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Charting the genetic interaction map of a cell
Michael Costanzo1, Anastasia Baryshnikova1, Chad L Myers2,
Brenda Andrews1 and Charles Boone1
Genome sequencing projects have revealed a massive catalog

of genes and astounding genetic diversity in a variety of

organisms. We are now faced with the formidable challenge of

assigning functions to thousands of genes, and how to use this

information to understand how genes interact and coordinate

cell function. Studies indicate that the majority of eukaryotic

genes are dispensable, highlighting the extensive buffering of

genomes against genetic and environmental perturbations.

Such robustness poses a significant challenge to those seeking

to understand the wiring diagram of the cell. Genome-scale

screens for genetic interactions are an effective means to chart

the network that underlies this functional redundancy. A

complete atlas of genetic interactions offers the potential to

assign functions to most genes identified by whole genome

sequencing projects and to delineate a functional wiring

diagram of the cell. Perhaps more importantly, mapping

genetic networks on a large-scale will shed light on the general

principles and rules governing genetic networks and provide

valuable information regarding the important but elusive

relationship between genotype and phenotype.
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Introduction
The relationship between genotype and phenotype is

thought to be governed by complex networks of genetic

interactions [1]. A systematic approach to map these

networks is required to elucidate the genetic interactions

underlying disease and develop strategies for therapeutic

intervention [2]. The human genome, however, is incred-

ibly complex with an individual’s genome estimated to

contain on the order of �4 million genetic variants and
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polymorphisms [3]. Given this degree of complexity,

determining how critical alleles and polymorphisms com-

bine to manifest a phenotype is a daunting task [4]. A

systematic approach involves the mapping of genetic

interaction networks in genetically tractable model organ-

isms amenable to large-scale gene deletion or gene

knockdown technology [5]. Preliminary evidence

suggests that at least some genetic interactions and

genetic network properties emerging from model organ-

ism studies are conserved in higher organisms

[6,7�,8��,9��,10�,11�]. Thus, mapping genetic interaction

networks in simple systems should provide an invaluable

resource and serve as an important reference to facilitate

experimental and comparative analyses of genetic inter-

actions in complex organisms, including humans.

Here, we review progress made to map the genetic

interaction network for the budding yeast, Saccharomyces
cerevisiae. We discuss the importance of a complete

genetic interaction network as a wiring diagram for dis-

covering gene and pathway function and as an atlas for

predicting analogous networks in more complex systems.

Defining genetic interactions
A genetic interaction refers to an unexpected phenotype

not easily explained by combining the effects of individ-

ual genetic variants [12]. For example, in the case where

cell fitness is the phenotype of choice, a digenic inter-

action is identified when a double mutant shows a sig-

nificant deviation in fitness compared to the expected

fitness associated with the combination of the two single

mutant phenotypes. Thus, quantitative measurement of

genetic interactions based upon fitness requires measure-

ments of the single mutant phenotypes, an estimate of the

expected double mutant phenotype, and a measurement

of the observed double mutant phenotype. For yeast

fitness, the expected double mutant phenotype can be

modeled as a multiplicative combination of the single

mutant phenotypes [13��,14–16] (Figure 1).

Negative genetic interactions refer to a more severe

fitness defect than expected, with the extreme case being

synthetic lethality. Synthetic lethal interactions, which

occur when both single mutants are viable but the double

mutant is lethal, are of particular interest because they

often identify genes that impinge on a common, essential

biological function [17,18] (Figure 1). On the other hand,

positive interactions refer to double mutants with a less

severe fitness defect than expected, and can be further

subclassified into a variety of categories [15,16,19,20�]
www.sciencedirect.com
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Figure 1

(a) Negative Genetic Interactions

(b) Positive Genetic Interactions (”symmetric”) (c) Positive Genetic Interactions (”asymmetric”)
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A graphical representation of how genetic interactions are inferred from a quantitative phenotype, such as fitness. (a) Negative genetic

interactions. The expected fitness of the resultant AB double mutant based on a multiplicative model is 0.35 (0.7 � 0.5). Negative deviations from

the expected fitness are scored as either synthetic sick or synthetic lethal interactions. (b) Symmetric positive interactions. The measured fitness

of the AB double mutant (0.5) is greater than the multiplicative expectation (0.25) indicating a positive genetic interaction. This interaction is

classified as symmetric because the two single mutants (A and B) and the resultant double mutant (AB) exhibit an equivalent fitness defect (0.5)

relative to wild-type (1.0). Symmetric interactions of this kind are enriched among members of the same nonessential protein complex. (c)

Asymmetric positive interactions. In this scenario, single mutants and double mutants differ in fitness. Positive deviations from expectation along

with single mutant fitness comparisons allow the classification of asymmetric positive interactions into different subcategories, including masking

and suppression [13��,19]. Modified from [5].
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(Figure 1). The symmetric class describes a type of

positive interaction whereby the phenotypes associated

with the single mutants and resultant double mutant are

quantitatively indistinguishable. Conversely, the asym-

metric class consists of those interactions in which the

strength of the phenotypic effect varies between single

and double mutants.

