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SUMMARY

Alternative splicing (AS) generates vast transcrip-
tomic and proteomic complexity. However, which
of the myriad of detected AS events provide impor-
tant biological functions is not well understood.
Here, we define the largest program of functionally
coordinated, neural-regulated AS described to date
in mammals. Relative to all other types of AS within
this program, 3-15 nucleotide ‘‘microexons’’ display
the most striking evolutionary conservation and
switch-like regulation. These microexons modulate
the function of interaction domains of proteins
involved in neurogenesis. Most neural microexons
are regulated by the neuronal-specific splicing factor
nSR100/SRRM4, through its binding to adjacent
intronic enhancer motifs. Neural microexons are
frequently misregulated in the brains of individuals
with autism spectrum disorder, and this misregula-
tion is associated with reduced levels of nSR100.
The results thus reveal a highly conserved program
of dynamic microexon regulation associated with
the remodeling of protein-interaction networks dur-
ing neurogenesis, the misregulation of which is
linked to autism.

INTRODUCTION

Alternative splicing (AS)—the process by which different pairs of

splice sites are selected in precursor mRNA to generate multiple

mRNA and protein products—is responsible for greatly expand-

ing the functional and regulatory capacity of metazoan genomes
C

(Braunschweig et al., 2013; Chen and Manley, 2009; Kalsotra

and Cooper, 2011). For example, transcripts from over 95% of

human multiexon genes undergo AS, and most of the resulting

mRNA splice variants are variably expressed between different

cell and tissue types (Pan et al., 2008; Wang et al., 2008). How-

ever, the function of the vast majority of AS events detected to

date are not known, and new landscapes of AS regulation remain

to be discovered and characterized (Braunschweig et al., 2014;

Eom et al., 2013). Moreover, because the misregulation of AS

frequently causes or contributes to human disease, there is a

pressing need to systematically define the functions of splice

variants in disease contexts.

AS generates transcriptomic complexity through differential

selection of cassette alternative exons, alternative 50 and 30

splice sites, mutually exclusive exons, and alternative intron

retention. These events are regulated by the interplay of cis-

acting motifs and trans-acting factors that control the assembly

of spliceosomes (Chen andManley, 2009; Wahl et al., 2009). The

assembly of spliceosomes at 50 and 30 splice sites is typically

regulated by RNA-binding proteins (RBPs) that recognize prox-

imal cis-elements, referred to as exonic/intronic splicing en-

hancers and silencers (Chen and Manley, 2009). An important

advance that is facilitating a more general understanding of the

role of individual AS events is the observation that many cell/tis-

sue type- and developmentally-regulated AS events are coordi-

nately controlled by individual RBPs, and that these events are

significantly enriched in genes that operate in common biological

processes and pathways (Calarco et al., 2011; Irimia and Blen-

cowe, 2012; Licatalosi and Darnell, 2010).

AS can have dramatic consequences on protein function and/

or affect the expression, localization, and stability of spliced

mRNAs (Irimia and Blencowe, 2012). Whereas cell and tissue

differentially regulated AS events are significantly underrepre-

sented in functionally defined, folded domains in proteins, they
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are enriched in regions of protein disorder that typically are sur-

face accessible and embed short linear interaction motifs (Buljan

et al., 2012; Ellis et al., 2012; Romero et al., 2006). AS events

located in these regions are predicted to participate in interac-

tions with proteins and other ligands (Buljan et al., 2012; Weath-

eritt et al., 2012). Indeed, among a set of analyzed neural-specific

exons enriched in disordered regions, approximately one-third

promoted or disrupted interactions with partner proteins (Ellis

et al., 2012). These observations suggested that a widespread

role for regulated exons is to specify cell and tissue type-specific

protein-interaction networks.

Human disease mutations often disrupt cis-elements that con-

trol splicing and result in aberrant AS patterns (Cartegni et al.,

2002). Other disease changes affect the activity or expression

of RBPs, causing entire programs of AS to be misregulated.

For example, amyotrophic lateral sclerosis-causing mutations

in the RBPs TLS/FUS and TDP43 affect AS and other aspects

of posttranscriptional regulation (Polymenidou et al., 2012), and

changes in the expression of the RBP RBFOX1 have been linked

to misregulation of AS in the brains of individuals with autism

spectrum disorder (ASD) (Voineagu et al., 2011). It is also widely

established that misregulation of AS plays important roles in

altering the growth and invasiveness of various cancers (David

and Manley, 2010). As is the case with assessing the normal

functions of AS, it is generally not knownwhich disease-misregu-

lated AS events cause or contribute to disease phenotypes.

