suggests that serum PSA changes during the
menstrual cycle (239). The observation that some breast tu-
mors bearing steroid hormone receptors do not produce
PSA, while others that are receptor negative may produce
high levels of PSA, led us to examine the sequence of all PSA
exons and the 59-regulatory region of the PSA gene in such
tumors. No mutations were identified in any of the PSA
exons, but we found deletions and point mutations in the
59-flanking region in all of these tumors (240). This finding
suggests that PSA expression is aberrant in at least some
breast tumors.

What is the physiological role of PSA in the breast? This
is currently not known but based on the proteolytic activity

of PSA, we speculate that this enzyme, regulated by steroid
hormones in the female breast, must act upon a substrate to
release other biologically active molecules. Others have al-
ready proposed that PSA may be a regulator of growth
factors, cytokines, or PTH-related peptide, but the levels of
PSA tested are much higher than those found in the breast
(202, 204-206). In this regard, it is of interest that breast cancer
cells secrete an IGFBP-3 protease with ability to release
bound insulin-like growth factor-I (IGF-I), which can then act
as a mitogen to stimulate breast cancer cell proliferation
(241). Since IGFBP-3 is a substrate for PSA in seminal plasma
(202), a similar role for PSA in breast carcinomas could be
envisaged, although no data are available to support this
hypothesis. On the other hand, the sequence homology of
PSA to growth factors and growth factor-binding proteins
suggests that this molecule may well be a growth factor in its
own right (242). Also interesting is the proposal that PSA
may act upon substrates to release vasoactive peptides,
which could help in the expulsion of breast secretions, such
as nipple aspirate fluid and milk, paralleling the semen liq-
uefaction function of PSA in the prostate (206). Whatever the
function of PSA is, the current evidence suggests that this
molecule is a marker of differentiation and good prognosis
in breast diseases, especially breast cancer. It is now very
clear that this molecule, which wrongfully bears the name of
a prostate-specific protein, is elegantly regulated by steroid
hormones and is secreted at relatively high concentrations by
breast epithelial cells. Notably, only prostate cells in males
and breast cells in females produce appreciable amounts of
PSA, the levels in other tumors being much lower (243).

B. Apolipoprotein D (apoD)

apoD is a protein component of the human plasma lipid
transport system that was first identified and characterized
by McConathy and Alaupovic (244). This glycoprotein is
mainly associated with high-density lipoprotein particles
and consists of a single polypeptide chain of about 30 kDa
that exhibits sequence similarity to members of the lipocalin
family of proteins, whose common function is to bind and
transport small hydrophobic ligands in the plasma (245)
(Table 2). The functional role of apoD in the metabolism of
plasma lipoproteins remains elusive, but it has been pro-
posed that it may be involved in transport of cholesterol or
cholesteryl esters (246-248). In addition, recent studies from
different groups indicate that apoD is able to bind and trans-
port a wide variety of ligands other than cholesterol, includ-
ing heme-related compounds (249), progesterone (250), ar-
achidonic acid (251), or odorant substances (252), thus
extending its potential functional significance to a number of
different biological processes.

The unexpected connection between apoD and breast dis-
eases arose after the observation that apoD accumulates to
extremely high concentrations (;1000-fold higher than in
plasma) in cyst fluid from women with gross cystic disease
of the breast (250), a benign condition associated with an
increased risk of subsequent breast cancer (253, 254). The
relationship of apoD to breast pathology was further sup-
ported by the finding of a certain type of breast carcinoma
that is able to produce and secrete this glycoprotein (255-257).
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Analysis of putative correlations between apoD levels in
breast carcinomas and clinical outcome of the disease has
revealed that low apoD values are significantly associated
with a shorter relapse-free and overall survival (257). A pos-
sible explanation as to why apoD confers a prognostic ad-
vantage to women with breast cancer is that its presence may
reflect the existence of a complete hormone receptor path-
way. To date, the hormonal stimuli potentially responsible
for the expression of apoD by breast carcinomas are unclear,
but several data suggest that androgens could play a major
role in apoD overproduction. Thus, apoD is one of the few
proteins that are up-regulated by androgens in human breast
cancer cells (257-259). This stimulatory effect is blocked by
the antiandrogen flutamide, indicating that the action of
androgen is presumably mediated via an AR mechanism.
Finally, apoD has been found to be produced by either nor-
mal or tumor prostatic cells, under androgen stimulation
(260-262).

The first indication that apoD could also be a marker of
steroid action in prostate cancer cells was provided by Si-
mard et al. (260), who examined the regulation of apoD
secretion by sex steroids in LNCaP cells, the most widely
used in vitro model of human prostate cancer. According to
their data, physiological concentrations of androgens exert a
biphasic pattern of action on both apoD secretion and cell
proliferation in LNCaP cells. Thus, low concentration of an-
drogens stimulates proliferation of prostate cancer cells and
inhibits apoD secretion, whereas higher concentrations of
androgens increase the expression of apoD and inhibit cell
proliferation. Interestingly, such an opposite action of sex
steroids on apoD secretion and cell proliferation is in com-
plete agreement with similar studies in breast cancer cells
demonstrating that the action of androgens and estrogens on
apoD secretion is inversely related to cell proliferation in
breast cancer cells (258, 263). On the basis of these results,
apoD has been proposed as a marker of hormone action in
both breast and prostate cancer cells, which could be asso-
ciated with inhibition of cell growth and tumor regression
(262-264). This potential value of apoD as a marker of growth
arrest, together with its specific pattern of hormone respon-
siveness in both breast and prostate cancer cells, may be of
interest from the clinical point of view. Thus, quantitation of
intratumor apoD values could help to identify subgroups of
breast or prostate cancer patients with low or high risk for
recurrence or death, and who could benefit from specific
hormone therapies.

C. Zn-a2-gp

Zn-a2-gp was originally isolated from human plasma, and
its name was derived from its ability to be precipitated by
zinc acetate, its electrophoretic mobility in the a2-region of
the plasma globulins, and its high carbohydrate content
(265). Amino acid sequence analysis of the protein purified
from plasma has revealed that it consists of a single polypep-
tide chain of 276 amino acids with a high degree of similarity
to class I antigens of the major histocompatibility complex
(MHC) (266) (Table 2). The isolation and characterization of
cDNA and genomic clones for human Zn-a2-gp have pro-
vided additional information on the relationship between

this protein and transplantation antigens (267-269). Thus, the
exon-intron organization and nucleotide sequence of the Zn-
a2-gp gene are very similar to those of the first four exons
encoding the signal peptide and the three extracellular do-
mains characteristic of all class I MHC molecules. However,
the Zn-a2-gp gene lacks the coding information for the trans-
membrane and cytoplasmic domains present in class I MHC
genes, which explains its presence as a soluble protein in
several human body fluids (270). The biological function of
Zn-a2-gp is unknown but, according to its structural prop-
erties, this glycoprotein may play a role in the immune re-
sponse as a soluble HLA adapted to bind and transport some
nonpolymorphic substance in the plasma (271).