Importantly, different types of positive genetic inter-

action categories are associated with different biological

interpretations. For example, genetic interactions be-

tween genes encoding proteins of the same nonessential

protein complex tend to be symmetric [13��,19]

(Figure 1). While symmetric interactions are indicative

of complex membership, asymmetric interactions have

the potential to define gene order within specific bio-

chemical pathways [13��,19]. Thus, when measured accu-

rately genetic interactions offer the potential to infer

biochemical relationships between gene products and

elucidate how different pathways and complexes relate

to one another to modulate cellular functions.

Large-scale mapping of genetic interactions
in S. cerevisiae
S. cerevisiae serves as a powerful model system for dis-

secting the fundamental properties of eukaryotic cells at a

molecular level. Indeed it shares many of the basic cell

division and growth functions of human cells and numer-

ous genes are conserved from yeast to human. Systematic

deletion analysis demonstrated that the majority of the

�6000 budding yeast genes are individually dispensable,

with only a relatively small subset (�20%) required for

viability [21,22]. These findings highlight the extensive

buffering of genomes against genetic perturbations [4].

Genome-scale screens for genetic interactions that impact

the fitness of a cell or organism are an effective means to

chart the genetic network that underlies this functional

redundancy [18,23,24,25��].

The development of synthetic genetic array (SGA) meth-

odology first enabled the systematic mapping of genetic

interactions [17]. SGA is an automated method that

combines either arrays of nonessential gene deletion

mutants [21,22] or conditional alleles of essential genes

with robotic manipulations for high-throughput construc-

tion of haploid yeast double mutants and the scoring of

genetic interactions [17]. Application of SGA created a

large-scale genetic interaction map of a cell revealing

fundamental properties of genetic networks and illustrat-

ing the effectiveness of genetic interactions for organizing

genes into specific biological pathways and complexes

[18,25��].

In a complementary approach, diploid synthetic lethal

analysis by microarray (dSLAM) takes advantage of the

unique DNA sequences — molecular barcodes — associ-

ated with each mutant strain in the yeast deletion collec-
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tion to map synthetic lethal interactions by measuring the

relative abundance of double mutants in a mixed popu-

lation [26]. dSLAM has been used to map synthetic

genetic interactions between genes involved in DNA

integrity and histone modification [24,27]. A third method

for genetic interaction discovery, called genetic inter-

action mapping (GIM), was used to examine interactions

between genes involved in mRNA processing [23]. GIM

represents a hybrid of SGA and dSLAM technologies

because, in a manner reminiscent of SGA, double mutants

are generated by mating and sporulation. However,

similar to dSLAM, all steps are performed in a pooled

format and interactions are identified by comparing bar-

code microarray hybridization intensities between double

mutants and a reference population [23].

Mapping quantitative genetic interaction
networks
Early genetic interaction studies were based on the

binary assessment of cellular fitness (sick/lethal versus

no fitness defect) [17,18]. Although synthetic genetic

relationships of this kind are informative, quantitative

analysis enables identification of more subtle inter-

actions and construction of higher resolution genetic

networks encompassing both negative and positive inter-

actions. For example, liquid growth profiling was used to

accurately measure genetic interactions between a sub-

set of genes involved in DNA replication and repair

[13��]. In addition to identifying positive and negative

genetic interactions, positive interactions were also dif-

ferentiated into five distinct subclasses associated with

different biological interpretations [13��]. In another

example, fitness was measured from fluorescence-

labeled populations of wild-type cells mixed with either

single or double mutant yeast strains to map a quanti-

tative genetic interaction network for genes encoding

components of the 26S proteasome [20�]. These various

assays have also been applied to quantify genetic inter-

actions between duplicated genes [28–31].

Phenotypes other than fitness have also been quantified

to measure genetic interactions. These include theoreti-

cal analysis of biomass yield [15] and quantitative invasive

growth assays [19], used to examine the genetic networks

underlying yeast metabolism and filamentous growth,

respectively. Gene expression has also been used as a

phenotypic readout to map genetic interactions among

signal transduction pathway components in other organ-

isms [32,33]. The studies mentioned above highlight the

utility of quantitative genetic interaction analysis for

functional analysis of pathways and protein complexes

in fine detail. However, while they provide high-resol-

ution interaction measurements, these methodologies are

not easily amenable to genome-scale studies.

