Multiple human tissue kallikreins are regulated by lympho-epithelial Kazal-type inhibitor and digest desmoglein 1

IV. rLEKTI inhibition of hKs

Table 4. Inhibitory profile of rLEKTI1-6

Carla A. Borgoño¹, lacovos P. Michael¹, Nahoko Komatsu¹, Georgia Sotiropoulou², Arumugam Jayakumar³, Hua-Kang Wu³, Gary L. Clayman^{3,4}, Sachiko I. Blaber⁵, Michael Blaber⁵, Stephen D. Mikolajczyk⁶, Eleftherios P. Diamandis¹

1. Dept. of Laboratory Medicine & Pathobiology, University of Toronto & Dept. of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada. 2. Dept. of Pharmacy, School of Health Sciences, University of Patras, Patra, Greece. 3. Dept. of Head and Neek Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. 4. Dept. of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA. 4. Dept. of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA. 5. Dept. of Biomatical Sciences, College of Medicine, Florida State University, Tallahasse, FL, USA. 6. Hybritech Incorporated, a subsidiary of Beckman Coulter, Inc., San Dige, CA, USA.

Background

- Stratum corneum (SC) desquamation requires proteolysis of desmosomes by trypsin-like and chymotrypsin-like serine proteases (SP)¹
- Serine protease inhibitors (SPI) regulate SC desquamation as evidenced by the SP/SPI imbalance observed in Netherton syndrome (NS)^{2,3,4}
 - NS is caused by nonsense mutations in *serine* protease inhibitor Kazal-type 5 [SPINK5; encodes lympho-epithelial Kazal-type inhibitor (LEKTI)]
 The decrease in LEKTI expression/activity leads
 - to unopposed SP activity resulting in over desquamation
- Among SC proteases implicated in desquamation are human tissue kallikreins (hKs), 15 secreted SP with trypsin-like and/or chymotrypsin-like specificitv⁵
- Most kallikreins (i.e. kallikreins 1, 4-8, 10, 13, 14) are expressed in the stratum granulosum (SG) at the mRNA and/or protein level^{6,7} within lamellar granules (e.g. hK5, hK7, hK8)^{8,9} and secreted to the intercellular spaces of the SC
- To date, hK5 and hK7 have been shown to digest desmosomal proteins¹⁰:
 - corneodesmosin (CDSN)
 - desmocollin 1 (DSC1)
 - desmoglein 1 (DSG1)
- hK5 and hK7 are inhibited by SPI that co-localize to the SG and SC11,12,13:
 - Lympho-epithelial Kazal-type inhibitor (LEKTI)
 - <u>Secretory leukocyte protease inhibitor (SLPI)</u>
 Elafin / protease inhibitor 3
 - α₂-macroglobulin like-1 (A2ML1)

Aim

To examine the potential contribution of multiple hKs (hK1, hK5, hK6, hK13 and hK14) present in the SC to desquamation by assessing their: 1) regulation by SC serine protease inhibitors and 2) digestion of desmoglein 1

References

- Komatsu N, et al. J Invest Dermatol. 2002;118(3):436-43
- Kontasta IV, et al. J Invest Dermatol. 2002; 116(3):436-43. Descargues; P et al. Nat Genet. 2005; 37: 56-65. Hachem J-P, et al. J Invest Dermatol. 2006 (online publication) Borgono CA, et al. Mol Cancer Res. 2004;2(5):257-80. Komatsu N, et al. J Invest Dermatol. 2003; 121(3):542-9.

- Komatsu N, et al. Br J Dermatol. 2005;153(2):274-81. Ishida-Yamamoto A, et al. J Invest Dermatol. 2004;122(5):1137-44
- Ishida-Yamamoto A, et al. J Invest Dermatol. 2005;124(2):360-6. Caubet C, et al. J Invest Dermatol. 2004;122(5):1235-44.
- Schechter NM, et al. Biol Chem. 2005;386(11):1173-84. Franzke CW, et al. J Biol Chem. 1996;271(36):21886-90

- Laxmikanthan, G et al. Proteins. 2005; 58: 802-814. Bernett, MJ et al. J Biol Chem. 2002; 277: 24562-70. Michael, IP et al. J Biol Chem. 2005; 280: 14628-14635.

