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Alternative splicing (AS) is the process by which splice sites in

precursor (pre)-mRNA are differentially selected to produce

multiple mRNA and protein isoforms. During the past few years

the application of genome-wide profiling technologies coupled

with bioinformatic approaches has transformed our

understanding of AS complexity and regulation. These studies

are further driving research directed at elucidating the functions

of networks of regulated AS events in the context of normal

physiology and disease. Major strides have also been made in

understanding how AS is functionally integrated with- and

coupled to- gene regulation at the level of chromatin and

transcription. Particularly intriguing is the discovery of new AS

‘switches’ that control transcriptional networks required for

animal development and behavior.
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Introduction
Precursor (pre)-mRNA splicing is executed by the spli-

ceosome, one of the most complex cellular machines. The

spliceosome comprises five small nuclear RNAs

(snRNAs) and on the order of 200 protein components

[1]. Decades of research have established that spliceo-

some assembly occurs in a step-wise fashion. Recently,

multi-wavelength fluorescence microscopy has been used

to study the assembly process of single spliceosomes.

This work has provided evidence that each step in the

assembly pathway contributes to the formation of a fully-

committed splicing complex, but is reversible [2��].
Therefore, potentially any step during spliceosome for-

mation might be subject to regulation.

Although examples of alternative splicing (AS) regulation

at later steps in spliceosome assembly have been reported

[3], most regulation is thought to occur at the earliest

stages of the assembly pathway, via the interplay between
www.sciencedirect.com 
cis-acting and trans-acting factors that either promote or

repress the recognition of core splicing signals (50 splice

site, branch site, and polypyrimidine tract-30 splice site)

(Figure 1). Although interesting examples of secondary

structures controlling the use of alternative splice sites

have been discovered [4], most characterized regulatory

mechanisms involve the recognition of short, degenerate

RNA motifs in exons and introns by RNA binding

proteins and associated factors [5] (Figure 1).

A major challenge in the AS field for many years has been

to determine the complex combinations of cis-elements in

pre-mRNA, collectively referred to as the ‘splicing code’,

that discriminate correct from incorrect splice sites, and

that direct constitutive and AS patterns. A related chal-

lenge has been to understand how AS is integrated with

other layers of gene regulation, as well as how physically-

linked complexes, such as those involved in chromatin

remodeling and transcription, impact AS regulation.

In this brief review, we will highlight recent advances that

relate to these questions, focusing in particular on studies

that have successfully integrated transcriptome profiling,

focused experimental approaches, and computational

methods, to provide new and timely insights into AS

regulation and important roles for AS in normal physi-

ology and disease (Figure 2). Since this review cannot be a

comprehensive survey of progress in the field of AS in

recent years, we refer the reader to several excellent

reviews that cover specific subtopics in greater detail

[5–16].

Exon networks, RNA binding protein maps
and the splicing code
The advent of splicing-sensitive microarrays and the

more recent implementation of high-throughput RNA

sequencing (RNA-Seq) technologies have transformed

how we view and analyze AS. Datasets generated by

these methods, which are on an exponential rise, have

facilitated the identification of thousands of regulated AS

events (as well as other types of transcriptomic changes)

in diverse biological contexts. These include various

models of cell differentiation and fully differentiated

tissues (e.g. [17–20], reviewed in [21]), developmental

time series in model organisms [22��,23–25], the circadian

cycle [26��], normal-versus-disease states (e.g. [27�,28–
31]), and sets of AS events that respond to physiologically-

normal and disease-associated changes, such as genotoxic

stress [32��,33�,34��,35�]. These datasets have further

revealed AS events affected by specific experimental

conditions, such as siRNA-mediated knockdown or

genetic knockout of individual splicing factors (e.g.
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Figure 1
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(a) Major types of alternative splicing events. (b) Schematic representation of core spliceosomal components that bind to the canonical splicing signals

(50 splice site, branch point, polypyrimidine tract, and 30 splice site). Additional cis-acting elements in exons and introns that control splice site

recognition are also shown. Although the diagram depicts positive and negative acting roles for SR and hnRNP proteins, respectively, depending on

the location of the binding sites of these factors, they can also act in the opposite manner. Similarly, various tissue-dependent splicing factors can

either promote or repress splice site selection depending on the location of their binding sites with respect to splicing signals. ISE, intronic splicing

enhancer; ISS, intronic splicing silencer; ESE, exonic splicing enhancer; ESS, exonic splicing silencer; SR, Ser/Arg-repeat containing protein; hnRNP,

heterogeneous ribonucleoprotein (hnRNP); and U2AF, U2 snRNP auxiliary factor.