The S-score was designed for the analysis of SGA data

derived from relatively small subsets of the yeast deletion
www.sciencedirect.com
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mutant collection [14] and it has been applied toward

functionally biased groups of genes to define networks

underlying specific biological processes [34–37]. While

providing an estimate of the confidence with which

genetic interactions can be assigned, the S-score does

not reflect either single or double mutant fitness, which

are critical measurements for detailed interpretation of

genetic interactions [20�].

A recent study combined SGA with a new genome-scale

quantitative scoring methodology to examine �5.4

million gene pairs covering �30% of the S. cerevisiae
genome [25��,38]. This large-scale endeavor measured

single and double mutant yeast fitness to uncover

�170 000 genetic interactions (both negative and

positive) and provide the first glimpse of a quantitative,

genome-scale genetic interaction network for a eukaryo-

tic cell. Consistent with the degree distribution of other

biological networks [39], the majority of genes are spar-

sely connected in the genetic interaction network while a

small number have many interactions and serve as net-

work ‘hubs’. While most genetic interactions occur be-

tween genes involved in the same biological process

[18,25��], network hubs tend to be pleiotropic and inter-

act with many functionally diverse sets of genes [25��].
Importantly, genes annotated to chromatin/transcription,

secretion and membrane trafficking showed a significant

number of genetic interactions with numerous different

processes indicating that genes involved in these func-

tions are important for mediating cross-process connec-

tions in the genetic network [25��].

Interpreting negative and positive genetic
interactions
Studies over the past several years have examined the

relationship between genetic and physical interaction

datasets. In general, genetic and protein–protein inter-

actions are largely orthogonal reflecting the ability of

negative genetic interactions, such as synthetic lethality,

to connect genes lying in different, functionally redun-

dant pathways, whereas physical interactions identify

gene products functioning within the same pathway or

protein complex [18,40] (Figure 2a,b). However, early

analysis of smaller scale genetic interaction networks

showed that, unlike negative interactions, which do not

overlap physical interactions, positive genetic inter-

actions can connect genes encoding members of the same

protein complex or pathway [13��,34,35]. These obser-

vations led to a generalized conclusion suggesting that

positive genetic interactions connect members of the

same protein complex or pathway while negative inter-

actions occur between biological pathways and protein

complexes (e.g. see [34,35,41,42]) (Figure 2b).

However, several observations suggest that the relation-

ship between genetic and physical networks is more

complex than previously appreciated [25��,38]. First,
www.sciencedirect.com
genes encoding members of the same essential pathway

or complex tend to be connected by negative rather

than positive interactions [38,43]. This small subset of

negative interactions showed significant overlap with

protein–protein interactions reflecting the so-called

within-pathway synthetic lethal genetic interactions

[44] (Figure 2c,d). Second, while previous small-scale

studies (e.g. see [34,35,42]) implied that physical inter-

actions correspond better with positive as opposed to

negative interactions, systematic comparison of gen-

ome-scale datasets revealed the extent of overlap with

protein–protein interactions to be similar for both positive

and negative genetic interactions [25��]. Thus, although

positive interactions tend to connect members of the

same protein complex, the vast majority does not overlap

with physical interactions, indicating that positive inter-

actions usually connect genes in different pathways and

define functional relationships between the pathways

(Figure 2d). Indeed, extraction of a positive genetic

interaction network that connects complexes from a glo-

bal dataset reveals a network of loss-of-function suppres-

sion in which the fitness defect associated with the loss-

of-function of one allele is suppressed by the loss-of-

function of another allele [38]. Consistent with these

observations, in silico studies in yeast and E. coli revealed

that positive interactions often connect functionally dis-

tinct metabolic pathways [45].

Global genetic interaction profiles are a rich
source of functional information
A genetic interaction profile — the set of genetic inter-

actions for a particular gene — provides a rich phenotypic

signature that reflects gene function. In other words,

genes belonging to the same pathway or protein complex

normally share similar genetic interaction profiles. As a

result, grouping genes according to their pattern of

genetic interaction, using various clustering algorithms

(e.g. see [46]), is a simple and effective way to define

pathways and complexes and, therefore, these methods

provide a powerful tool for predicting gene function

precisely (Figure 2b and d) [18]. The wealth of functional

information encoded in genetic interaction profiles

suggests that an unbiased, genome-wide survey of genetic

interactions should, in principle, assign most genes to a

specific pathway and define the functional relationships

between pathways, thereby establishing a detailed func-

tional map of the cell.