Central to addressing the above questions is the importance

of comprehensively defining AS programs associated with

normal and disease biology. Gene-prediction algorithms, high-

throughput RNA sequencing (RNA-seq) analysis methods, and

RNA-seq data sets generally lack the sensitivity and/or depth

required to detect specific types of AS. In particular, microexons

(Beachy et al., 1985; Coleman et al., 1987), defined here as 3–27

nucleotide (nt)-long exons, have been largely missed by genome

annotations and transcriptome profiling studies (Volfovsky et al.,

2003; Wu et al., 2013; Wu and Watanabe, 2005). This is espe-

cially true for microexons shorter than 15 nt. Furthermore, where

alignment tools have been developed to capture microexons

(Wu et al., 2013), they have not been applied to the analysis of

different cell and tissue types or disease states.

In this study, we developed an RNA-seq pipeline for the sys-

tematic discovery and analysis of all classes of AS, including mi-

croexons. By applying this pipeline to deep RNA-seq data sets

frommore than 50 diverse cell and tissue types, as well as devel-

opmental stages, from human and mouse, we define a large

program of neural-regulated AS. Strikingly, neural-included mi-

croexons represent the most highly conserved and dynamically

regulated component of this program, and the corresponding

genes are highly enriched in neuronal functions. These microex-

ons are enriched on the surfaces of protein-interaction domains

and are under strong selection pressure to preserve reading

frame. We also observe that microexons are frequently misregu-

lated in the brains of autistic individuals, and that this misregula-

tion is linked to the reduced expression of the neural-specific

Ser/Arg-related splicing factor of 100 kDa, nSR100/SRRM4.

Collectively, our results reveal that alternative microexons repre-

sent themost highly conserved component of developmental AS

regulation identified to date, and that they function in domain
1512 Cell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc.
surface ‘‘microsurgery’’ to control interaction networks associ-

ated with neurogenesis. Microexons thus represent a new land-

scape for investigating the molecular consequences of AS (mis)

regulation in nervous system development and ASD.

RESULTS

Global Features of Neural-Regulated AS
An RNA-seq analysis pipeline was developed to detect and

quantify all AS event classes involving all hypothetically possible

splice junctions formed by the usage of annotated and unanno-

tated splice sites, including those that demarcate microexons.

By applying this pipeline to more than 50 diverse cell and tissue

types, each from human and mouse (Table S1 available online),

we identified�2,500 neural-regulated AS events in each species

(Figure 1A and Table S2; Extended Experimental Procedures).

Nearly half of the neural-regulatedAS events, including alterna-

tive retained introns, are predicted to generate protein isoforms

when the alternative sequence is both included and skipped. In

contrast, only�20%of AS events not subject to neural regulation

(hereafter ‘‘non-neural’’ events) have the potential to generate

alternative protein isoforms (Figure 1B; p = 2.73 10�248, propor-

tion test). Gene Ontology (GO) analysis shows that genes with

neural-regulated AS events predicted to generate alternative pro-

tein isoforms form highly interconnected networks based on

functions associated with neuronal biology, signaling pathways,

structural components of the cytoskeleton, and the plasmamem-

brane (Figure 1C). Consistentwith previous results (Fagnani et al.,

2007; Pan et al., 2004), there is little overlap (8.5%) between

genes with neural-regulated AS and mRNA expression, although

these subsets of genes are highly enriched in overlapping GO

terms (40% in common; Figure S1). These data reveal the largest

program of neural-regulated AS events defined to date, and that

this program is associatedwith a broader range of functional pro-

cesses and pathways linked to nervous system biology than pre-

viously detected (Boutz et al., 2007; Fagnani et al., 2007; Ule

et al., 2005).

Highly Conserved Microexons Are Frequently Neuron
Specific
Further analysis of the neural-regulated AS program revealed a

striking inverse relationship between the length of an alternative

exon and its propensity to be specifically included in neural tis-

sues. Increased neural-specific inclusion was detected for the

majority of microexons (length % 27 nt, Figure 2A); 60.7% of

alternative microexons show increased neural ‘‘percent spliced

in’’ (PSI) (DPSI > 15) versus 9.5% of longer (average �135 nt)

alternative exons (p = 1.9 3 10�220, proportion test). This trend

extends to microexons as short as 3 nt. RT-PCR validation ex-

periments confirmed the RNA-seq-detected regulatory profiles

and inclusion levels of all (10/10) microexons analyzed across

ten diverse tissues (R2 = 0.92, n = 107; Figure S2A). To further

investigate the cell- and tissue-type specificity of microexon

regulation, we used RNA-seq data (Sofueva et al., 2013; Zhang

et al., 2013, 2014) to compare their inclusion levels in major glial

cell types (astrocytes, microglia, and oligodendrocytes), in iso-

lated neurons, and in muscle cells and tissues. Although up to

�20% of the detected neural-regulated microexons showed
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Figure 1. An Extensive Program of Neural-Regulated AS

(A) Distribution by type of human AS events with increased/decreased neural

inclusion of the alternative sequence. Alt3/5, alternative splice-site acceptor/

donor selection; IR, intron retention; Microexons, 3–27 nt exons; Single/Multi

AltEx, single/multiple cassette exons.

