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Transcriptomic analysis of autistic brain reveals
convergent molecular pathology
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Autism spectrum disorder (ASD) is a common, highly heritable
neurodevelopmental condition characterized by marked genetic
heterogeneity1–3. Thus, a fundamental question is whether autism
represents an aetiologically heterogeneous disorder in which the
myriad genetic or environmental risk factors perturb common
underlying molecular pathways in the brain4. Here, we demon-
strate consistent differences in transcriptome organization
between autistic and normal brain by gene co-expression network
analysis. Remarkably, regional patterns of gene expression that
typically distinguish frontal and temporal cortex are significantly
attenuated in the ASD brain, suggesting abnormalities in cortical
patterning. We further identify discrete modules of co-expressed
genes associated with autism: a neuronal module enriched for
known autism susceptibility genes, including the neuronal specific
splicing factor A2BP1 (also known as FOX1), and a module
enriched for immune genes and glial markers. Using high-
throughput RNA sequencing we demonstrate dysregulated splic-
ing of A2BP1-dependent alternative exons in the ASD brain.
Moreover, using a published autism genome-wide association
study (GWAS) data set, we show that the neuronal module is
enriched for genetically associated variants, providing independ-
ent support for the causal involvement of these genes in autism. In
contrast, the immune-glial module showed no enrichment for
autism GWAS signals, indicating a non-genetic aetiology for this
process. Collectively, our results provide strong evidence for con-
vergent molecular abnormalities in ASD, and implicate transcrip-
tional and splicing dysregulation as underlying mechanisms of
neuronal dysfunction in this disorder.

We analysed post-mortem brain tissue samples from 19 autism
cases and 17 controls from the Autism Tissue Project and the
Harvard brain bank (Supplementary Table 1) using Illumina micro-
arrays. For each individual, we profiled three regions previously impli-
cated in autism5: superior temporal gyrus (STG, also known as
Brodmann’s area (BA) 41/42), prefrontal cortex (BA9) and cerebellar
vermis. After filtering for high-quality array data (Methods), we
retained 58 cortex samples (29 autism, 29 controls) and 21 cerebellum
samples (11 autism, 10 controls) for further analysis (see Methods for
detailed sample description). We identified 444 genes showing signifi-
cant expression changes in autism cortex samples (DS1, Fig. 1b), and
only 2 genes were differentially expressed between the autism and
control groups in cerebellum (Methods), indicating that gene expres-
sion changes associated with autism were more pronounced in the
cerebral cortex, which became the focus of further analysis (Sup-
plementary Table 2). There was no significant difference in age, post
mortem interval (PMI), or RNA integrity numbers (RIN) between
autism and control cortex samples (Supplementary Fig. 1, Methods).

Supervised hierarchical clustering based on the top 200 differentially
expressed genes showed distinct clustering of the majority of autism
cortex samples (Fig. 1a), including one case that was simultaneously

found to have a 15q duplication (Methods, Supplementary Table 1),
which is known to cause 1% of ASD6. Cortex samples from ten of the
cases coalesced in a single tight-clustering branch of the dendrogram.
Clustering was independent of age, sex, RIN, PMI, co-morbidity of
seizures, or medication (Fig. 1a and Supplementary Fig. 2c). It is
interesting to note that the two ASD cases that cluster with controls
(Fig. 1a) are the least severe cases, as assessed by global functioning
(Supplementary Table 12). We observed a highly significant overlap
between differentially expressed genes in frontal and temporal cortex
(P 5 10244; Fig. 1b), supporting the robustness of the data and indi-
cating that the autism-specific expression changes are consistent
across these cortical areas. We also validated a cross section of the
differentially expressed genes by quantitative reverse transcription
PCR (RT–PCR) and confirmed microarray-predicted changes in
83% of the genes tested (Methods, Supplementary Fig. 2b). Gene
ontology enrichment analysis (Methods) showed that the 209 genes
downregulated in autistic cortex were enriched for gene ontology
categories related to synaptic function, whereas the upregulated genes
(N 5 235) showed enrichment for gene ontology categories implicated
in immune and inflammatory response (Supplementary Table 3).