Sotiropoulou, G et al. Oncol Res 2003; 13: 381-391 Felber, LM et al. Biol Chem. 2005; 386: 291-298. Jayakumar, A et al. Diot Crient. 2009, 360, 291-276.
 Jayakumar, A et al. Protein Expr Purif. 2004; 35: 93-101.
 Schechter, NM et al. Biol Chem. 2005; 386: 1173-1184.
 Raghunath, M et al. J Invest Dermatol. 2004: 123: 474-483.

- Materials & Methods
- arks. 7-Amino-4-methylicoumarin (AMC) peptide substrates Boc-Val-Pro-Arg-AMC, H-Pro-Phe-Arg-AMC, Boc-Gin-Ala-Arg were purchased from Bachem Bioscience and MeOSuc-Ala-Ala-Pro-Val-AMC was obtained from Calbiochem AMC, use purchased trans incomes motiones and techoica Ani Ani-Yo Van AMC, was ditated trans classification detection of the second se as previously described²
- a processo ancience. Marche habitato assay, Individual MS, (12nd d MC, 1M2, 1M5, 1M1) and M14 or 30M d M16) uses pre-inclusion d uringi concentrations of LICIT Integretes (b Abith), S23 (0 1 2 a) and edite (b 1 2 a) (b 1 a) d optimal barls for dimen-sion of the stress of the
- In vitro digestion experiments. Individual NKs were incubated with SLPI, rLEKTI fragments and DSG1/Fc at 37°C. Reactions were monitored over time by reducing SDS-PAGE followed by SNex-staining (for SLPI and DSG1/Fc) or transferred to introductions embranes and prober with anti-LEKTI math C11G4 (or fLERTI fragments).
- Intercence immediates and puedon immediates internet in total processing and procesing and processing and processing and processing and proce

Results

HDa 66.3 -55.4 -

^{38.5} 31 = 21.5 -

3.5 -

I. Secretory leukocyte protease inhibitor (SLPI) and Elafin do not inhibit hKs

Table 1. Inhibitory profile of SLPI

Protease (nM) Molar ratio SLPI (nM) Residual Activity (%) Inhibition (%)

	(Protease:SLPI)			
Elastase (18)	1:5	90	0.2	99.8
hK1 (12)	1:100	1200	100.6	-0.6
hK5 (12)	1:100	1200	103.0	-3.0
hK6 (12)	1:100	1200	94.0	6.0
hK13 (12)	1:100	1200	120.0	-20.0
hK14 (12)	1:100	1200	91.9	8.1

Table 2. Inhibitory profile of elafin

Molar ratio	Elafin	Desides I Astrony (0/)	
(Protease: Elailit)	(nM)	Residual Activity (%)	Inhibition (%)
1:2	24	0.2	99.8
1:100	1200	103.2	-3.2
1:100	1200	102.4	-2.4
1:100	1200	100.3	-0.3
1:100	1200	101.4	-1.4
1:100	1200	99.6	0.4
	1:2 1:100 1:100 1:100 1:100 1:100	1:2 24 1:100 1200 1:100 1200 1:100 1200 1:100 1200 1:100 1200 1:100 1200 1:100 1200	1:2 24 0.2 1:100 1200 103.2 1:100 1200 102.4 1:100 1200 100.3 1:100 1200 101.4 1:100 1200 99.6

II. Digestion of SLPI by hKs

+	<u>hK1</u> <u>hK5</u>	<u>hK6 hK13 hl</u>	<u>114</u> } bKs	Figure 1. SDS-PAGE analysis of SLPI (500ng) after incubation with hK1, hK5, hK6, hK13 and hK14 (50ng) for 24 hours at 37°C. SLPI and individual hKs were alone incubated alone ("SLPI -" lanes). Reactions were terminated and
-	451	452 454 456	+ Intact SLPI 453 455 457 ↓ Cleaved SLPI	separated by SDS-PAGE followed by Silver staining. Yellow arrowheads (<) indicate SLPI fragments. The position of molecular weight standards (kDa) is indicated on the left.