Adapted from Ref. [99].
[36,37,38��,39–44]), or perturbations to coupled pro-

cesses, including transcription and chromatin com-

ponents that impact AS via coupling mechanisms (see

below).

The parallel development of methods enabling the tran-

scriptome-wide mapping of RNA binding protein inter-

actions in vivo has greatly complemented AS profiling

studies [7,45��,46��]. Increasingly used to date are

methods in which RNA fragments cross-linked in vivo
to a target protein are co-immunoprecipitated using a

specific antibody and subjected to RNA-Seq. Mapping of

the resulting RNA-Seq reads to genomic sequence pro-

vides a snapshot of where the protein of interest binds in

transcripts. First referred to as CLIP-Seq or HITS-CLIP

[47��], recent variations of this method such as PAR-

CLIP incorporate into nascent pre-mRNA a photoacti-

vatable ribonucleoside that preferentially cross-links to

bound protein upon exposure to a specific wavelength of

light [46��]. The incorporation of the modified nucleo-

side into RNA creates a base change during reverse

transcription allowing more precise mapping of the con-

tact between immunoprecipitated protein and bound

RNA [46��].
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Originally applied to the neural-specific AS regulator

Nova [47��], CLIP-Seq and related methods have since

been used to generate binding maps for dozens of RNA

binding proteins (RBPs) [45��,46��,48–52]. A recurring

theme is that RBPs tend to bind to discrete ‘zones’ within

an alternative exon and/or flanking intronic sequences

that correlate with increased exon skipping or inclusion of

the exon, as defined by parallel AS profiling [7,8]. In most

cases, when the protein binds upstream or within the

alternative sequence, exon inclusion is inhibited, whereas

binding to downstream regions often enhances inclusion

[8]. Interestingly, while the binding specificity and top-

ology of the binding map for Nova and its Drosophila
ortholog Pasilla have been highly conserved, the sets of

exons and genes regulated by these proteins have not

[40,53,54].

Another recurring theme is that RBPs involved in AS

regulation appear to often ‘moonlight’ by controlling

other post-transcriptional  processes such as alternative

polyadenylation [47��]. Likewise, RBPs originally

implicated in processes such as mRNA stability appear

to also function as AS regulators [55��,56]. The wide-

spread multi-tasking nature of RBPs revealed by recent
www.sciencedirect.com
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Scheme illustrating the integration of technologies and resulting datasets for the large-scale analysis of AS. Data generated from high-throughput

profiling (using microarrays, RNA-Seq, and CLIP-Seq) of different tissues, cell types, or conditions, facilitates the identification of networks of co-

regulated exons (AS networks). This information is used to infer splicing codes, regulatory mechanisms, and serves as a basis for directing the

functional analysis of AS events in genes that operate in common processes and pathways.
high-throughput approaches echoes earlier findings

demonstrating that splicing factors from the Ser/Arg

(SR)-repeat and hnRNP families have diverse RNA-

related functions in the cell (e.g. [57–60]). Interestingly,

the multi-functional nature of RBPs could facilitate

coordination between different regulatory layers (see

below), while maximizing the repertoire of regulatory

interactions within a finite set of trans-acting factors.

The combination of transcriptome-wide data and

advanced machine learning algorithms is beginning to have

a major impact on studies directed at elucidating the

splicing code. For example, the integration within a Baye-

sian network of information from Nova HITS-CLIP exper-

iments, microarray profiling, and computational searches of

Nova binding motifs, enabled the identification of �700
www.sciencedirect.com 
high-confidence Nova-dependent AS events [61��].
Assembly of this expanded set of AS events led to the

discovery that motifs corresponding to binding sites for

Rbfox (Fox) proteins are often located in intron sequences

flanking Nova-dependent exons, which led to the demon-

stration that Nova and Fox proteins can synergize in the

regulation of a subset of Nova-dependent exons [61��].