To test whether these findings were replicable, and to further validate
the results in an independent data set, we obtained tissue from an
additional frontal cortex region (BA44/45) from nine ASD cases and
five controls (DS2; Supplementary Table 4). Three of the cases and all of
the controls used for validation were independent from our initial
cohort. Ninety-seven genes were differentially expressed in BA44/45
in DS2, and 81 of these were also differentially expressed in our initial
cohort (P 5 1.2 3 10293, hypergeometric test; Fig. 1b, c). Remarkably,
the direction of expression differences between autism and controls was
the same as in the initial cohort for all but 2 of the 81 overlapping
differentially expressed probes. Hierarchical clustering of DS2 samples
based on either the top 200 genes differentially expressed in the initial
cohort or the 81 overlapping genes showed distinct separation of cases
from controls (Supplementary Fig. 6). In addition, comparison of these
differentially expressed results with another, smaller study of the STG in
ASD7, revealed significant consistency at the level of differentially
expressed genes, including downregulation of DLX1 and AHI1
(Supplementary Table 5). Thus, differential expression analysis pro-
duced robust and highly reproducible results, warranting further
refined analysis.

We next applied weighted-gene co-expression network analysis
(WGCNA)8,9 to integrate the expression differences observed between
autistic and control cerebral cortex into a higher order, systems level
context. We first asked whether there are global differences in the
organization of the brain transcriptome between autistic and control
brain by constructing separate co-expression networks for the autism
and control groups (Methods). The control brain network showed
high similarity with the previously described human brain co-expression
networks (Supplementary Table 7), consistent with the existence of
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robust modules of co-expressed genes related to specific cell types and
biological functions8. Similarly, the majority (87%) of the autism
modules showed significant overlap with the previously described
human brain modules (Supplementary Table 6), indicating that many
features reflecting the general organization of the autism brain tran-
scriptome are consistent with that of the normal human brain.

The expression levels of each module were summarized by the first
principal component (the module eigengene), and were used to assess
whether modules are related to clinical phenotypes or other experi-
mental variables, such as brain region. Two of the control module
eigengenes (cM6, cM13) showed significant differences (P , 0.05)
between the two cortical regions as expected, whereas none of the
ASD modules showed any differences between frontal and temporal
cortex. This led us to explore the hypothesis that the normal molecular
distinctions between the two cortical regions tested were altered in
ASD compared with controls. Remarkably, whereas 174 genes were
differentially expressed between control BA9 and BA41 (false discovery
rate (FDR) , 1%), none of the genes were differentially expressed in the
same regional comparison among the ASD cases. This was not simply
an issue of statistical thresholds, as relaxing the statistical criteria for
differential expression to an FDR of 5% identified over 500 differentially

expressed genes in controls, and only 8 in ASD brains, confirming the
large difference observed in regional cortical differential gene expres-
sion between ASD cases and controls (Fig. 1d, Methods). Analysis of
differential expression from a data set10 of gene expression in devel-
oping fetal human brain showed a highly significant (P 5 5.8 3 1029)
overlap of differentially expressed genes with those found in controls in
this study, independently confirming that these genes differentiate
normal temporal and frontal lobes. We evaluated the homogeneity of
gene expression variance across the autism and control groups using
Bartlett’s test (Methods) which indicated that increased variance was
not the major factor responsible for the striking difference in regional
gene expression between ASD and controls (Supplementary Fig. 7 and
Supplementary Data).