hK	hK-generated SLPI fragment	N-terminal sequence	hK cleavage site	Location of cleavag
hK1, hK6, hK14	S1/2/3/4/5	Y ²¹ KKPE	R ²⁰ ↓Y ²¹	1 st WAP ² domain
hK6, hK14	S6/7	M73LNPPN	L72 M73	2 nd WAP domain
1. Numbering starts fro 2. WAP: whey acidic pr	m mature SLPI sequence rotein domain, four-disulf	(Genbank accessio ide core domain	n no. NP_003055)	

of cleavage

hł

Figure 2. Immunodetection of a) rLEKTI1-6, b) rLEKTI6-9' and c) rLEKTI9-12 after incubation with individual hKs. rLEKTI fragments (10ng) were incubated with hKs (1ng) in hK reaction buffer for various time points (0, 1, 4, 6, 24 hours) at 37°C. Reactions were terminated and separated by SDS-PAGE followed by Western blotting using α -LEKTI mAb 1C11G6. rLEKTI fragments were incubated alone for 24 hours in each hK reaction buffer ("-hK" lanes). Red arrowheads (\langle indicate intact rLEKTI fragments; green arrowheads (<) denote degraded rLEKTI fragments. The position of molecular weight standards (kDa) is indicated on the *left*.

	Mechanism	(nM)	(nmol L ⁻¹ min ⁻¹)	Km (mM)	Ki (nM)	R ²
hK1	No inhibition					
		0	2884 ± 35	0.46 ± 1.91E-02		
		12	1140 ± 18	0.93 ± 4.00E-02	0.05 - 0.00	0.00
hK5	o Mixed	24	1028 ± 44	1.88 ± 0.16	2.35 ± 0.22	0.99
		60	350 ± 15	3.72 ± 0.26		
		0	912 ± 9	0.23 ± 1.21E-02		
- bV 4	Non-	12	653 ± 11	0.29 ± 1.94E-02	21.50 ± 1.24	0.07
mee	competitive	24	580 ± 9	0.33 ± 2.03E-02	21.37 ± 1.24	0.77
		60	266 ± 6	0.43 ± 2.97E-02		
		0	777 ± 12	0.48 ± 2.54E-02		
bV1	2 Mixed	12	712 ± 10	0.57 ± 2.50E-02	24 12 ± 2.92	0.09
IIKI	3 Mixed	24	534 ± 7	0.64 ± 2.46E-02	24.13 ± 3.02	0.70
		60	506 ± 8	0.82 ± 3.50E-02		
Tab	le 5. Inhib	itory pro	ofile of rLEK	(TI6-9′		
		LEKTI6-9'	Vmax			-1
пк	Mechanism	(nM)	(nmol L ⁻¹ min ⁻¹)	KM (MM)	KI (NM)	К.
hK1	No inhibition					
hK1	No inhibition	- 0	- 2829 ± 34	0.44 ± 2.06E-02		-
hK1	No inhibition	- 0 12	- 2829 ± 34 1640 ± 20	0.44 ± 2.06E-02 0.67 ± 2.68E-02		-
hK1 hK5	No inhibition Mixed	0 12 24	- 2829 ± 34 1640 ± 20 1079 ± 24	0.44 ± 2.06E-02 0.67 ± 2.68E-02 1.41 ± 7.21E-02	- 4.68 ± 0.66	-
hK1 hK5	No inhibition Mixed	- 0 12 24 60	2829 ± 34 1640 ± 20 1079 ± 24 451 ± 21	0.44 ± 2.06E-02 0.67 ± 2.68E-02 1.41 ± 7.21E-02 2.96 ± 2.37E-02	4.68 ± 0.66	- 0.98
hK1 hK5	No inhibition Mixed	- 0 12 24 60 0	2829 ± 34 1640 ± 20 1079 ± 24 451 ± 21 1186 ±15	$\begin{array}{c} .\\ 0.44 \pm 2.06E\text{-}02\\ 0.67 \pm 2.68E\text{-}02\\ 1.41 \pm 7.21E\text{-}02\\ 2.96 \pm 2.37E\text{-}02\\ 0.44 \pm 2.13E\text{-}02 \end{array}$	- 4.68±0.66	0.98
hK1 hK5	No inhibition Mixed Non-	- 0 12 24 60 0 12	$\begin{array}{c} - \\ 2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \end{array}$	$\begin{array}{c} .\\ 0.44\pm2.06E\cdot02\\ 0.67\pm2.68E\cdot02\\ 1.41\pm7.21E\cdot02\\ 2.96\pm2.37E\cdot02\\ 0.44\pm2.13E\cdot02\\ 0.36\pm2.06E\cdot02\\ \end{array}$	- 4.68±0.66 47.58+1.40	0.98