The ultimate goal in deciphering a splicing code is to be

able to infer from genomic sequence alone comprehen-

sive sets of cis-elements that impart AS patterns in the

widest possible range of cell types and conditions, as well

as to reliably predict the consequence of genomic vari-

ation and mutations on splicing. While the field is some

way off this lofty goal, progress has been made. A machine

learning algorithm has been developed that is capable of
Current Opinion in Cell Biology 2012, 24:323–332
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automatically extracting combinations of cis-elements

(from a compendium of over 1000 splicing-associated

cis-elements), that are maximally predictive of brain-

specific, muscle-specific, digestive-organ specific, and

embryo versus adult-specific AS patterns [62��]. Using

the resulting splicing code, genome-wide predictions for

the different classes of tissue-dependent AS events were

generated and validated at a high rate. This work demon-

strates that it is feasible to computationally infer complex

splicing codes for diverse types of regulated splicing

events, and therefore has provided useful groundwork

for future development in this area.

In related work [63��], a computational method was

developed for predicting splicing disrupting mutations

by exploiting the principle that the preferred binding

location of a splicing factor with respect to splice sites is

directly correlated with its positive-acting function,

whereas a mutation that creates a binding site for the

splicing factor in the ‘wrong’ location is expected to

disrupt splicing. Using this principle as predictive

strategy on a genome-wide scale, the authors were able

to correctly predict splicing alterations for previously

uncharacterized disease mutations. The results from

this study further reinforce previous estimates that

one third or more of human disease mutations affect

splicing.

Regulatory communication between
chromatin, transcription and splicing
A major development in the past few years was the dis-

covery that nucleosomes, together with associated specific

modifications such as trimethylation of histone 3 at lysine

36 (H3K36me3), are preferentially enriched over exons

relative to introns, and further display characteristic
Figure 3
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density profiles surrounding the 50 and 30 splice sites

[9,10,64]. These observations immediately suggested that

local differences in chromatin modification and compac-

tion might play an important role in exon definition and AS

regulation. In light of previous models for coupling of

chromatin and transcription to splicing [16,65], it was

proposed that modified histones might affect AS regulation

by facilitating the recruitment of AS regulators to nascent

RNA, or by altering RNA polymerase II (pol II) elongation

rate (Figure 3).

Recent work has provided evidence for both models. Cell

type-dependent increases in H3K36me3 levels over

specific exonic regions appear to influence AS of the

corresponding exons in nascent RNA, via a mechanism

involving an H3K36me3 binding ‘adapter’ protein

(MRG15), which in turn facilitates the recruitment of

the splicing repressor PTBP1 to the regulated exons

[66��]. In another study, elevated levels of histone 3

trimethylated at lysine 9 (H3K9me3), which are associ-

ated with an accumulation of the transcriptional repressor

HP1g, were correlated with reduced pol II elongation and

a change in AS of CD44 transcripts [67]. Conversely,

splicing activity was shown to be important for establish-

ing H3K36me3 levels, apparently by influencing the

recruitment of the H3K36 methyltransferase SETD2 to

nascent RNA pol II [68��,69]. Moreover, binding of Hu

family proteins to RNA can induce local histone hyper-

acetylation, leading to increased pol II elongation rates

and changes in exon inclusion levels [55��]. Collectively,

these studies emphasize the importance of bi-directional

communication between chromatin and nascent splicing

complexes in not only controlling AS, but also in estab-

lishing or perhaps reinforcing epigenetic and other

chromatin modification patterns.
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tions and/or protein factors alter local RNA polymerase (pol) II elongation

 a change in AS levels. A recent example is the creation of a pol II pause

This results in the increased inclusion of exon 5 of this gene during B cell

t directly control AS. In the example, increased levels of H3K36me3

 region of FGFR2 facilitates the recruitment of the splicing factor PTBP1

RG15 (green) [66��].
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While it is well established that perturbations to RNA pol

II elongation can impact AS [16,65], only recently has the

extent and functional significance of such regulation been

investigated. UV-induced DNA damage affects the AS

levels of many genes associated with the cell cycle and

apoptosis, and these effects were linked to altered

elongation rates arising from changes in phosphorylation

status of the pol II carboxyl-terminal domain [32��]. It was

subsequently demonstrated that a variety of conditions

that inhibit pol II elongation, including cell stress, pre-

ferentially affect AS levels of genes that function in RNA

binding and processing [33�]. A disproportionately high

number of the affected exons were shown to introduce

premature termination codons that elicit nonsense-

mediated decay (NMD), thereby additionally contribut-

ing to decreased transcript levels. Pol II elongation-

coupled regulation of AS may therefore serve as a rapid

response mechanism to coordinate the levels of RNA

processing factors with mRNA levels in response to cell

stress and other changes in cell growth conditions [33�].