The potential interest of Zn-a2-gp in relation to breast
cancer has arisen after the observation that, similar to apoD,
this soluble HLA-like protein is accumulated at high con-
centrations in breast cyst fluid from women with gross cystic
disease of the breast (255, 256). Furthermore, analysis of
breast cancer tissues and secretions has revealed the exis-
tence of a significant percentage of mammary tumors (;40%)
that produce and secrete appreciable amounts of Zn-a2-gp
(255, 256, 272-275). Interestingly, and also in agreement with
data regarding apoD, higher levels of Zn-a2-gp were de-
tected in histopathologically well differentiated tumors than
in moderately or poorly differentiated tumors (273, 275),
suggesting that this protein may be a marker of tumors with
high degree of differentiation, low metastatic potential, and
therefore with favorable clinical outcome. Analysis of the
molecular mechanisms controlling Zn-a2-gp expression in
breast cancer cells has also provided interesting parallelisms
between this protein and apoD (259, 276, 277). Chalbos et al.
(276) were the first to observe that this protein can be induced
by androgens in T-47D breast cancer cells. These results were
subsequently confirmed and extended by Haagensen et al.
(259) and López-Boado et al. (277), who demonstrated that
androgens and also glucocorticoids up-regulate Zn-a2-gp
mRNA levels and protein secretion in breast cancer cells in
culture.

The possibility that Zn-a2-gp could also be relevant to
prostate cancer was first suggested by Frenette et al. (278),
after their finding that the major 40-kDa glycoprotein from
human prostatic fluid is identical to Zn-a2-gp. Analysis of
intraprostatic levels of Zn-a2-gp in prostatic diseases includ-
ing prostate cancer revealed that these values are strikingly
higher in benign prostatic hyperplasia than in adenocarci-
nomatous prostates, probably reflecting the dedifferentiation
of cancerous prostates with the loss of secretory activity.
These results agree with other studies showing that levels of
other relevant prostatic proteins such as PSA and prostatic
acid phosphatase are significantly decreased in prostatic tu-
mors (262, 279). Further immunohistochemical studies have
confirmed the partial loss of Zn-a2-gp expression in prostatic
tissue after malignant transformation (280). In fact, Zn-a2-gp
was present in benign hyperplastic glands in 91% of cases,
but in only 41% of poorly differentiated prostatic adenocar-
cinomas, 48% of well differentiated adenocarcinomas, and
8% of metastases. The relationship between Zn-a2-gp and
hormonal responsiveness of prostatic cancers is not known,
and further studies are required to search for a correlation
between Zn-a2-gp, ARs, and tumor progression.
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D. Gross cystic disease fluid protein-15

Gross cystic disease fluid protein-15 (GCDFP-15), together
with the above mentioned apoD and Zn-a2-gp, represents
the major protein components found in cyst fluid from
women with cystic disease of the breast (255) (Table 2). Sim-
ilar to other cyst fluid proteins, GCDFP-15 is also produced
and secreted by a subset of human breast carcinomas. The
amino acid sequence of GCDFP-15, deduced from cDNA
clones isolated from a human breast cancer cell cDNA li-
brary, is composed of 146 residues, with sequence similarity
to a protein produced in the mouse submaxillary gland (281,
282). The biological function of GCDFP-15 remains unclear,
although it has been suggested that it could modulate the
immune response during tumor progression or viral infec-
tion by interfering with the functions mediated by CD4 in
antigen presentation (283, 284). In addition, GCDFP-15 can
exert mitogenic activity on breast cancer cell lines and on
immortal mammary cells, but not on colon cancer, neuro-
blastoma, and small-cell lung carcinoma cell lines (285). Fi-
nally, the finding that extraparotid glycoprotein, a salivary
protein identical in sequence to GCDFP-15, can bind to oral
bacteria has suggested that this protein may be involved in
modulating the colonization by bacteria in many biological
fluids (286).

Studies on the distribution of GCDFP-15 in human tissues
have shown that this protein is a normal constituent of all
apocrine glands, being also present in cells of the mammary
gland that have undergone apocrine metaplasia (287). This
observation has suggested that GCDFP-15 could be a sensi-
tive and specific marker for monitoring and defining apo-
crine differentiation in breast cancer. Studies directed to ex-
amine the presence of GCDGP-15 in breast carcinomas and
its potential relationship to functional apocrine differentia-
tion have shown that a significant percentage of breast car-
cinomas, likely showing apocrine differentiation, produce
this protein (288). Interestingly, and also similarly to apoD
and Zn-a2-gp, tumors producing GCDFP-15 have a favorable
clinical outcome, when compared with those lacking this
protein (288, 289). Analysis of the mechanisms controlling
GCDFP-15 expression has also revealed an interesting par-
allelism with those regulating the other major breast cyst
fluid proteins (Table 2). Thus, androgens and glucocorticoids
up-regulate GCDFP-15 mRNA levels and protein secretion in
ZR-75-1 and T-47D breast cancer cells, whereas estrogens
have a marked inhibitory effect on these parameters (290).
Progestins also have a stimulatory effect on GCDFP-15 se-
cretion by breast cancer cells, but their effects seem to be
principally mediated by AR (276). These data, together with
observations that fluoxymesterone, a synthetic androgen,
increases the plasma concentration of GCDFP-15 in patients
with metastatic breast cancer (291), and the finding of a
correlation between GCDFP-15 production and AR levels
within breast tumors (292), strongly suggest that synthesis
and release of GCDFP-15 are mainly under androgenic con-
trol. Molecular cloning of the promoter region of the
GCDFP-15 gene has revealed the presence in its 59-flanking
region of four half-TGTTCT sequences that could mediate
this androgenic response, but no functional analysis of this
sequence has as yet been reported (282).

The first indication that GCDFP-15 could also be relevant
to prostate function resulted from the finding that the amino
acid sequence of an actin-binding protein present in human
seminal plasma was identical to that of GCDFP-15 (293, 294).
In addition, an analysis of the expression of GCDFP-15 in
tumors from different origins revealed that in addition to
mammary carcinomas, the major tumor types that expressed
GCDFP-15 were carcinomas of prostate, salivary glands, and
sweat glands, all of them being androgen dependent (295).
Therefore, and although further studies will be required to
evaluate its clinical significance in prostate cancer,
GCDFP-15 may be added to the list of proteins produced by
both breast and prostate cancers, under similar hormone
control. On this basis, GCDFP-15, together with apoD, Zn-
a2-gp, and PSA, may have potential usefulness as a bio-
chemical marker of a specific subset of hormone-responsive
tumors essentially driven by androgens and clinically char-
acterized by a favorable outcome.