hK1 hK5 hK6	No inhibition Mixed Non- competitive	0 12 24 60 0 12 22 24	2829 ± 34 1640 ± 20 1079 ± 24 451 ± 21 1186 ±15 958 ±14 709 ± 13	$\begin{array}{c} .\\ 0.44\pm2.06\text{E}\text{-}02\\ 0.67\pm2.68\text{E}\text{-}02\\ 1.41\pm7.21\text{E}\text{-}02\\ 2.96\pm2.37\text{E}\text{-}02\\ 0.44\pm2.13\text{E}\text{-}02\\ 0.36\pm2.06\text{E}\text{-}02\\ 0.32\pm2.47\text{E}\text{-}02\\ \end{array}$	4.68 ± 0.66 47.58 ± 1.40	0.98 0.99
hK1 hK5 hK6	No inhibition Mixed Non- competitive	- 0 12 24 60 0 12 24 60	$\begin{array}{c} 2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \\ 709 \pm 13 \\ 501 \pm 4 \end{array}$	$\begin{array}{c} 0.44\pm2.06E\cdot02\\ 0.67\pm2.68E\cdot02\\ 1.41\pm7.21E\cdot02\\ 2.96\pm2.37E\cdot02\\ 0.44\pm2.13E\cdot02\\ 0.36\pm2.06E\cdot02\\ 0.32\pm2.47E\cdot02\\ 0.32\pm1.07E\cdot02\\ \end{array}$	4.68 ± 0.66 47.58 ± 1.40	0.98 0.99
hK1 hK5 hK6	No inhibition Mixed Non- competitive	- 0 12 24 60 0 12 24 60 0	$\begin{array}{c} 2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \\ 709 \pm 13 \\ 501 \pm 4 \\ 1069 \pm 24 \end{array}$	$\begin{array}{c} .\\ 0.44 \pm 2.06E \cdot 02 \\ 0.67 \pm 2.68E \cdot 02 \\ 1.41 \pm 7.21E \cdot 02 \\ 2.96 \pm 2.37E \cdot 02 \\ 0.44 \pm 2.13E \cdot 02 \\ 0.36 \pm 2.06E \cdot 02 \\ 0.32 \pm 2.47E \cdot 02 \\ 0.32 \pm 1.07E \cdot 02 \\ 0.32 \pm 1.07E \cdot 02 \\ 0.51 \pm 3.83E \cdot 02 \end{array}$	- 4.68±0.66 47.58±1.40	0.98 0.99
hK1 hK5 hK6	No inhibition Mixed Non- competitive Non-	- 0 12 24 60 0 12 24 60 0 12 24 60 0 12	$\begin{array}{c} 2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \\ 709 \pm 13 \\ 501 \pm 4 \\ 1069 \pm 24 \\ 905 \pm 20 \end{array}$	$\begin{array}{c} .\\ 0.44 \pm 2.06E\cdot02\\ 0.67 \pm 2.68E\cdot02\\ 1.41 \pm 7.21E\cdot02\\ 2.96 \pm 2.37E\cdot02\\ 0.34 \pm 2.13E\cdot02\\ 0.36 \pm 2.06E\cdot02\\ 0.32 \pm 2.47E\cdot02\\ 0.32 \pm 2.47E\cdot02\\ 0.32 \pm 1.07E\cdot02\\ 0.51 \pm 3.83E\cdot02\\ 0.42 \pm 3.44E\cdot02\\ \end{array}$	- 4.68 ± 0.66 47.58 ± 1.40	- 0.98 0.99
hK1 hK5 hK6 hK13	No inhibition Mixed Non- competitive Non- competitive	- 0 12 24 60 0 12 24 60 0 12 24 24 24	$\begin{array}{c} 2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \\ 709 \pm 13 \\ 501 \pm 4 \\ 1069 \pm 24 \\ 905 \pm 20 \\ 788 \pm 8 \end{array}$	$\begin{array}{c} .\\ 0.44\pm2.06E\cdot02\\ 0.67\pm2.68E\cdot02\\ 1.41\pm7.21E\cdot02\\ 2.96\pm2.37E\cdot02\\ 0.36\pm2.06E\cdot02\\ 0.32\pm2.47E\cdot02\\ 0.32\pm2.47E\cdot02\\ 0.32\pm1.07E\cdot02\\ 0.51\pm3.83E\cdot02\\ 0.42\pm3.44E\cdot02\\ 0.40\pm1.45E\cdot02\\ \end{array}$	- 4.68 ± 0.66 47.58 ± 1.40 222.12 ± 9.51	0.98 0.99 0.98
hK1 hK5 hK6 hK13	No inhibition Mixed Non- competitive Non- competitive	- 0 12 24 60 0 12 24 60 0 12 24 60 0 12 24 60	$2829 \pm 34 \\ 1640 \pm 20 \\ 1079 \pm 24 \\ 451 \pm 21 \\ 1186 \pm 15 \\ 958 \pm 14 \\ 709 \pm 13 \\ 501 \pm 4 \\ 1069 \pm 24 \\ 905 \pm 20 \\ 788 \pm 8 \\ 757 \pm 12 \\ 1000 \pm 100 \\ 1000 \pm 1000 \\ 1000 $	$\begin{array}{c} 0.44\pm 0.66\pm 0.2\\ 0.67\pm 2.68\pm 0.2\\ 1.41\pm 7.21\pm 0.2\\ 2.96\pm 2.37\pm 0.2\\ 0.36\pm 2.13\pm 0.2\\ 0.32\pm 2.47\pm 0.2\\ 0.32\pm 2.47\pm 0.2\\ 0.32\pm 1.07\pm 0.2\\ 0.51\pm 3.33\pm 0.2\\ 0.42\pm 1.45\pm 0.2\\ 0.40\pm 1.45\pm 0.2\\ 0.51\pm 2.68\pm 0.2\\ \end{array}$	- 4.68 ± 0.66 47.58 ± 1.40 222.12 ± 9.51	- 0.98 0.99 0.98