In principle, any chromatin component or transcription

factor that impacts pol II elongation has the potential to

affect the regulation of proximal AS events in nascent

RNA. A recent and interesting example involves the

CCCTC-binding factor (CTCF), which controls tran-

scription through effects on nucleosome organization

and insulator activity. It was shown that CTCF controls

AS of CD45 transcripts during B cell maturation by

creating a local site of pol II pausing proximal to the

alternatively spliced exon 5 in this gene [70��]. Since

CTCF binding is controlled by CpG methylation, its

effects on AS may in turn be controlled by differential

methylation patterns [70��]. In this regard, several reports

have shown that CpG methylation levels are elevated

over exons relative to introns, and that different densities

of CpG methylation over specific exonic regions may be

related to differential AS (e.g. [71�,72,73]). An important

future goal will be to determine the extent to which

epigenetic marks such as DNA methylation, as well as

various histone modifications, impact AS levels in func-

tionally important ways.

New roles for AS in development and disease
Alternative splicing is a rapidly evolving layer of regulation,

and in comparisons of species separated by >70 million

years of evolution (such as human and mouse), most AS

events are found to be species-specific [12]. Interesting

cases of functional roles for species-specific AS events are

emerging. For example, the vampire bat expresses a tri-

geminal ganglion-specific splice isoform of the transient

receptor potential cation channel V1 (TRPV1) gene. In

contrast to the othologous receptor in its fruit-feeding bat

relatives, this isoform has a lower temperature threshold,

enabling infrared sensing of warm-blooded animals [74��].
By contrast, large-scale profiling studies have revealed sets

of AS events associated with changes in cell differentiation
www.sciencedirect.com 
and development that are often evolutionarily conserved.

These sets of co-regulated exons (referred to as exon or AS

networks) are typically enriched in functionally-related

genes, which generally do not overlap with genes that

are differentially regulated in the same biological contexts

at the transcriptional level (reviewed in [11,14,75]).

Profiling of AS during differentiation provided evidence

that isoform complexity may be more extensive in

embryonic stem cells (ESCs) and becomes restricted or

‘specialized’ as ESCs differentiate [19]. Intriguingly, a

few AS events specifically detected in ESCs have been

implicated in the control of transcription and signaling

factors that have key roles in pluripotency and other

aspects of ESC biology [76–78,79��]. A particularly strik-

ing example is an ESC-specific AS switch that alters the

DNA binding specificity of the FOXP1 transcription

factor, such that it stimulates the expression of key

pluripotency transcription factors including OCT4 and

NANOG in ESCs, while simultaneously repressing many

genes involved in differentiation [79��] (Figure 4). The

ESC-specific isoform of FOXP1 was further shown to

promote pluripotency and to be required for the efficient

reprogramming of somatic cells to induced pluripotent

stem cells [79��]. Examples of other AS events impacting

the activity of transcriptional regulators that have key

roles in the control of neurogenesis, other aspects of

development, and animal behavior, have also been

reported recently (e.g. [80�,81–83]) (Figure 4). These

AS switches are reminiscent of classic examples of pivotal

AS events that control transcriptional programs required

for sex determination and courtship behavior in Droso-
phila [84].

High-throughput sequencing and other profiling tech-

nologies are greatly accelerating our understanding of the

roles of altered splicing in the predisposition, onset and

progression of human diseases. The combination of

genomic DNA sequencing and RNA-Seq analysis of

disease versus normal tissue is revealing disease-driving

mutations, as well as the direct and indirect con-

sequences of these mutations on AS and other layers

of transcriptome regulation (e.g. [85,86]). Whole exome

sequencing of tumor and control DNA from patients with

myelodysplasia has revealed frequent mutations in com-

ponents of the splicing machinery required for the recog-

nition and regulation of 30 splice site selection [87�].
Other exome sequencing studies have identified