E. Pepsinogen C

Pepsinogen C is the precursor of pepsin C, an aspartyl
proteinase that is mainly synthesized in the gastric mucosa
and secreted into the gastric lumen where it is converted to
the corresponding active enzyme under acidic conditions
(296, 297). Pepsinogen C, also known as progastricsin, is
widely distributed in the gastrointestinal tract and in some
species, such as rodents, constitutes the major proteolytic
enzyme present in gastric fluid (298). Isolation and charac-
terization of cDNA and genomic clones for human pepsino-
gen C have shown that this protein is composed of a single
polypeptide chain of 488 residues, with significant sequence
similarity to other aspartyl proteinases, such as pepsinogen
A, procathepsin D, procathepsin E, and prorenin (299, 300).

The relationship of pepsinogen C to human breast pathol-
ogy, including breast cancer, was suggested after the finding
that pepsinogen C is a major proteolytic enzyme in the cyst
fluid from women with gross cystic disease of the breast
(301). Further studies indicated that a significant percentage
of breast carcinomas (;30%) have the ability to synthesize
and secrete this proteolytic enzyme (302). These observa-
tions, together with the absence of pepsinogen C in normal
resting mammary gland, raised the possibility that this pro-
teinase might be involved in the lytic processes associated
with invasive breast cancer lesions, as described for other
enzymes such as matrix metalloproteinases, plasminogen
activators, or secreted lysosomal enzymes (303). However,
clinical studies demonstrated that this preliminary hypoth-
esis was wrong. In fact, analysis of the putative relationship
between intratumor pepsinogen C levels and clinical out-
come of the corresponding patients have shown that pep-
sinogen C production by breast cancer cells is associated with
lesions of favorable evolution (304). A possible explanation
for this unexpected finding is that extragastric expression of
pepsinogen C may only be a consequence of the hormonal
alterations presumably involved in the development of
breast tumors, without having any direct effect on the spread
of cancer. In fact, recent studies on the hormonal regulation
of pepsinogen C in breast cancer cells have revealed that
androgens, glucocorticoids, and, to a lesser extent, proges-
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terone, are able to induce the expression of this gene in
different breast cancer cell lines, including T-47D, MFM-223,
SK-BR3, and ZR75-1 (305). The pepsinogen C pattern of hor-
mone responsiveness is similar to that of genes encoding
PSA, apoD, Zn-a2-gp, and GCDFP-15, suggesting that all of
them share common regulatory mechanisms that could be
responsible for their expression in some breast carcinomas,
as well as for the accumulation of their encoded proteins in
pathological breast fluids (Table 2).

In relation to the molecular mechanisms mediating the
expression of these genes associated with breast cancer, it is
of interest that recent functional analysis of the promoter
region of the human pepsinogen C gene has led to the iden-
tification of a 15-bp cis-acting element that plays a major role
in the observed pepsinogen C induction by steroid hormones
in breast cancer cells (305). The nucleotide sequence of the
identified hormone-responsive element (AGAACTattTGT-
TCC) closely resembles the consensus sequence for DNA
binding of androgen, glucocorticoid, and progesterone re-
ceptors ((G/A)GAACAxxxTGTTCT), including the four ma-
jor guanine/cytosine contact points for receptor binding
(306, 307). Despite the similarity in their response elements,
it is clear that androgens, glucocorticoids, and progesterone
display distinct physiological activities. To date, the relative
importance of the in vivo hormonal factors controlling pep-
sinogen C production in breast cancer is unclear. Neverthe-
less, and although the possibility that pepsinogen C expres-
sion may be under multihormonal control cannot be ruled
out, several data indicate that androgens could be the most
relevant steroid hormones involved in its expression by
breast carcinomas. Thus, there is a close correlation between
androgen inducibility of pepsinogen C expression and AR
status of breast cancer cells (305). In addition, pepsinogen C
is accumulated in cyst fluid from women with gross cystic
disease of the breast, a pathological entity proposed to be
linked to androgen dysfunction (253, 255). Finally, several
groups have demonstrated that normal prostate and pros-
tatic carcinomas are able to produce pepsinogen C (308-310).
In this regard, it is noteworthy that the nucleotide sequence
of the hormone-responsive element identified in the pro-
moter of the pepsinogen C gene is strikingly similar to two
elements (AGCACTtgcTGTTCT and AGCACTtggTGTTCC)
that confer androgen responsiveness to the genes coding for
PSA and glandular kallikrein, two serine proteinases ex-
pressed at high levels in human prostate (197, 198, 311, 312).
Taken together, these results indicate that pepsinogen C, by
virtue of its overproduction in breast and prostate tumors,
and its specific pattern of hormone responsiveness in cul-
tured cells, could be added to the list of biochemical markers
common to both carcinomas.

F. Other proteins

The list of biomarkers that are expressed in prostate and
breast tissues is increasing. Prostate-specific membrane an-
tigen was widely considered to be a specific marker of pros-
tate carcinomas until we demonstrated its expression in
breast tumors (313). The supposedly prostate-specific glan-
dular kallikrein (hK2), which activates PSA by proteolytic
digestion (314), has been found in the breast carcinoma cell

line T-47D, and its expression is regulated by steroid hor-
mones in a fashion similar to PSA (315). Liu et al. (316) have
identified a novel serine protease-like gene, the expression of
which is down-regulated during breast cancer progression,
a situation similar to all other proteins mentioned above. This
gene, NES-1 (normal epithelial cell-specific), is also ex-
pressed in the prostate and some other tissues. Its hormonal
regulation is still unknown. Another serine protease of the
kallikrein gene family has been cloned recently by Anisowicz
et al. (317). This protein (protease M) is expressed in mam-
mary and ovarian cancer cells as well as in prostate. Strik-
ingly, protease M is down-regulated in metastatic breast
cancer, in comparison to primary tumors, and may be a
marker of aggressiveness. The hormonal regulation of pro-
tease M is unknown. This recent literature indicates that the
number of biomarkers that are expressed in breast and pros-
tate cancer will likely increase in the near future. Studies on
hormonal regulation of these genes will be required before
they can be included among the biochemical features that can
help to establish connections between both carcinomas.

VI. Growth Factors in Breast and Prostate Cancer

Over the last few years, it became evident that growth
factors play a determinant role in the control of proliferation
of breast and prostate cancer. Several proteins with cell
growth-stimulatory activities have been identified in the
mammary gland and in the prostate and implicated in the
normal and abnormal mammary and prostatic cell growth.
Recent reviews have described growth factor families in-
cluding different members of the fibroblast growth factor
(FGF) family, EGF, TGFa, or IGF (3, 318, 319). Therefore, in
this review we focus on androgen-induced growth factor
(AIGF) and keratinocyte growth factor (KGF), which may be
especially relevant in the context of potential associations
between breast and prostate cancer (Table 2). However, it is
tempting to mention a provocative new study that has shown
that elevated serum levels of IGF-I are associated with in-
creased risk of developing prostate cancer (320). Similar
studies are now underway to determine whether a higher
risk exists for breast cancer in women whose serum IGF-I
levels are elevated. Interestingly, preliminary observations
suggest an increased risk in premenopausal women (321,
322).