hK1 hK5 hK6 hK13	No inhibition Mixed Non- competitive Non- competitive	- 0 12 24 60 0 12 24 60 0 12 24 60 0 0	$\begin{array}{c} 2829\pm 34\\ 1640\pm 20\\ 1079\pm 24\\ 451\pm 21\\ 1186\pm 15\\ 958\pm 14\\ 709\pm 13\\ 501\pm 4\\ 1069\pm 24\\ 905\pm 20\\ 788\pm 8\\ 757\pm 12\\ 4186\pm 123\\ \end{array}$	$\begin{array}{c} 0.44\pm 2.06E-02\\ 0.67\pm 2.68E-02\\ 1.41\pm 7.21E-02\\ 2.96\pm 2.37E-02\\ 0.44\pm 2.13E-02\\ 0.36\pm 2.06E-02\\ 0.32\pm 2.47E-02\\ 0.32\pm 2.47E-02\\ 0.32\pm 2.47E-02\\ 0.42\pm 3.44E-02\\ 0.42\pm 3.44E-02\\ 0.42\pm 3.44E-02\\ 0.51\pm 2.68E+02\\ 0.58\pm 0.58E+02\\ 0.58\pm 0$	- 4.68 ± 0.66 47.58 ± 1.40 222.12 ± 9.51	0.98 0.99 0.98
hK1 hK5 hK6 hK13	No inhibition Mixed Non- competitive Non- competitive Non-	- 0 12 24 60 0 12 24 60 0 12 24 60 0 12 24 60 0 12	$\begin{array}{c} 2829\pm 34\\ 1640\pm 20\\ 1079\pm 24\\ 451\pm 21\\ 1186\pm 15\\ 958\pm 14\\ 709\pm 13\\ 501\pm 4\\ 1069\pm 24\\ 958\pm 8\\ 757\pm 12\\ 4186\pm 123\\ 1578\pm 24\\ \end{array}$	$\begin{array}{c} 0.44\pm2.06E-02\\ 0.67\pm2.68E-02\\ 1.41\pm7.21E-02\\ 2.96\pm2.37E-02\\ 0.34\pm2.13E-02\\ 0.32\pm2.07E-02\\ 0.32\pm2.47E-02\\ 0.32\pm2.47E-02\\ 0.32\pm1.07E-02\\ 0.42\pm3.44E-02\\ 0.42\pm3.44E-02\\ 0.41\pm1.48E-02\\ 0.51\pm2.68E-02\\ 0.25\pm2.07E-02\\ 0.18\pm1.13E-02\\ \end{array}$	- 4.68 ± 0.66 47.58 ± 1.40 222.12 ± 9.51	0.98 0.99 0.98
hK1 hK5 hK6 hK13 hK14	No inhibition Mixed Non- competitive Non- competitive	- 0 12 24 60 0 12 24 60 0 12 24 60 0 12 24 60 0 12 24	$\begin{array}{c} 2829\pm 34\\ 1640\pm 20\\ 1079\pm 24\\ 451\pm 21\\ 1186\pm 5\\ 958\pm 14\\ 709\pm 13\\ 501\pm 4\\ 1069\pm 24\\ 905\pm 20\\ 788\pm 8\\ 757\pm 12\\ 4186\pm 123\\ 1578\pm 24\\ 739\pm 17\\ \end{array}$	$\begin{array}{c} 0.44\pm2.06E-02\\ 0.67\pm2.68E-02\\ 1.41\pm7.21E-02\\ 2.96\pm2.37E-02\\ 0.34\pm2.13E-02\\ 0.36\pm2.06E-02\\ 0.32\pm1.07E-02\\ 0.32\pm1.07E-02\\ 0.51\pm3.33E-02\\ 0.40\pm1.48E-02\\ 0.651\pm2.68E-02\\ 0.651\pm2.68E-02\\ 0.18\pm1.13E+02\\ 0.32\pm2.07E+02\\ 0.38\pm2.07E+02\\ 0.38\pm2.07E+0$	$\begin{array}{c} .\\ 4.68 \pm 0.66\\ \\ 47.58 \pm 1.40\\ \\ 222.12 \pm 9.51\\ \\ 6.26 \pm 0.37\end{array}$	0.98 0.99 0.98 0.98
hK1 hK5 hK6 hK13 hK14	No inhibition Mixed Non- competitive Non- competitive	- 0 12 24 60 0 12 24 60 0 12 24 60 0 12 24 60	$\begin{array}{c} 229\pm 34\\ 1640\pm 20\\ 1079\pm 24\\ 451\pm 21\\ 1186\pm 15\\ 958\pm 14\\ 709\pm 13\\ 501\pm 4\\ 1069\pm 24\\ 905\pm 20\\ 788\pm 8\\ 757\pm 12\\ 4186\pm 123\\ 1578\pm 24\\ 739\pm 17\\ 719\pm 3\end{array}$	$\begin{array}{c} 0.44\pm 2.06E\ 02\\ 0.67\pm 2.68E\ 02\\ 1.41\pm 7.21E\ 02\\ 2.96\pm 2.37E\ 02\\ 0.34\pm 2.13E\ 02\\ 0.32\pm 2.47E\ 02\\ 0.42\pm 3.48E\ 02\\ 0.42\pm 3.48E\ 02\\ 0.51\pm 2.68E\ 02\\ 0.51\pm 2.68E\ 02\\ 0.32\pm 2.74E\ 02\\ 0.32\pm 2.74E\ 02\\ 0.33\pm 1.78E\ 02\\ \end{array}$	4.68 ± 0.66 47.58 ± 1.40 222.12 ± 9.51 6.26 ± 0.37	0.98 0.99 0.98 0.98