These data suggest that typical regional differences, many of which
are observed during fetal development10, are attenuated in frontal and
temporal lobe in autism brain, pointing to abnormal developmental
patterning as a potential pathophysiological driver in ASD. This is
especially interesting in light of a recent anatomical study of five cases
with adult autism which demonstrated a reduction in typical ultra-
structural differences between three frontal cortical regions in autism11.
Together, these independent studies provide both molecular and
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Figure 1 | Gene expression changes in autism cerebral cortex a, Heat map of
top 200 genes differentially expressed between autism and control cortex
samples. Scaled expression values are colour-coded according to the legend on
the left. The dendrogram depicts hierarchical clustering based on the top 200
differentially expressed genes. The top bar (A/C) indicates the disease status:
red, autism; black, control. The bottom bars show additional variables for each
sample: sex (grey, male; black, female), brain area (black, temporal; grey,
frontal), co-morbidity of seizures (green, autism case with seizure disorder; red,
autism case without seizure disorder; black, control), age, RNA integrity
number (RIN) and post mortem interval (PMI). BA, Brodmann’s area. The
corresponding scale for quantitative variables is shown on the left. b, Top, Venn
diagram depicting the overlap between genes differentially expressed in frontal
and temporal cortex. Bottom, Venn diagram describing the overlap between
genes differentially expressed in the initial cohort (DS1) and the replication
cohort (DS2). Differential expression in the initial cohort was assessed at an
FDR , 0.05 and fold change .1.3. The statistical criteria were relaxed to

P , 0.05 for the replication data set because it involved fewer samples.
c, Expression fold changes for all genes differentially expressed in the initial
cohort are plotted on the x-axis against the fold changes for the same genes in
the replication cohort on the y-axis. Green, genes downregulated in the autism
group in both data sets; red, genes upregulated in the autism group in both data
sets; grey, genes with opposite direction of variation in the two data sets.
Horizontal lines show fold change threshold for significance. d, Diagram
depicting the number of genes showing significant expression differences
between frontal and temporal cortex in control samples (top) and autism
samples (bottom) at FDR , 0.05 (left). The top 20 genes differentially
expressed between frontal and temporal cortex in control samples (right). All of
the genes shown are also differentially expressed between frontal and temporal
cortex in fetal midgestation brain10, but show no significant expression
differences between frontal and temporal cortex in autism. The horizontal bars
depict P values for differential expression between frontal and temporal cortex
in the autism and control groups.
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structural evidence suggesting a relative diminution of cortical regional
identity in autism.

To identify discrete groups of co-expressed genes showing transcrip-
tional differences between autism and controls, we constructed a co-
expression network using the entire data set, composed of both autism
and control samples (Methods). As previously shown for complex
diseases12,13 co-expression networks allow analysis of gene expression
variation related to multiple disease-related and genetic traits. We
assessed module eigengene relationship to autism disease status, age,
gender, cause of death, co-morbidity of seizures, family history of
psychiatric disease, and medication, providing a complementary
assessment of these potential confounders to that performed in the
standard differential expression analysis (Supplementary Table 9).

The comparison between autism and control groups revealed two
network modules whose eigengenes were highly correlated with disease
status, and not any of the potential confounding variables (Supplemen-
tary Table 9). We found that the top module (M12) showed highly
significant enrichment for neuronal markers (Supplementary Table 9),
and high overlap with two neuronal modules previously identified
as part of the human brain transcriptional network8: a PVALB1

interneuron module and a module of genes involved in synaptic func-
tion. The M12 eigengene was under-expressed in autism cases, indi-
cating that genes in this module were downregulated in the autistic
brain (Fig. 2). Consistent with the pathways identified to be down-
regulated in autism by differential expression analysis (Supplemen-
tary Table 3), the functional enrichment of M12 included the gene
ontology categories involved in synaptic function, vesicular transport
and neuronal projection.