A. AIGF

AIGF was originally isolated by Tanaka et al. (323) from the
conditioned medium of androgen-stimulated mouse mam-
mary carcinoma cells SC-3. Isolation and characterization of
cDNAs encoding this protein have revealed that it is com-
posed of 215 amino acids, which share significant sequence
similarity with members of the FGF family, AIGF being the
eighth identified member of this family (FGF-8). More re-
cently, the gene encoding the human homolog of AIGF has
been cloned and characterized (324). The amino acid se-
quence derived from these genomic clones has revealed that
human AIGF is completely identical in sequence to its mu-
rine counterpart. This extreme conservation in the amino
acid sequence of AIGF in different species suggests a highly

August, 1998 COMMON FEATURES OF BREAST AND PROSTATE CANCER 379



conserved and important function. In fact, recent studies
performed by different groups have shown that AIGF plays
an important role in embryonic development, especially in
gastrulation, limb, and facial morphogenesis and brain de-
velopment (325-329). In addition to this proposed in vivo
function of AIGF as a signaling molecule involved in devel-
opmental processes, in vitro studies have shown that this
growth factor also exhibits oncogenic properties (330). Thus,
NIH3T3 cells stably transfected with an AIGF expression
vector have the abilities of tumor formation in nude mice,
focus formation in monolayer culture, and colony formation
in soft agar. It has also been demonstrated that AIGF exerts
its transforming activity through an interaction with FGF
receptor-1 (330).

Analysis of the mechanisms controlling the expression of
the AIGF gene in SC-3 mammary cancer cells has shown that
the level of AIGF mRNA is undetectable in androgen-
unstimulated cells but it is markedly up-regulated in re-
sponse to physiological concentrations of testosterone. Glu-
cocorticoids also induce AIGF expression but at much lower
levels than androgens, whereas estrogens do not show any
significant effect on AIGF expression (331). These results are
in parallel to those on steroid hormone-induced growth of
SC-3 cells. Very recent studies have also provided evidence
that AIGF is induced by androgens in human breast cancer
cells (332). In addition, experiments designed to directly eval-
uate the role of AIGF in mediating androgen-induced growth
have shown that this growth factor has indeed a remarkable
stimulatory effect on proliferation of SC-3 cells in the absence
of androgen (331). Finally, inhibition of the translation of
AIGF mRNA by specific antisense oligonucleotides is ac-
companied by a complete block of androgen-induced DNA
synthesis (330). These observations have led to the conclu-
sion that the androgen-dependent growth of SC-3 mammary
carcinoma cells is mediated by AIGF through an autocrine
mechanism. In fact, AIGF was the first sex hormone auto-
crine-induced growth factor structurally characterized,
thereby providing definitive support to the proposals that
growth factors mediate hormonal action on the proliferation
of hormone-responsive cancers.

Since AIGF has oncogenic and androgen-inducible prop-
erties in mammary carcinoma cells, it was likely that this
mitogen could also play a local role on the growth of the
androgen-responsive prostate cancer. Several studies have
shown that AIGF is expressed in the prostate cancer cell lines
LNCaP and PC-3, under both testosterone-stimulated and
nonstimulated conditions, suggesting that its dependence on
androgens is not as strict as in mammary cancer cells (324,
333). In addition, recombinant AIGF markedly stimulated
the growth of LNCaP cells, which suggests that AIGF could
be part of an autocrine loop in prostate cancers, in a similar
way to that proposed in mammary cancer cells (324). Con-
sistent with this hypothesis, analysis of AIGF expression in
human prostatic carcinomas has revealed a significant up-
regulation of its mRNA levels in these tumors, and partic-
ularly in those corresponding to the high-grade subgroup
(334). By contrast, none of the examined cases of benign
prostatic hyperplasia expressed significant levels of AIGF. In
summary, and although further analysis of the clinical and
biological relevance of AIGF expression in breast and pros-

tate carcinomas will be required, the present data suggest
that this growth factor may play important roles in the pro-
gression of these two hormone-sensitive cancers. It will also
be of interest to examine whether abnormal expression of
AIGF or utilization of the different isoforms reported for
AIGF may contribute to progression to hormone insensitivity
in both breast and prostate cancer.

B. KGF

KGF, also known as FGF-7, is a member of the fibroblast
growth factor family consisting of 194 amino acids with a
calculated molecular mass of 24 kDa (335). KGF is exclusively
produced by mesenchymal and stromal cells of different
organs and has a potent mitogenic activity on epithelial cells
that express the KGF receptor, a splice variant of FGF re-
ceptor-2 (336). Because of this distinctive pattern of fibroblast
production and epithelial response, KGF has attracted much
interest as a paracrine mediator of stromal-epithelial inter-
actions, which are considered critical in many processes oc-
curring during normal development and malignant trans-
formation in both prostate and mammary gland (337).

The putative relevance of KGF in relation to prostatic
function was first described by Yan et al. (338). These authors
found that expression of KGF mRNA in stromal cells from
normal rat prostate and rat prostate tumors is androgen-
responsive, suggesting that KGF mediates the indirect con-
trol of epithelial cell proliferation by steroid hormones in this
organ. The possible role of KGF in androgen-driven devel-
opment has been further examined by in vitro organ culture
experiments. Administration of a KGF-neutralizing antibody
to the culture medium of in vitro grown newborn mouse
seminal vesicles and rat ventral prostates caused a striking
inhibition of both organ growth and epithelial branching
morphogenesis (339, 340), supporting the idea that KGF has
a major role during development of androgen-dependent
organs. Recent functional studies involving the promoter
region of the rat KGF gene have provided additional support
to the concept that KGF acts as an andromedin in the de-
velopment of male accessory sex glands. Thus, it has been
described that the rat KGF promoter activity is regulated by
androgens in prostate cancer cells (341). A search for the
nucleotide sequence corresponding to this promoter seg-
ment has revealed the presence of several half-sites of the
consensus HRE, but not a complete HRE that could mediate
the observed KGF induction by androgens. Similar findings
have been reported in the sequence of the human KGF pro-
moter, suggesting that AR contributes to the control of KGF
expression through these half-sites by cooperation with other
transcription factors binding adjacent promoter elements
(342). Finally, Thomson et al. (343) have demonstrated that
antiandrogens are able to block KGF-stimulated develop-
ment of the rat seminal vesicle and prostate. These results,
together with the finding that KGF regulates androgen target
genes in the prostate, suggest that KGF and AR signaling
may interact, although in vivo evidence has not been found
supporting the possibility that this growth factor is a direct
mediator of androgen action (343).