adi	e 6. Innic	люгу рго	THE OF FLEK	119-12		
hK	Mechanism	rLEKTI9-12 (nM)	Vmax (nmol L ⁻¹ min ⁻¹)	Km (mM)	Ki (nM)	R ²
hK1	No inhibition	-				-
		0	2795 ± 33	0.44 ± 1.87E-02		
		12	1144 ± 26	$0.75 \pm 4.85E-02$	0.75 . 0.04	0.00
nk5	Mixed	24	823 ± 24	1.66 ± 1.10E-02	2.75±0.24	0.99
		60	707 ± 62	5.09 ± 6.44E-02		
		0	937 ± 16	0.14 ± 7.68E-03		
LV/	Non-	12	893 ± 17	0.28 ± 1.96E-02	195.32 ± 11.66	0.99
IIKO	competitive	etitive 24 698±11	698 ± 11	0.24 ± 1.76E-02		
		60	593 ± 8	0.25 ± 1.77E-02		
		0	1064 ± 19	$0.50 \pm 2.98E-02$		
hK13	Non-	60	868 ± 11	$0.40 \pm 2.06E-02$	408.63 ± 16.47	0.99
	competitive	120	832 ± 17	$0.52 \pm 3.41E-02$		
		0	3480 ± 34	$0.18 \pm 6.07E-03$		
LV14	Mund	12	2608 ± 61	0.23 ± 1.57E-02	10.24 + 1.25	0.00
116.14	IMIXED	24	1901 ± 20	0.38 ± 1.08E-02	10.20 ± 1.25	0.98
		60	1326 ± 29	0.68 ± 4.05E-02		