The ability of genetic interaction profiles to identify

coherent functional clusters was exploited to construct

a global network that partitions genes with similar inter-

action patterns together (Figure 3) [25��]. Because inter-

actions are derived from phenotypic measurements, a

network based on genetic interaction profile similarity

uncovered broad relationships between diverse biological

processes illustrating the inherent functional organization

of the cell. Genes displaying tightly correlated profiles
Current Opinion in Biotechnology 2011, 22:66–74
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Figure 2
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A representation of the molecular mechanisms underlying genetic interactions. (a) Between pathway genetic interactions describe negative

interactions that can arise from disruption of parallel nonessential pathways that converge on a common essential biological process. (b) (top panel)

Simple relationship between genetic and physical interactions. Negative interactions (red lines) tend to occur between nonessential pathways and

complexes while genes belonging to the same nonessential pathway or complex can be connected by positive genetic interactions (green lines).

Dashed lines denote physical interactions. (bottom panel) In addition to a network view, genetic interactions can also be visualized as a clustered

matrix where genes sharing similar patterns of negative (red) and positive (green) interactions are grouped together. Genetic interaction profiles are

functionally informative and grouping genes according to their pattern of genetic interaction identifies pathway and complex membership. (c) Within

pathway negative genetic interactions may occur when mutations combine to decrease the activity of the same essential pathway or complex. (d)

Increasingly complex patterns of negative (red lines) and positive (green lines) are revealed as we continue to identify genetic interactions and move

toward completion of a genome-wide genetic interaction map. For example, negative interactions connect components of the same essential protein

Current Opinion in Biotechnology 2011, 22:66–74 www.sciencedirect.com
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Figure 3

A functional map of the cell. (a) A correlation-based network connecting genes with similar genetic interaction profiles. Genetic interaction profile

similarities were measured for all gene pairs by computing Pearson correlation coefficients (PCC) and gene pairs whose profile similarity exceeded a

PCC > 0.2 threshold were connected in the network. Genes (nodes) sharing similar patterns of genetic interactions (edges) are proximal to each other

in two-dimensional space, while less similar genes are positioned further apart. (b)–(c) Magnification of the functional map resolves cellular processes

with increased specificity. Subnetworks correspond to the indicated region of the global map described in (a). Node color corresponds to specific

biological processes. Color schemes are unique to each panel in the figure. (d) Further magnification reveals modules corresponding to specific

pathways and complexes connected by negative and positive genetic interactions. Subsets of genes belonging to the amino acid biosynthesis and

uptake region of the network (c) were selected. Nonessential (circular) and essential (diamond) genes are represented as nodes grouped according to

profile similarity and edges represent negative (red) and positive (green) genetic interactions. Characterized genes are shown in green and genes with

previously unknown function are indicated in blue. Modified from [25��].
formed readily discernable clusters corresponding to dis-

tinct biological processes and the relative distance be-

tween distinct clusters appeared to reflect shared

functions (Figure 3a).

The genetic interaction network is structured such that

interrogation of the global genetic map enables dissection
(Figure 2 Legend Continued) complex and positive interactions occur betwe

shaped nodes represent nonessential and essential genes, respectively. Dash

interaction profiles reveals functional relationships between genes. Modified

www.sciencedirect.com
of broad biological processes into distinct yet interdepen-

dent gene cohorts (Figure 3b). For example, in one region

of the global network, distinct gene clusters involved in

various processes such as DNA replication, recombination

and repair, microtubule biogenesis, RNA processing and

RNA decay are readily distinguishable (Figure 3b). In

another region of the global network, the related processes
en genes belonging to different protein complexes. Circular and diamond

ed lines indicate physical interactions. Similar to (b), clustering of genetic

from [5].

Current Opinion in Biotechnology 2011, 22:66–74
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of endoplasmic reticulum (ER)/Golgi traffic, endosome/

vacuole protein sorting, cell polarity, morphogenesis,

cell wall integrity, protein folding, glycosylation, and

ER-dependent protein degradation also clustered into well

delineated groups (Figure 3c).

At a more detailed level within the genetic network we

can view specific gene clusters that are linked by similar

patterns of negative (red) and positive (green) genetic

interactions (Figure 3d) [25��]. At this level of scrutiny,

genes exhibit a highly modular organization and, consist-

ent with theoretical studies [15], modules correspond to

discrete biological pathways and/or protein complexes

that are connected almost exclusively by a single type

of genetic interaction, either negative or positive

(Figure 3d). The modular nature of the genetic network

enables accurate functional predictions for poorly charac-

terized genes [25��]. For example, ECM30, UBP15, and

PAR32 had not been linked to Gap1 sorting previously;

however, they all share a similar genetic interaction

profile as Gap1 sorting pathway genes, showing negative

genetic interactions with genes involved in glutamate

biosynthesis and homoserine/chorismate/serine biosyn-

thesis but positive interactions with genes encoding

HOPS and CORVET protein complexes (Figure 3d).