KGF has not as yet been definitively associated with tumor
processes, but a series of reports have suggested that aberrant

380 LÓPEZ-OTÍN AND DIAMANDIS Vol. 19, No. 4



expression of KGF or its receptor may be important in the
development and progression of human malignancies, in-
cluding prostate cancer (344-346). Thus, it has been proposed
that exon switching and activation of stromal and embryonic
FGF receptor genes, including KGF receptor, in prostate ep-
ithelial cells may be an event involved in progression toward
malignancy (344). On the other hand, abnormal expression of
KGF receptor in mesenchymal cells results in the creation of
a transforming autocrine loop, which leads to the appearance
of transformed foci formed by the cells expressing both KGF
and its receptor (345). Also of interest is the observation that
KGF can directly activate AR in the absence of androgens in
prostatic cancer cells, which means that the androgen sig-
naling chain may be activated by this mitogen in an andro-
gen-depleted environment. This aberrant activation of the
AR by KGF may therefore be one mechanism contributing to
progression of prostatic cancer to an androgen-independent
stage (346). Furthermore, recent studies have demonstrated
significant up-regulation of KGF expression in hormone-
resistant prostate cancer, while KGF expression was not de-
tected in benign prostatic hyperplasia (347). Finally, func-
tional assessment of human recombinant KGF in a
proliferation assay demonstrated a mitogenic effect of up to
100% on cultured prostatic epithelial cells, while other
growth factors such as FGF-2 did not have any effect (347).

The finding that KGF expression by stromal cells is hor-
monally regulated in normal and tumor prostatic cells has
prompted studies directed to delineate its possible role in
other hormone-dependent organs such as the human breast
in both normal and pathological conditions. Consistent with
this idea, it has been reported that, similar to observations in
other tissues, KGF is expressed in human mammary stromal
cells but not in epithelial cells (348). Also similar to other
tissues, KGF receptor mRNA was present in all analyzed
human mammary epithelial cell strains, but in none of the
mammary stromal cells. Subsequent analysis of temporal
and spatial expression of KGF during mouse mammary
gland development has revealed that KGF is expressed in
stroma during the ductal phase of mammary development as
well as in mammary preneoplastic cells, tumor cells, and
immortalized cell lines, although at lower levels than those
seen during normal mammary growth (349). On this basis,
it has been suggested that KGF could also be an important
paracrine growth factor in the mammary gland. In fact, ad-
dition of exogenous KGF to mammary epithelial cells
strongly stimulates their proliferation (350). In addition to
these in vitro experiments, KGF has also been shown to be a
potent growth factor for mammary epithelium in vivo. Thus,
intravenous injection of KGF in rats was found to cause a
dramatic proliferation of mammary epithelium in their
mammary glands that was rapidly reversible after cessation
of KGF treatment (351). Similar studies performed in mice
have revealed that the proliferative effects of KGF are even
more prominent than in rats, causing a striking cystic dilation
in the mammary glands, which is histologically similar to
that of fibrocystic disease in the human female breast (352).
This observation raises the interesting possibility that KGF
could also play a role in the development of human gross
cystic disease of the breast. It is also remarkable that the
mammary epithelium of lactating rats is resistant to the pro-

liferative action of KGF, which may be of importance in
relation to epidemiological observations showing that preg-
nancy in women decreases susceptibility to breast cancer.
Finally, Kitsberg and Leder (353) have recently reported that
transgenic mice carrying the KGF gene under the control of
the mouse mammary tumor virus promoter develop a severe
mammary and prostatic hyperplasia and mammary adeno-
carcinomas.

Based on these effects of KGF in rodents, it seemed likely
that KGF could also play a role in the aberrant proliferation
of mammary epithelial cells occurring during breast cancer
progression. Consistent with this idea, Koos et al. (354) re-
ported the presence of KGF in 12 of 15 breast carcinomas. An
additional study has detected amplification of the KGF re-
ceptor gene (also called bek gene) in breast carcinomas (355)
although no data are available on the possibility that am-
plification of this receptor is a prognostic indicator as shown
for other receptors amplified in breast cancer such as HER-
2/neu (50, 52). Bansal et al. (356) have confirmed and ex-
tended these studies concerning expression of KGF and KGF
receptor in human breast cancer. They have observed that the
expression of this androgen-induced growth factor and its
high affinity receptor FGF receptor-2-IIIb is usually retained
in breast carcinomas. This observation is in marked contrast
to the case of other growth factors such as FGF-1, -2, -3, and
-4, which are not expressed or are produced at very low levels
in these tumors, and suggests that KGF may influence the
progression of breast cancer through stimulation of cell di-
vision. Therefore, and although much more information is
required at both basic and clinical levels, the presence of KGF
mRNA in normal mammary gland and in breast tumors,
together with its potent proliferative effect, suggests that
KGF may be a paracrine growth factor important in the
control of proliferation of normal and neoplastic mammary
epithelium. In summary and on the basis of cellular local-
ization, hormonal regulation, and biological activities, KGF
may be added to the increasing list of growth factors with
potential roles in the progression of prostate and breast car-
cinomas.

VII. Theories of Breast and Prostate Cancer
Development: Role of Steroid Hormones

The development of the female breast and the male pros-
tate is highly dependent on the availability and action of
steroid hormones released by the gonads. Steroid hormones
regulate the expression of numerous growth factors that act
locally, mediating growth and differentiation signals. Two
growth factors, AIGF and KGF, have been described earlier
in some detail. It is not within the scope of this article to
review the growth factor literature as it relates to breast and
prostate development. Recent reviews describe growth fac-
tor families such as FGF, EGF, TGF, and IGF in breast and
prostate cancer (3, 318, 319).

Despite the extraordinary wealth of literature on breast
and prostate cancer, their pathogenesis is still not well un-
derstood. Familial breast cancer, which accounts for about
5% of all breast carcinomas, is due to mutations of a few
genes, two of which have already been cloned (69, 121).
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Similarly, a familial prostate cancer gene, responsible for
about 5% of all prostate cancers, has been mapped to chro-
mosome 1 but not as yet cloned (184, 357). In addition, the
existence of other prostate cancer-susceptibility loci has been
recently proposed (358). Nevertheless, the familial breast and
prostate cancer genes do not appear to play a major role in
the sporadic forms of these diseases. In the absence of any
other direct genetic leads, alternative models for breast and
prostate cancer pathogenesis have been developed.

Epidemiological studies conducted by many different
groups over the last 40 yr provided strong evidence that the
pathogenesis of breast and prostate cancer is linked to the
endogenous sex steroid hormones. Any model that describes
breast or prostate cancer pathogenesis must be able to ac-
commodate the unequivocal epidemiological knowledge
that has been accumulated. In the following paragraphs, we
will attempt to briefly review the epidemiological evidence
and then describe models for breast and prostate cancer
pathogenesis. Many authors have already proposed such
models, and the features described previously will be syn-
thesized in an attempt to present a more or less integrated
model for both cancers.