Remarkably, unlike differentially expressed genes, M12 showed sig-
nificant overrepresentation of known autism susceptibility genes2

(Supplementary Table 10; P 5 6.1 3 1024), including CADPS2,
AHI1, CNTNAP2, and SLC25A12, supporting the increased power of
the network-based approach to identify disease-relevant transcrip-
tional changes. A further advantage of network analysis over standard
analysis of differential expression is that it allows one to infer the
functional relevance of genes based on their network position9. The
hubs of M12, that is, the genes with the highest rank of M12 member-
ship8, were A2BP1, APBA2, SCAMP5, CNTNAP1, KLC2, and CHRM1
(Supplementary Data). The first three of these genes have previously
been implicated in autism14–16, whereas the fourth is a homologue of
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Figure 2 | Gene co-expression modules associated with autism a, d, Heat
map of genes belonging to the co-expression module (top). Corresponding
module eigengene values (y-axis) across samples (x-axis) (bottom). Red,
autism; grey, controls. b, e, Visualization of the M12 and M16 modules,

respectively. The top 150 connections are shown for each module. Genes with
the highest correlation with the module eigengene value (that is, intramodular
hubs) are shown in larger size. c, f, Relevant gene ontology categories enriched
in the M12 and M16 modules.
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the autism susceptibility gene CNTNAP2 (ref. 17). We highlight the
group of genes most strongly connected to the known ASD genes
(Supplementary Fig. 5) and emphasize the downregulation of several
interneuron markers, such as DLX1 and PVALB, as candidates for
future genetic and pathologic investigations.

The second module of co-expressed genes highly related to autism
disease status, M16, was enriched for astrocyte markers and markers of
activated microglia (Supplementary Table 9), as well as for genes
belonging to immune and inflammatory gene ontology categories
(Fig. 2). This module, which was upregulated in ASD brain, showed
significant similarity to two modules identified in previous studies of
normal human brain8: an astrocyte module and a microglial module.
Consistent with this functional annotation, two of the hubs of the M16
module were known astrocyte markers (ADFP, also known as PLIN2,
and IFITM2).

One of the hubs of the M12 module was A2BP1, a neural- and muscle-
specific alternative splicing regulator18 and the only splicing factor
previously implicated in ASD16. Because A2BP1 was downregulated
in several ASD cases (Supplementary Fig. 8), this observation provided
a unique opportunity to identify potential disease-relevant A2BP1
targets. Whereas A2BP1-regulated alternative exons have been pre-
dicted genome-wide19, few genes have been experimentally validated
as A2BP1 targets20. To identify potential A2BP1-dependent differential
splicing events in ASD brain, we performed high-throughput RNA
sequencing (RNA-Seq) on three autism samples with significant
downregulation of A2BP1 (average fold change by quantitative RT–
PCR 5 5.9) and three control samples with average A2BP1 levels. We
identified 212 significant alternative splicing events (Supplemen-
tary Data). Among these, 36 had been defined19 as predicted
targets of A2BP1/2, which represents a highly significant overlap
(36/176; P 5 2.2 3 10216). In addition, five previously validated
A2BP1 targets showed evidence of alternative splicing, four of which
(ATP5C1, ATP2B1, GRIN1 and MEF2C) were confirmed as having
differential splicing between ASD samples with low A2BP1 expression
and control samples, indicating that we were able to identify a high
proportion of the expected A2BP1-dependent differential splicing
events. We also observe that alternative exons with increased skipping
in ASD relative to control cases are significantly enriched for A2BP1
motifs in adjacent, downstream intronic sequences (P 5 1.09 3 1027,
Fisher’s exact test), consistent with previous data19.

The top gene ontology categories enriched among ASD differential
splicing genes highly overlapped with the gene ontology categories
found to be enriched in the M12 module (Fig. 3b). In addition,
A2BP1 target genes showed enrichment for actin-binding proteins
and genes involved in cytoskeleton reorganization (Fig. 3b). Among
top predicted A2BP1-dependent differential splicing events (Fig. 3a)
are CAMK2G, which also belongs to the M12 module, as well as
NRCAM and GRIN1. The latter are proteins involved in synaptogenesis,
in which allelic variants have been associated with autism and schizo-
phrenia, respectively21,22.