The positive interactions linking the HOPS/CORVET

complexes and the Gap1 sorting pathway provide a clear

example of the between pathway connections often

observed for positive interactions (Figure 3d). The func-

tional link between ECM30, UBP15, PAR32 and the Gap1

sorting pathway, anticipated by genetic interactions, was

validated by mislocalization and reduced activity of the

Gap1 permease phenotypes observed in ecm30D, ubp15D,

and par32D deletion mutants. These findings suggested

that Ecm30, Ubp15, and Par32 are indeed novel members

of the Gap1 sorting pathway [25��].

Thus, a genome-wide genetic interaction network pro-

vides a multiscale view of functional connectivity within a

cell (Figure 3). On a global level, the genetic network

reveals inter-dependencies of general cellular processes.

At its most detailed level, genetic interactions define

membership of specific pathways and protein complexes

and identify genetic relationships between different

pathways, generating a functional wiring diagram of the

cell.

Genetic network conservation and
importance of a reference genetic network
Large-scale genetic interaction mapping techniques have

been developed for other unicellular organisms

[10�,11�,47�,48�] and were recently applied to examine

the conservation of genetic interactions between two

distantly related yeast species, S. cerevisiae and Schizosac-
charomyces pombe [10�,11�]. Despite hundreds of millions

of years of evolutionary separation, on the order of �30%

of the genetic interactions tested were found to be con-
Current Opinion in Biotechnology 2011, 22:66–74
served between the two yeast species [10�,11�]. More-

over, genetic interactions between budding yeast

orthologs have been recapitulated in worms [6,9��] and

mammalian cells [7�]. Indeed, with the development of

RNAi-based methods for gene knockdown studies in

mammalian cells [5], we anticipate that global mapping

of digenic interactions will enable detailed genetic net-

work analysis in various types of mammalian cells. For

example, genome-wide RNAi screens have identified

genetic interactions involving the RAS oncogene

[49�,50�].

Although the initial findings suggest that genetic inter-

actions can be conserved from yeast to higher organisms,

the extent to which individual genetic interactions are

conserved across evolutionary time remains unclear

[8��,51,52]. Despite this uncertainty, discovery of a cen-

tral and thus highly pleiotropic role for chromatin-related

and transcription-related genes in both the S. cerevisiae
[25��] and Caenorhabditis elegans genetic networks [8��]
provides evidence suggesting that network structure and

topology may be conserved across organisms. These hubs

in the worm network function as general buffers of

phenotypic variation because they are capable of enhan-

cing the phenotypic consequences associated with

mutations in numerous different genes [8��]. This finding

emphasizes the importance of identifying genes capable

of multiple genetic interactions since genetic network

hubs may act as general modifiers of genetic diseases in

humans [8��,53,54]. Given what appears to be a general

functional conservation of network hubs [8��,25��], the

yeast genetic network may serve as a template to guide

experimental and computational analyses as well as pre-

dict genetic interaction hubs in complex organisms where

genome-wide combinatorial perturbation analysis is more

technically challenging.

Expanding the phenotypic spectrum of
genetic interaction networks
Most large-scale studies have focused on fitness as the

primary phenotype to identify genetic interactions (e.g.

see [13��,18,23,25��,26]). In theory, all phenotypes are

measurable and amenable to genetic interaction analyses.

SGA methodology provides an efficient and systematic

means for combining mutations and can be readily

applied to identify additional genetic interactions that

do not result in overt fitness defects. For example, repor-

ter-gene constructs can be incorporated into the SGA

methodology to monitor specific transcriptional responses

in the �5000 deletion mutant backgrounds [55,56] and

also used as an alternative to fitness for uncovering

genetic interactions [57�]. Furthermore, combining

SGA technology with different cytological reporters

and high content screening (HCS) methodologies ident-

ifies mutant combinations that lack obvious growth

defects but elicit subtle yet unexpected cell biological

phenotypes [58,59]. Integrating SGA technology with
www.sciencedirect.com
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diverse and quantitative phenotypic assays will lead to

construction of high-resolution networks that provide

comprehensive genome coverage that may integrate

temporal and environmental influences to accurately

reflect global cellular functions.
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