Breast cancer. If hormones are so intimately linked to breast
cancer pathogenesis, then groups of patients who receive
exogenous sex hormones for many years should provide
important information. Unfortunately, the impact of oral
contraceptives and hormone replacement therapy on breast
cancer remains controversial. This is in sharp contrast to the
endometrial cancer situation in which estrogens are clearly
inducing and progestins are clearly protecting against en-
dometrial cancer (359, 360). The last review of the vast lit-
erature on oral contraceptives has concluded that there is a
slightly increased risk of breast cancer in current users, but
this risk disappears after 10 yr from cessation (361). Inter-
estingly, women using oral contraceptive pills, when diag-
nosed, have less advanced cancer. The issue of postmeno-
pausal hormone therapy and breast cancer remains
controversial, but the consensus is that any impact is unlikely
to be great (362-365). Since these exogenously administered
hormones are given after the age of 18 yr, well after puberty,
it is reasonable to assume that the major changes in the breast
that predispose to breast cancer may have originated earlier
in life (see also below).

A few other pieces of epidemiological data are also im-
portant. Women are at a 100-fold higher risk for developing
breast cancer than men. This may underline, among other
possibilities, the importance of either the cycling changes of
steroid hormones during the menstrual cycle, the estrogen/
progestin dominance over androgen, or the protective effect
of androgen. Also, it is clear that the rate of increase of breast
cancer incidence slows down significantly after menopause
(366). This finding is one of the most compelling in impli-
cating ovarian steroids in the pathogenesis of breast cancer.
Other important findings implicating sex steroids include the
increase in breast cancer incidence associated with early age
of menarche and late age of menopause (1). An even more
direct effect is seen with bilateral oophorectomy, which re-
duces the risk of breast cancer, and the protection is greater

the earlier the ovaries are removed before menopause (1,
366).

Studies of migrants have clearly demonstrated that breast
cancer is not exclusively due to genetic factors. Women who
live in low-risk areas (e.g., Japan) do not increase their risk
after moving to high risk areas (e.g., United States). The risk
increases to that of the native population by the third gen-
eration (367). The environmental factor most intensely stud-
ied is diet. Although the issue is controversial, many believe
that high-fat, low-fiber, high-energy food, especially if con-
sumed early in life, may increase the risk (22, 41, 368, 369).
The link between diet and breast cancer may be the serum sex
hormone levels. Although the comparison of various serum
and urinary hormone levels between patients and controls
provided equivocal results (48, 370), other studies have dem-
onstrated reductions in estrogen levels after dietary modi-
fications (371, 372). Most studies favor the view that serum
estrogen levels are lower in the low-risk groups (e.g., Japa-
nese or Chinese women) in comparison to high-risk groups
(e.g., American or British women) (373-375). Recently, in-
creased emphasis was given not only to the steroid hormones
themselves but also to their metabolism. Fishman et al. (376,
377) reviewed the evidence linking increased C16 a-
hydroxylation of estradiol and the abnormal estrogen con-
jugation and increased cancer risk. On the other hand, Mich-
novicz et al. (378) showed that oral indole-3-carbinol
treatment in humans induces estrogen 2-hydroxylation
which, in turn, results in decreased concentrations of several
metabolites known to activate the estrogen receptor.

Among the newer observations and proposals regarding
breast cancer pathogenesis, the issue of prenatal-perinatal
exposures appears to be important. Trichopoulos and co-
workers (379, 380) hypothesized that exposure of the fetus to
high levels of estrogen during pregnancy may affect future
breast cancer risk; the higher the exposure, the higher the
risk. This proposal has not as yet been tested epidemiolog-
ically since it will require many decades of investigation, but
there is some indirect support from studies of cerebral asym-
metry and breast cancer risk (381). The importance of early
events in life and their connection to future breast cancer risk
have been reviewed recently (382). It appears that breast
cancer prevention programs should shift the focus to ado-
lescent years. Rat models of breast cancer indicate that ex-
posure to high fat (primarily in the form of n-6 polyunsat-
urated fatty acids) and/or estrogens during pregnancy
increases the risk of developing breast cancer in the offspring
(383, 384). Similarly, prostate cancer risk in rodents is in-
creased upon exposure of the fetus to small doses of estro-
gens, but the risk is decreased if higher doses are used (385).
Human studies have indicated that both preeclampsia and
prematurity significantly decrease prostate cancer risk, and
a suggestion has been made that these effects are likely re-
lated to the correlation of these conditions with levels of
steroid hormones and growth factors (386). Preeclampsia is
also negatively associated with breast cancer risk (387), while
high birth weight is a predictor of higher prostate cancer risk
(388) and breast cancer risk (389). Later in this review we will
borrow a concept proposed by Ross and Henderson (43) for
prostate cancer to incorporate prenatal exposures in our
model for breast cancer development. The last phenomeno-
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logical clue regarding breast cancer risk comes from studies
of breast structure in infants and adults. There are striking
differences between breast structures in infants (390). Russo
and colleagues (391, 392) reported dramatic changes in the
mammary gland during puberty and adolescence. During
pregnancy, complete differentiation of the glandular epithe-
lium takes place. The changes induced by pregnancy more
characteristic of differentiation than cell proliferation may
confer protection against breast cancer (392, 393).

The epidemiological clues summarized above draw our
attention to the following points: 1) Breast cancer is not a
purely genetic disease with the exception of a small propor-
tion of familial breast cancer; 2) Environmental factors either
acting alone or in association with genetic factors are likely
very important; 3) Endogenous and exogenous sex hormones
appear to be linked to the pathogenesis. The fact that exog-
enous hormones have no dramatic effects suggests that the
endogenous hormonal milieu is very important especially
early in life; 4) It appears that the risk is established at a very
early stage, e.g., during prenatal, neonatal, and pubertal life

and is continuously modified during the entire lifespan by
pregnancy, exogenous hormones, and lifestyle. All these con-
siderations have been included in the schematic diagram of
Fig. 3, which was developed based on models proposed by
Adami et al. (366), Nandi et al. (371), and Pike et al. (394), and
by Ross and Henderson (43) for prostate cancer.

Central to the model is the presence in breast tissue of a
population of target cells that are either susceptible or are
already transformed during puberty but remain dormant.
The population of target cells can increase by proliferation or
decrease by differentiation. Proliferation signals may be gen-
erated by steroid hormones released from the ovaries or by
exogenously administered hormones. Such signals may be
direct, affecting steroid hormone receptor-positive cells. Al-
ternatively, steroid hormone receptor-positive cells may re-
lease growth factors that act upon target cells that are steroid
hormone receptor-negative. Such a model accommodates the
clinical observation of occurrence of steroid hormone recep-
tor-positive and -negative breast tumors (371). The sex hor-
mone-proliferating pressure on target cells may be variable

FIG. 3. Model explaining the pathogenesis of breast cancer. For discussion see text. SHR, Steroid hormone receptors.
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between individuals (genetic component) and may be mod-
ified by diet and lifestyle. The differences in sex hormone
levels in serum between patients and controls may reflect this
proliferative pressure which, if persistent for many years,
may increase the chances of cancer development. Differences
in serum sex steroid levels may also reflect a situation of low
set point of the ‘gonadostat.‘ The gonadostat is a feedback
loop mechanism that regulates the sex hormone concentra-
tion in blood through a complicated circuit involving the
hypothalamus, pituitary, and ovaries. The gonadostat set
point of the fetus may be influenced by the levels of sex
hormones in the maternal circulation during pregnancy (43).
Target cells may undergo terminal differentiation, a process
that is enhanced during pregnancy. Postmenopausally, the
risk decreases due to either induced cell apoptosis and/or
atrophy. The target cells of breast tissue are the luminal
epithelial cells from which more than 85% of the spontaneous
breast cancers originate. Although the precise changes and
mechanisms involved regarding breast cancer development
are not known, it is clear that the proliferative pressure in-
tensifies dramatically during puberty and continues
throughout life.