(B) Predicted impact of non-neural and neural-regulated AS events on pro-

teomes. Neural-regulated events are more often predicted to generate iso-

forms preserving open reading frame (ORF) when the alternative sequence is

included and excluded (‘‘ORF-preserving isoforms,’’ black), than to disrupt

ORFs (i.e., the exon leads to a frameshift and/or introduces a premature

termination codon) specifically in neural samples (‘‘ORF disruption in brain,’’

dark gray) or in non-neural samples (‘‘ORF preservation in brain,’’ light gray).

See Extended Experimental Procedures for details.

C

increased PSIs in one or more glial cell types, and/or in muscle,

compared to other non-neural tissues, the vast majority (>90%)

of neural-regulated microexons displayed highest PSIs in neu-

rons compared to all other cell and tissue types analyzed (Fig-

ures S2B–S2D and Extended Experimental Procedures). These

results indicate that tissue-regulated microexons are predomi-

nantly neuronal specific.

Relative to longer alternative exons, microexons, in particular

those that are 3–15 nt long and neural-specifically included,

are strongly enriched in multiple features indicative of function-

ally important AS. They are highly enriched for lengths that are

multiples of 3 nt (Figure 2B), and a significantly larger fraction

are predicted to generate alternative protein isoforms upon in-

clusion and exclusion, compared with longer neural exons (Fig-

ure 2C; p < 10�10, proportion test). They are also significantly

more often conserved at the levels of genomic sequence, detec-

tion in alternatively spliced transcripts, and neural-differential

regulation (Figures 2D and S2E, neural-regulated exons; p <

0.001 for all pairwise comparisons, proportion tests). Similar re-

sults were obtained when comparing neural-regulated microex-

ons and longer exons that have matching distributions of neural

versus non-neural DPSI values (data not shown). Of 308 neural-

regulatedmicroexons in human, 225 (73.5%) are neural-differen-

tially spliced in mouse, compared to only 527 of 1,390 (37.9%)

longer neural-regulated exons. Remarkably, although microex-

ons represent only�1% of all AS events, they comprise approx-

imately one-third of all neural-regulated AS events conserved

between human and mouse that are predicted to generate alter-

native protein isoforms (Figure S2F). Moreover, of �150

analyzed mammalian, neural-regulated, 3–15 nt microexons, at

least 55 are deeply conserved in vertebrate species spanning

400–450 million years of evolution, from zebrafish and/or shark

to human (Table S3). This is in marked contrast to the generally

low degree of evolutionary conservation of other types of AS

across vertebrate species (Barbosa-Morais et al., 2012;

Braunschweig et al., 2014; Merkin et al., 2012). Furthermore,

comparable numbers of alternative microexons were detected

in all analyzed vertebrate species, the majority of which are

also strongly neural-specifically included (Figure 2E; Extended

Experimental Procedures for details). Consistent with their

striking regulatory conservation, sequences overlapping micro-

exons, including both the upstream and downstream flanking

intronic regions, are more highly conserved than sequences sur-

rounding longer alternative exons (Figures 2F and S2G),

including longer exons with a similar distribution of neural versus

non-neural DPSI values (Figures S2H and S2I; data not shown).

Dynamic Regulation of Microexons during Neuronal
Differentiation
To further investigate the functional significance of neural-regu-

lated microexons, we used RNA-seq data to analyze their
(C) Enrichment map for GO and KEGG categories in genes with neural-regu-

lated AS that are predicted to generate alternative protein isoforms (top) and

representative GO terms and their associated enrichment p value for each

subnetwork (bottom). The node size is proportional to the number of genes

associated with the GO category and the width of the edges to the number of

genes shared between GO categories.
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Figure 2. A Landscape of Highly Conserved Neural Microexons

(A) Difference in exon inclusion level (DPSI) between the average PSIs for neural samples and non-neural samples (y axis) for bins of increasing exon lengths (x

axis). Microexons are defined as exons with lengths of 3–27 nt. Restricting the analysis to alternative exons with a PSI range across samples of >50 showed a

similar pattern (data not shown).

(B) Number of exons by length whose inclusion levels are higher (blue), lower (red), or not different (gray) in neural compared to non-neural samples. Short exons

tend to be multiple of 3 nt and have higher inclusion in neural samples.

(C) Percent of neural-regulatedmicroexons (of lengths of 3–15 and 16–27 nt) and longer exons that are predicted to generate alternative ORF-preserving isoforms

(black), disrupt the ORF in/outside neural tissues (dark/light gray), or overlap noncoding sequences (white).