RT–PCR assays confirmed a high proportion (85%) of the tested
differential splicing changes involving predicted A2BP1 targets (Sup-
plementary Fig. 8). We further tested the differential splicing events
validated by RT–PCR in three independent ASD cases with decreased
A2BP1 levels and confirmed the predicted changes in alternative splic-
ing (Supplementary Fig. 8), indicating that the observed differential
splicing events are indeed associated with reduced A2BP1 levels, rather
than due to inter-individual variability. The RNA-Seq data thus pro-
vides validation of the functional groups of genes identified by co-
expression analysis, and evidence for a convergence of transcriptional
and alternative-splicing abnormalities in the synaptic and signalling
pathogenesis of ASD.

To test whether our findings are more generalizable, and determine
whether the autism-associated transcriptional differences observed
are likely to be causal, versus collateral effects or environmentally-
induced changes, we tested whether our co-expression modules or

the differentially expressed genes show enrichment for autism genetic
association signals. M12 showed highly significant enrichment for
association signals (P 5 5 3 1024), but neither M16 nor the list of
differentially expressed genes showed such enrichment (Fig. 4). As a
negative control, we performed the same set-enrichment analysis using
two GWAS studies for non-psychiatric disease performed on the same
genotyping platform: a genome-wide association for hair colour23, and
a GWAS study of warfarin maintenance dose24 finding no significant
enrichment of the association signal (Fig. 4b, Supplementary Fig. 4).
These results indicate that (1) M12 consists of a set of genes that are
supported by independent lines of evidence to be causally involved in
ASD pathophysiology, and (2) the upregulation of immune response
genes in the autistic brain observed by us and others25 has no evidence
of a common genetic component.

Our system-level analysis of the ASD brain transcriptome demon-
strates the existence of convergent molecular abnormalities in ASD for
the first time, providing a molecular neuropathological basis for the
disease, whose genetic, epigenetic, or environmental aetiologies can
now be directly explored. The genome-wide analysis performed here
significantly extends previous findings implicating synaptic dysfunc-
tion, as well as microglial and immune dysregulation in ASD6 by pro-
viding an unbiased systematic assessment of transcriptional alterations
and their genetic basis. We show that the transcriptome changes
observed in ASD brain converge with GWAS data in supporting the
genetic basis of synaptic and neuronal signalling dysfunction in ASD,
whereas immune changes have a less pronounced genetic component
and thus are most likely either secondary phenomena or caused by
environmental factors. Because immune molecules and cells such as
microglia have a role in synaptic development and function26, we specu-
late that the observed immune upregulation may be related to abnormal
ongoing plasticity in the ASD brain. The striking attenuation of gene
expression differences observed here between frontal and temporal cor-
tex in ASD is likely to represent a defect of developmental patterning and
provides a strong rationale for further studies to assess the pervasiveness
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of transcriptional patterning abnormalities across the ASD brain. We
also demonstrate for the first time alterations in differential splicing
associated with A2BP1 levels in the ASD brain, and show that many
of the affected exons belong to genes involved in synaptic function.
Finally, given current evidence of genetic overlap between ASD and
other neurodevelopmental disorders including schizophrenia and atten-
tion deficit hyperactivity disorder (ADHD), the data provide a new
pathway-based framework from which to assess the enrichment of gen-
etic association signals in other allied psychiatric disorders.

METHODS SUMMARY
Brain tissue. Post-mortem brain tissue was obtained from the Autism Tissue
Project and the Harvard Brain Bank as well as the MRC London Brain bank for
Neurodegenerative Disease. Detailed information on the autism cases included in
this study is available in Methods.
Microarrays and RNA-seq. Total RNA was extracted from 100 mg of tissue using
a Qiagen miRNA kit according to the manufacturer’s protocol. Expression profiles
were obtained using Illumina Ref8 v3 microarrays. RNA-seq was performed on
the Illumina GAIIx, as per the manufacturer’s instructions. Further detailed
information on data analysis is available in Methods.