Prostate cancer. Similar to the situation in breast cancer, pros-
tate cancer is not purely a genetic disease with the exception
of about 5% of the familial prostate cancer cases. Work is in
progress to clone the familial prostate cancer susceptibility
genes (184, 357, 358). Most of the clues regarding prostate
cancer pathogenesis have also come from epidemiological
studies. There are only three well established risk factors for
prostate cancer: age, family history, and ethnic group/coun-
try of residence. Highest incidence is seen in African-Amer-
icans followed by white Americans. The lowest rates are seen
among Chinese and Japanese. The differences among white
and black Americans underline the genetic component of the
disease. Migrant studies have shown that there is no dra-
matic shift in prostate cancer incidence after migration from
a low risk (e.g., Japan) to a high risk (e.g., United States) area.
However, the risk increases to that of the native men within
a few generations. Similar to the situation with breast cancer,
it can be speculated that environmental factors play a crucial
role. Recent studies have focused on diet where a consistent
association, especially with fat, red meat, low fiber, and lev-
els of a-linolenic acid were seen (38, 39, 43, 48).

The role of hormones and especially androgens in the
pathogenesis of prostate cancer is not disputed. The most
convincing demonstration of androgen involvement is the
dramatic reduction of prostate cancer risk in prepubertal
castrates. Other studies have shown that African-Americans
have at least 10% higher circulating testosterone levels than
whites. The active metabolite of testosterone, dihydrotest-
osterone, is generated by the action of the enzyme 5a-
reductase. Studies have shown that Japanese and Chinese
men have substantially lower 5a-reductase activity than
American men, and this may account for the differences in
prostate cancer incidence. Additional risk factors for prostate
cancer include vasectomy, early first intercourse, large num-
ber of sexual partners, and history of sexually transmitted
disease (43).

It is well known that cell proliferation in the prostate is

controlled by testosterone after intracellular conversion to
dihydrostestosterone (43). There are two major peaks in pros-
tate growth in humans. At puberty, prostatic growth accel-
erates with appearance of PSA in serum when androgen
levels rise (395-397). At about the age of 50, a second increase
in prostatic growth occurs simultaneously with an increase
in the ratio of estrogens to androgens (398). Since receptors
for androgen, estrogen, and progesterone are present in the
prostate (395, 399), it can be assumed that all these hormones
affect prostate growth. Among the androgenic hormones,
dihydrotestosterone (DHT) is much more potent than tes-
tosterone in mediating prostate growth since patients with
deficiency in 5a-reductase enzyme possess very small pros-
tates that never develop prostate cancer (400). This finding
suggests that DHT but not testosterone is a major player in
prostate cancer pathogenesis and that the 5a-reductase en-
zyme is crucial in mediating DHT production. In addition to
this widely recognized role of androgens in prostate cancer,
several studies have indicated that estrogens, alone or syn-
ergizing with androgens, may be relevant to the etiology of
both benign prostatic hyperplasia and prostatic carcinoma
(401-404). Furthermore, recent studies have shown that func-
tions in the male reproductive system that were previously
ascribed to androgens are now known to be the result of
estrogen action (405). These data, together with the presence
of estrogen receptors in prostate, suggest that changes in the
hormonal milieu not specifically circumscribed to androgens
and concomitant changes in the steroid receptor profile in
normal prostate with aging should be taken in consideration
in the genesis of prostate cancer.

There are four major cell types in the prostate. The acinar
epithelial cells possess AR and keratinocyte growth factor
receptor and produce PSA. These cells are the origin of the
vast majority of prostate cancers. The basal epithelial cells
contain insulin-like growth factor receptors (IGF-R), epider-
mal growth factor receptors, and estrogen receptors. The
smooth muscle cells express a1-adrenergic receptors (a1-R)
and estrogen receptor. The prostatic fibroblasts express AR
and a variety of growth factors including insulin-like growth
factor II (IGF-II) and KGF. The 5a-reductase enzyme is lo-
calized in the fibroblasts (stroma) (395). Clearly, the prostatic
cells and the secreted growth factors create the mitogenic
microenvironment depicted in Fig. 4.

Our model for prostate cancer development is similar in
many respects to the one proposed for breast cancer. Impor-
tant aspects of the model include the existence of target cells
that are under proliferative pressure by DHT, either directly
or indirectly through growth factors. Higher DHT levels can
occur either through excess supply of testosterone [low go-
nadostat set point determined during uterine life as pro-
posed by Ross and Henderson (43)] or higher activity of
5a-reductase determined by genetic and/or dietary life-style
factors (39).

Different lines of evidence suggest that the initiating
events in prostate cancer appear very early during life. We
have calculated the tumor-doubling time of prostatic carci-
noma cells in vivo, shortly after radical prostatectomy and
subsequent follow-up of patients. Tumor-doubling times
vary between 67 and 600 days. Assuming a mean volume at
diagnosis of 5 3 109 tumor cells, we calculated how many
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years are necessary for one tumor cell to progress with con-
stant doubling to 5 3 109 cells, provided that the tumor-
doubling time is about 600 days. The time calculated is about
50 yr, suggesting that the tumor probably initiated around
the time of puberty. We speculated that the initiating event
in prostate cancer, and possibly in breast cancer, occurs dur-
ing the abrupt and massive increase of steroid hormone
production during puberty (406).

The central role of 5a-reductase enzyme in prostate cancer
pathogenesis derives from its ability to regulate levels of
DHT. Recently, a mutation in the 5a-reductase gene has been
reported that decreases the ability of the enzyme to convert
testosterone to DHT (407). Since this mutation is prevalent
among Asians, it has been postulated that it may be respon-
sible for the low risk of prostate cancer in this population.
More recently, other mechanisms of ‘functional hyperandro-
genism’ have been investigated, targeting the AR as the
important mediating molecule. The current status indicates
that the role of androgen in prostate cancer carcinogenesis is
usually mediated by normal, wild-type AR rather than by
mutated forms (408). However, an increasing number of AR
genetic defects conferring a gain of function upon the re-
ceptor have been described (85, 97, 101). In addition, variant

AR alleles containing variable CAG or GGC repeats have
different abilities to mediate the effects of androgens. The
hyperandrogenism and higher prostate cancer risk in blacks
(Africans and African-Americans) may be due to higher tes-
tosterone levels, higher 5a- reductase activity, and AR alleles
with higher activity due to a smaller number of CAG repeats
than whites (109). AR alleles with shorter GGC repeats ap-
pear to be associated with higher risk for prostate cancer,
presumably due to higher transactivation potential in me-
diating the effects of androgens. Unfortunately, it is still not
understood how the proliferating signals generated by ste-
roid hormones mediate genomic damage and in which genes
and at which time during a lifetime.