mutations linked to poor prognosis in chronic lympho-

cytic leukemia that target the splicing factor SF3B1

[88,89]. Transcriptome profiling of brain tissue has

revealed frequent AS changes linked to the misregula-

tion of RBFOX1 in patients with autism spectrum dis-

order [27�]. Other profiling studies are uncovering widely

occurring AS changes in animal models of human dis-

eases, as well as in patients with neurodegenerative

disorders including Alzheimer’s disease, amyotrophic
Current Opinion in Cell Biology 2012, 24:323–332
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Alternative splicing switches control the activity of key transcription factors during cell differentiation. (a) Embryonic stem cell (ESC)-specific isoforms

of the transcription factors FOXP1 (red) and Sall4 (yellow) induce the expression of sets of pluripotency genes while concomitantly repressing genes

required for differentiation, whereas alternative isoforms (inclusion of dark blue and green sequences, respectively) of these factors lack these activities

and contribute to differentiation [76,79��]. (b) During neural differentiation, an nSR100/SRRM4-dependent AS switch in transcriptional silencer of

neurogenesis genes REST, results in a truncated isoform that lacks the capacity to repress gene expression [81]. In the case of AS of Oct-2, isoforms

with differing C-termini have opposing roles: inclusion of an alternative sequence (light green) produces an isoform containing a transactivation domain

that induces the expression of neural genes, whereas the exclusion of this sequence produces a shorter protein that lacks the transactivation domain

and represses neuronal differentiation [83].
lateral sclerosis (ALS) and frontotemporal lobar degener-

ation (FTLD), as well as cancers (e.g. [28–31]).

Finally, AS is being implicated in almost every aspect of

tumor biology, including promotion of Warburg type

metabolism, apoptosis, cell cycle control, metastasis,

and angiogenesis (reviewed in [15]). In a recent report,

Paronetto et al. investigated the role of Ewing sarcoma

(EWS) protein in the regulation of AS in response to DNA

damage [34��]. Upon UV irradiation, EWS transiently

localizes to the nucleoli, and thus no longer can bind

to its pre-mRNA targets. This affects the regulation of

many AS events in genes that function in DNA repair and

genotoxic stress signaling, including an AS event that is

required for the expression of c-ABL protein. Depletion

of EWS protein reduced cell viability and proliferation

upon UV irradiation, but these effects could be reversed

by restoring c-ABL expression. This and other recent

studies highlight important cancer-relevant roles for mis-

regulated AS events as a consequence of altered expres-

sion of individual splicing regulators.
Current Opinion in Cell Biology 2012, 24:323–332 
Future directions
From reviewing recent progress in the field of AS, it is clear

that we are in the middle of a ‘transcriptomics revolution’,

in which increasingly powerful technologies and the data-

sets they produce are facilitating major advances in our

understanding of the complexity, regulation, integration,

and function of AS. Combined computational and exper-

imental approaches are further expected to ultimately

yield a ‘complete’ regulatory code, that is, a full map of

cis-acting elements operating at the levels of DNA (i.e. in

chromatin) and RNA that dictate all classes of transcrip-

tomic events, including AS. Identifying and systematically

determining the functions of biologically-relevant AS

events remains a major challenge for the field. A first step

will be to comprehensively determine which of the myriad

of splice variants are actually translated. Increasingly sen-

sitive mass-spectrometry methods coupled to cellular frac-

tionation, as well as ‘ribosome profiling’ promise to advance

knowledge in this area [90,91]. Likewise, systematic func-

tional studies will be greatly accelerated by the develop-

ment of automated assays for interrogating process and
www.sciencedirect.com
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pathway-specific activities of networks of individual splice

variants [92].

A more comprehensive understanding of the mechanisms

of AS regulation will emerge not only from the combi-

nation of genome-wide and focused experimental and

computational approaches, but also from ongoing import-

ant studies investigating roles for upstream signaling

pathways that impact AS by altering the stability and

post-translational modification status of regulatory factors

[93��]. In this regard, we can anticipate the discovery of

many new AS regulators in the years to come, in particular

with the recent identification of thousands of new

ncRNAs and antisense transcripts [94,95] that as yet lack

known functions. In addition, the discovery that AS of

UTRs can regulate miRNA targeting (e.g. [77]) further

highlights the importance of understanding how different

gene regulatory layers are integrated.

Finally, with ongoing major strides being made in linking

specific AS events and RNA regulators to the onset and

progression of human diseases [13], the future holds

tremendous promise for the development of a new gener-

ation of therapeutics designed to specifically correct

splicing defects and reprogram AS in medically beneficial

ways [96��,97,98].
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