Table 7. Inhibitory profile of rLEKTI12-15

_							
ĸ	Mechanism	rLEKTI12-15 (nM)	Vmax (nmol L ⁻¹ min ⁻¹)	Km (mM)	Ki (nM)	\mathbb{R}^2	
1	No inhibition			-	-		
15	Mixed	0 12 24 60	6279 ±113 5991 ± 77 5598 ± 92 4796 ± 66	0.27 ± 0.015 0.32 ± 0.012 0.47 ± 0.024 0.65 ± 0.026	21.80 ± 2.40	0.99	
6	No inhibition	-	-	-			
13	No inhibition						
14	No inhibition	-			-		

LEKTI inhibitory domains a) 1 *** 2** - 3 ***** 4 ***** 5 ***** 6 ***** 7 ***** 8 ***** 9 *****10*****11*****12*****13*****14*****15 0 DRRRRRRRRRRRR b) hK1 hK6 hK13 hK14

Figure 3. Summary of rLEKTI inhibition of hKs. a) Organization of LEKTI inhibitory domains (Genbank accession no. NP_006837). Blue boxes denote Kazal-type inhibitory domains; green boxes represent non-Kazal-type domains. The * symbol indicates the location of putative pro-protein convertase motifs (R-Xn-KR↓). The identity of the amino acid at the P1 position is indicated below each domain. b) Boxes indicate strength of LEKTI inhibition of individual hKs based on Ki values. White boxes indicate no inhibition; gray boxes indicate moderate inhibition (Ki > 200nM); black boxes represent strong inhibition (Ki < 50nM).

For further information

V. Digestion of DSG1 by hKs

Figure 4, SDS-PAGE analysis of DSG1/Fc after incubation with a) hK1, b) hK5, c) hK6, d) hK13 Figure 4. SDS-PAGE analysis of DSG1/Fc after inclustation with a JNK1, b) NK5, a) NK6, a) DK6, d) NK3 and JK6, d) NK1 and a logistrated by SDS-PAGE inclusted with NK5 (d) NK3 and JK6, d) NK1 and JK6, d) NK1

Table 8. hK cleavage sites within DSG1

hK	hK-generated DSG1/Fc fragment	N-terminal sequence	hK cleavage site1	Location of cleavage site within DSG1		
hK1	1a	1198IRQEP	K ¹⁹⁷ ↓I ¹⁹⁸	2 nd CAD ² domain		
	1b	N446KVTKE	K445	4th CAD domain		
hK5	5a/d	D ²⁴³ GGADG	R ²⁴² D ²⁴³	2 nd CAD domain		
	5b	Y ⁴²³ VMGNN	R422 Y423	4th CAD domain		
	5c	V ¹⁴⁷ LDIND	R ¹⁴⁶ V ¹⁴⁷	1 st CAD domain		
hK6	6a	A ³⁶⁹ SKI	K368 🖌 A369	3rd CAD domain		
	6b	Y ⁴²³ VMGNN	R422 D423	4th CAD domain		
hK14	14a/b	S ⁵²⁹ SEPGN	Y ⁵²⁸ ↓S ⁵²⁹	Between 4th CAD domain & TM ³ region		
 Numbering starts from desmoglein 1 preproprotein sequence (Genbank accession no. NP_001933) 						

2. CAD: cadherin domain, DSG1 3. TM: transmembrane region

Summarv

- Multiple hKs represent specific targets of LEKTI, but not of SI PI or elafin
 - rLEKTI1-6, 6-9' and 9-12 strongly inhibit hK5 and hK14 and to a slightly lesser extent hK6 and hK13, but do not affect hK1 activity
 - rLEKTI12-15 only inhibits hK5 and not other hKs studied
- 2. rLEKTI6-9' is degraded by hK6 and rLEKTI9-12 by hK6 and hK14, which may lead to inactivation
- 3. hK6 and hK14 may inactivate SLPI via cleavage at L⁷²
- 4. Desmoglein 1 is a potential in vivo substrate of hK5, hK6 and hK14, but not of hK1 or hK13

Conclusion

In addition to hK5 and hK7, other hKs including hK6, hK13 and hK14 are implicated in SC desquamation due to their specific inhibition by LEKTI and/or digestion of desmoglein 1