Full detailed Methods accompany this paper as Supplementary Information.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | GWAS set enrichment analysis a, GWAS set enrichment analysis
using the discovery AGRE cohort from ref. 27. For each gene set (DEX,
differentially expressed genes; M12 and M16) the null distribution of the
enrichment score generated by 10,000 random permutations is shown (x-axis)
and the enrichment score for the gene set is depicted by a red vertical line. A P
value ,0.01 was considered significant to correct for multiple comparisons.
b, GWAS signal enrichment of differentially expressed genes and the autism-
associated co-expression modules M12 and M16. Enrichment P values are
shown for an autism GWAS data set (ref. 27, AGRE discovery cohort) as well as
two control data sets consisting of GWAS studies of non-psychiatric traits: ref.
23 (Negative control 1) and ref. 24 (Negative control 2). The red line marks the
P value threshold for significance.
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METHODS
Brain tissue samples. Brain tissue samples from 19 autism cases and 17 controls
were obtained from the Autism Tissue Project (ATP) and the Harvard Brain Bank.
For each brain, tissue was obtained from frontal cortex (BA9), temporal cortex
(BA41/42 or BA22) and cerebellum (vermis), with the exception of three controls
lacking the cerebellum sample (Supplementary Table 1). For the replication
experiment, frontal cortex tissue (BA44/45) from nine ASD cases and five controls
were obtained from the ATP and MRC London Brain bank for Neurodegenerative
Disease respectively (Supplementary Table 4).

For all of the autism cases, clinical information is available upon request from
ATP (http://www.autismtissueprogram.org), including the ADI-R diagnostic
scores. Supplementary Table 12 contains a summary of clinical characteristics.
Although autism cases with known genetic causes were not included in this study,
one case with a chromosome 15q duplication was identified for AN17138 by high
density small nucleotide polymorphism (SNP) arrays28 during the course of this
study. The ATP cases were genotyped with high-density SNP arrays and with two
exceptions all are Caucasians. The two Asian samples cluster with the other ASD
cases in the current study, and are not distinguishable from the Caucasian cases
based on clustering by gene expression.
RNA extractions and microarrays. Total RNA was extracted from approximately
100 mg of frozen tissue, using the Qiagen miRNA kit. RNA concentration was
assessed by a NanoDrop spectrophotometer and RNA quality was measured using
an Agilent Bioanalyzer. All RNA samples included in the expression analysis had an
RNA integrity number (RIN) . 5. cDNA labelling and hybridizations on Illumina
Ref8 v3 microarrays were performed according to the manufacturer’s protocol.
Microarray data analysis. Microarray data analysis was performed using the R
software and Bioconductor packages. Raw expression data were log2 transformed
and normalized by quantile normalization. Data quality control criteria included
high inter-array correlation (Pearson correlation coefficients . 0.85) and detec-
tion of outlier arrays based on mean inter-array correlation and hierarchical
clustering. Probes were considered robustly expressed if the detection P value
was ,0.05 for at least half of the samples in the data set. Cortex samples (58: 29
autism, 29 controls) and cerebellum samples (21: 11 autism, 10 controls) fulfilled
all data quality control criteria. The 29 autism cortex samples included tissue from
13 ASD cases with both frontal and temporal cortex and 3 ASD cases with frontal
cortex only (in total 16 frontal cortex and 13 temporal cortex ASD samples). The
29 autism control samples also included tissue from 13 controls with both frontal
and temporal cortex and 3 controls with frontal cortex only (in total 16 frontal
cortex and 13 temporal cortex control samples).

Initially, all samples were normalized together to assess clustering by brain
region. As expected, we observed distinct clustering of cortex and cerebellum
samples (Supplementary Fig. 2A). For subsequent analyses, cortex samples and
cerebellum samples were normalized and analysed separately.
Differential expression. Differential expression was assessed using the SAM
package (significance analysis of microarrays, http://www-stat.stanford.edu/
,tibs/SAM) and unless otherwise specified the significance threshold was
FDR , 0.05 and fold changes . 1.3. Given that SAM is less sensitive in detecting
differentially expressed genes for small number of samples, for the replication
cohort, the differential expression was assessed by a linear regression method
(Limma package, http://bioconductor.org/packages/release/bioc/html/limma.
html). Our results showing high degree of overlap between genes differentially
expressed in the two data sets indicate that the expression differences observed are
independent of the analysis methods.