VIII. Conclusions

Although this is the first time that putative common fea-
tures of breast and prostate cancer are reviewed, there is
already a substantial body of recent literature dealing with
common epidemiological, genetic, biochemical, and mech-
anistic aspects of these two cancers. Incidence rates, lifetime
risks, death rates, ethnic trends, and country of residence are

FIG. 4. Model explaining the pathogenesis of prostate cancer. For more discussion see text.
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among the common epidemiological features. Similarly, di-
etary factors, especially high-fat and low-fiber nutrients, ap-
pear to play a major role in the pathogenesis of both cancers.
The central role of steroid hormones in the pathogenesis of
both cancers is not disputed. Once the gonads are removed
at an early age, the risk of both cancers decreases dramati-
cally. Blockade of hormone action later in life by pharma-
cological agents may confer primary prevention. Dietary fac-
tors appear to influence risk through alteration of steroid
hormone homeostasis. Once the role of dietary compounds
is more clearly defined, it may be possible to reduce risk by
modified diets and adoption of healthier life-styles (e.g.,
weight reduction and exercise) (10). Unfortunately, we do
not as yet have a clear understanding of how steroid hor-
mones induce breast or prostate cancer. In the last few years,
it has become apparent that steroid hormones exert their
actions by binding and activating transcription factors (the
steroid hormone receptor family) which, in turn, regulate a
large number of other genes. These other gene products
mediate additional events by acting as growth factors in an
autocrine/paracrine fashion. Steroid hormones with very
different biological activities (e.g., estrogens, progestins, an-
drogens) can be interconverted by action of enzymes. Tissues
that are traditionally thought to be responsive to one class of
such steroids are now known to contain receptors for other
classes (e.g., the breast has ARs in addition to estrogen and
progesterone receptors, and the prostate has estrogen and
progesterone receptors in addition to ARs). Recently, new
mechanisms of steroid hormone receptor action were pro-
posed and may revise the way we believe steroid hormones
work (409).

In this review, we have given examples of genes that are
altered in both breast and prostate cancer. These include the
AR gene as well as BRCA1 and BRCA2 genes. Since the
frequency of common genetic abnormalities is very low, the
basis for the hypothesis of common genetic features in both
cancers must be considered speculative and of a narrow
scope. Nevertheless, recent findings demonstrating a signif-
icantly elevated risk of prostate cancer among carriers of
BRCA1 or BRCA2 mutations (67, 68, 73, 74) have provided
additional support to previous epidemiological observations
describing associations between breast and prostate cancer
(11-13, 16, 17, 20, 21). Among the other features that we have
presented, the common biochemical alterations are of special
interest. The finding of proteins overproduced or underpro-
duced by tumors from both sources suggests that they might

be regulated by similar mechanisms, although other possi-
bilities cannot be ruled out. Thus, the dedifferentiation of
steroid-responsive breast or prostate cells may uncover com-
mon developmental processes (337) and shared expression of
proteins. Further studies directed to identify putative com-
mon regulatory pathways shared by the two tumors are
necessary to clarify whether the finding of biochemical sim-
ilarities may be relevant to the biology of these carcinomas.
Notably, all five proteins identified as being commonly ex-
pressed between the two cancers are androgen regulated and
appear to be good prognostic markers for breast cancer. This
may imply that either androgens have some protective effect
against breast cancer or that there is a subset of breast cancers
that is androgen dependent and has a better prognosis than
estrogen-dependent tumors. In this regard, Secreto and Zu-
moff (113) have suggested that hypertestosteronism is a con-
sistent feature of breast cancer patients. We anticipate that
the list of genes that are coexpressed in the breast and pros-
tate will grow further in the future. In fact, An et al. (410) have
reported the preliminary characterization of a novel gene
(UC28) overexpressed in prostate and breast cancers but not
in other tumors. Similarly, recent studies have shown that
prostate-specific membrane antigen and prostate-specific
glandular kallikrein, widely assumed to be specific prostatic
markers, are also produced by breast carcinomas (313, 315),
thus increasing the list of potential biochemical similarities
between both tumors.

The current theories for breast and prostate cancer devel-
opment attempt to incorporate hormonal, dietary, and other
factors into a common pathogenetic framework. One emerg-
ing common idea is that hormones appear to influence risk
during the prenatal life, and they continue to do so through-
out life but especially during puberty. Clearly, we will need
more detailed descriptions on how hormones influence risk,
which are the genes involved, and whether these genes are
structurally altered or their expression is modified by envi-
ronmental factors. We hope that the common features of
breast and prostate cancer that we have highlighted (Table
3) will trigger interest in finding more connections between
these two cancers and ultimately lead to strategies for com-
mon diagnostic procedures, prevention, monitoring, and cures.
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López-Otı́n C, Sawyer L 1996 Arachidonic acid binds to apoli-
poprotein D: implications for the protein’s function. FEBS Lett
366:53-56

252. Zeng C, Spielman AI, Vowels BR, Leyden JL, Bielmann K, Preti
G 1996 A human axillary odorant is carried by apolipoprotein D.
Proc Natl Acad Sci USA 93:6626-6630

253. Haagensen CD 1971 The relationship of cystic disease to carcinoma
of the breast. In: Haagensen CD (ed) Diseases of the Breast. W.B
Saunders, Philadelphia, pp 168-172

254. Bruzzi P, Dogliotti L, Naldoni C, Bucchi L, Costantini M, Cicog-
nani A,, Torta M, Buzzi GF, Angeli A 1997 Cohort study of as-
sociation of risk of breast cancer with cyst type in women with gross
cystic disease of the breast. Br Med J 314:925-928

255. Mazoujian G, Haagensen DE 1990 The immunopathology of gross
cystic disease fluid proteins. Ann NY Acad Sci 586:188-197

256. Sánchez LM, Vizoso F, Dı́ez-Itza I, López-Otı́n C 1992 Identifi-
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1993 Expression of pepsinogen C in human breast tumours and
correlation with clinicopathologic parameters. Br J Cancer 68:637-
640

303. Duffy MJ 1996 Proteases as prognostic markers in cancer. Clin
Cancer Res 2:613-618

304. Vizoso F, Sánchez LM, Dı́ez-Itza I, Merino AM, López-Otı́n C
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