Because 444 genes were differentially expressed between autism and controls in
cortex and only 2 genes were differentially expressed between the two groups in
cerebellum (FDR , 0.05), we tested whether this difference was due to the smaller
number of cerebellum samples, by relaxing the statistical criteria to FDR , 0.25.
We found fewer than 10 differentially expressed genes in cerebellum using the
relaxed statistical criteria, supporting the conclusion that genome-wide expression
changes in autism were more pronounced in cerebral cortex than in cerebellum.

To account for the fact that the control group of DS1 contained samples from a
single female whereas the autism DS1 group included four females, we eliminated
from differential expression analysis all probes showing evidence of gender-
specific gene expression (n 5 70). We also applied linear regression of expression
values against age and sex, and then assessed differential expression between the
autism and control groups using the residual values. We observed a 96% overlap
between differentially expressed genes using either the residual values or the raw
data, indicating that neither age nor sex were major drivers of expression differ-
ences between the autism and control groups.

Differential expression between frontal and temporal cortex was assessed by a
paired modified t-test (SAM) using the 13 autism and 13 control cases for which
RNA samples from both cortex areas passed the quality control criteria. For each
of the 510 genes that were differentially expressed in control samples between

frontal and temporal cortex, we compared the variance of autism and control
expression values in frontal cortex and temporal cortex. The homogeneity of
variance (homoscedasticity) of gene expression was assessed using the Barlett test
in R. Fifty one genes showed a significant difference in variance (P , 0.05, Barlett
test) between autism and control groups both in frontal and temporal cortex, and
the Barlett test P-values for these genes are listed in Supplementary Data.
WGCNA. Unsigned co-expression networks were built using the WGCNA pack-
age in R. Probes with evidence of robust expression (9,914; see above) were
included in the network. Network construction was performed using the
blockwiseModules function in the WGCNA package29, which allows the network
construction for the entire data set. For each set of genes a pair-wise correlation
matrix is computed, and an adjacency matrix is calculated by raising the correla-
tion matrix to a power. The power of 10 was chosen using the scale-free topology
criterion9 and was used for all three networks: the network built using autism
samples only, controls samples only or all samples. An advantage of weighted
correlation networks is the fact that the results are highly robust with respect to the
choice of the power parameter. For each pair of genes, a robust measure of network
interconnectedness (topological overlap measure) was calculated based on the
adjacency matrix. The topological overlap based dissimilarity was then used as
input for average linkage hierarchical clustering. Finally, modules were defined as
branches of the resulting clustering tree. To cut the branches, we used the hybrid
dynamic tree-cutting because it leads to robustly defined modules31. To obtain
moderately large and distinct modules, we set the minimum module size to 40
genes and the minimum height for merging modules at 0.1. Each module was
summarized by the first principal component of the scaled (standardized) module
expression profiles. Thus, the module eigengene explains the maximum amount of
variation of the module expression levels. For each module, we defined the module
membership measure (also known as module eigengene based connectivity kME)
as the correlation between gene expression values and the module eigengene.
Genes were assigned to a module if they had a high module membership to the
module (kME . 0.7). An advantage of this definition (and the kME measure) is
that it allows genes to be part of more than one module. Genes that did not fulfil
these criteria for any of the modules are assigned to the grey module. For the cell
type marker enrichment analysis we used the markers defined experimentally in
refs 32 and 33 which were previously used to annotate human brain network
modules34,35.

Module visualization: the topological overlap measure was calculated for the top
100 genes in each module ranked by kME. The resulting list of gene pairs was
filtered so that both genes in a pair had the highest kME for the module plotted
(that is, most module-specific interactions). The resulting top 150 gene pairs were
plotted using Visant.
Gene ontology analyses. Functional enrichment was assessed using the DAVID
database http://david.abcc.ncifcrf.gov/. For differentially expressed genes and co-
expression modules, the background was set to the total list of genes expressed in
the brain in the cortex data set. For genes containing differentially spliced exons,
the background was set to the total set of genes showing evidence of alternative
splicing in our RNA-seq data. The statistical significance threshold level for all
gene ontology enrichment analyses was P , 0.05 (Benjamini and Hochberg cor-
rected for multiple comparisons).
Statistical analyses. All gene set overlap analyses were performed by assessing the
cumulative hypergeometric probability using the phyper function in R. The popu-
lation size was defined as the total number of probes expressed in both data sets. If
the comparison involved different platforms, the comparison was done at gene
level.
Quantitative RT–PCR. One microgram of total RNA was treated with RNase-
free DNase I (Invitrogen/Fermentas) and reverse-transcribed using Invitrogen
Superscript II reverse-transcriptase and random hexanucleotide primers
(Invitrogen). Real time PCR was performed on an ABI7900 cycler in 10ml volume
containing iTaq Sybrgreen (Biorad) and primers at a concentration of 0.5mM
each. The results shown in Supplementary Fig. 2b represent at least two independ-
ent cDNA synthesis experiments for each gene. GAPDH levels were used as an
internal control. Statistical significance was assessed by a two-tailed t-test assum-
ing unequal variance.
Semi-quantitative RT–PCR. Total RNA (600 ng) pooled from autism cases
(n 5 2–3) or controls (n 5 2–3) was reverse-transcribed as described above.
cDNA (50 ng) was subjected to 30 cycles of PCR amplification using the primers
described in Supplementary Table 11. PCR products were separated on a 3%
agarose gel stained with GelStar (Lonza).
RNA sequencing and data analysis.. 73-nucleotide reads were generated using an
Illumina GAII sequencer according to the manufacturer’s protocol. To generate
sufficient read coverage for the quantitative analysis of alternative splicing events,
reads for ASD and control brain samples were separately pooled and aligned to an
existing database of EST and cDNA-derived alternative splicing junctions using
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the Basic Local Alignment Tool (BLAT) as described previously36,37. Reads were
considered properly aligned to a splice junction if at least 71 of the 73 nucleotides
matched and at least 5 nucleotides mapped to each of the two exons forming the
splice junction. Alternative exon inclusion values (‘%inc’), representing the pro-
portion of messenger RNA transcripts with the alternatively spliced exon included,
were calculated for each mRNA pool as the ratio of reads aligning to the C1-A or
A-C2 junctions against reads aligning against all three possible junctions as previ-
ously described36 (C1-A, A-C2, C1-C2, see Supplementary Fig. 3). Calculated %inc
values were considered reliable if at least one of the included junctions as well as
the skipped junctions were covered by at least 20 reads. %inc values were com-
pared across samples using Fisher’s exact test and the Bonferroni–Hochberg cor-
rection to identify differentially spliced exons associated with autism. Differential
splicing events were considered significant if they fulfilled both criteria of
FDR , 0.1 and %inc difference between autism and controls .15%.
GWAS set enrichment analysis. GWAS enrichment analysis was performed as
previously described in ref. 38 with the main modification that we generated the
null distribution, using permutation of gene labels rather than permutation of case/
control labels, because the raw genotyping data was not available for all data sets.
This approach has been proposed as an acceptable alternative to phenotype label
permutation38 and has been previously used for set enrichment analyses of GWAS
data39. For all genes that met the robust expression criteria in our data set, we
mapped the SNPs present on the Illumina 550k platform located within the tran-
script boundaries and an additional 20 kb on the 59end and 10 kb on the 39end.
Each gene was assigned a GWAS significance value consisting of the lowest P value
of all SNPs mapped to it. A gene set enrichment score (ES) based on the
Kolmogorov–Smirnov statistic was calculated as previously described38 using the
2log(P-value). The null distribution was generated by 10,000 random permuta-
tions of gene labels in the list of genes/P-value pairs and an enrichment score ESp

was calculated for each permutation. To correct for the gene set size, the enrichment
scores were scaled by subtracting the mean and dividing by the standard deviation
of ESp. The resulting z-scores were used to calculate the significance p value.
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