(D) Higher evolutionary conservation of alternative microexons compared to longer alternative exons at the genomic, transcriptomic (i.e., whether the exon is

alternatively spliced in both species), and neural-regulatory levels. y axis shows the percent of conservation at each specific level between human and mouse. p

values correspond to two-sided proportion tests.

(E) Percent of alternative microexons and longer exons that are detected as neural-regulated (average absolute DPSI > 25) in each vertebrate species.

(F) Alternative 3–15 and 16–27 nt microexons show higher average phastCons scores at their intronic boundaries than longer alternative and constitutive exons.

See also Figure S2.
regulation across six time points of differentiation of mouse em-

bryonic stem cells (ESCs) into cortical glutamatergic neurons

(Figure 3). Remarkably, of 219 neural-regulated microexons

with sufficient read coverage across time points, 151 (69%) dis-

played a PSI switch R50 between ESCs and mature neurons,

and 65 (30%) a switch ofR90 (Figure 3). Unsupervised hierarchi-
1514 Cell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc.
cal clustering of PSI changes between consecutive time points

(transitions T1 to T5) revealed several temporally distinct regula-

tory patterns (Figure 3A). Most microexons show sharp PSI

switches at late (T3 to T5) transitions during differentiation. These

stages correspond to maturing postmitotic neurons when pan-

neuronal markers are already expressed and are subsequent



to the expression of most neurogenic transcription factors (Fig-

ure S3A). This pattern of late activation (Figure S3B) suggests

enrichment for important functions for microexons in terminal

neurogenesis (Figure 1C). Despite the small number of genes

representing clusters of kinetically distinct sets of regulated mi-

croexons, each cluster revealed significant enrichment of spe-

cific GO terms including ‘‘regulation of GTPase activity’’ (Cluster

I), ‘‘glutamate receptor binding,’’ and ‘‘actin cytoskeleton organi-

zation’’ (Cluster V) (Table S4). These observations indicate that

the dynamic switch-like regulation of microexons is intimately

associated with the maturation of neurons.

The Neural-Specific Splicing Factor nSR100/SRRM4
Regulates Most Neural Microexons
Among several analyzed splicing regulators (Extended Expe-

rimental Procedures), knockdown and overexpression of

nSR100 had the strongest effect on microexon regulation, with

more than half of the profiled microexons displaying a pro-

nounced change in inclusion level compared to controls (Figures

4A and S4A–S4H). Moreover, an analysis of RNA-seq data from

different neural cell types (Zhang et al., 2014) revealed that

nSR100 has the strongest neuronal-specific expression relative

to the other splicing regulators (Figure S4I and data not shown),

which is also consistent with its immunohistochemical detection

in neurons but not glia (Calarco et al., 2009). Recently, we have

shown that nSR100 promotes the inclusion of a subset of (longer)

neural exons via binding to intronic UGC motifs proximal to sub-

optimal 30 splice sites (Raj et al., 2014). Consistent with these

results, and supporting a direct role for nSR100 in microexon

regulation, RNA sequence tags crosslinked to nSR100 in vivo

are also highly enriched in intronic sequences containing UGC

motifs, located adjacent to the 30 splice sites of nSR100-regu-

lated microexons (Figures 4B and 4C; p < 0.0001 for all com-

parisons; Wilcoxon rank-sum test). We additionally observe

that, relative to longer exons, neural-regulated microexons are

associated with weak 30 splice sites and strong 50 splice sites

(Figure S4J). nSR100 thus has a direct and extensive role in

the regulation of the neural microexon program.

Distinct Protein-Regulatory Properties of Microexons
Neural-regulated microexons, in particular those that are 3–15 nt

long, possess multiple properties that distinguish them from

longer neural-regulated exons (Figures 5 and S5). A significantly

smaller fraction overlap predicted disordered amino acid resi-

dues (Figures 5A and S5A–S5D; p < 1.3 3 10�4; three-way

Fisher’s exact tests), whereas a significantly higher fraction over-

lap modular protein domains (Figures 5B and S5E; �2-fold in-

crease, p = 1.03 10�54; proportion test). In contrast, microexon

residues overlapping protein domains are significantly more

often surface accessible and enriched in charged residues (Fig-

ures 5C, 5D, and S5F–S5I; p < 10�7 for all comparisons; propor-

tion test) than are residues overlapping longer neural or non-neu-

ral exons. Moreover, when not overlapping protein domains,

microexons are significantly more often located immediately

adjacent (i.e., within 5 amino acids) to folded protein domains

(Figures 5E, S5J, and S5K). These results suggest that a com-

mon function of microexons may be to modulate the activity of

overlapping or adjacent protein domains. Supporting this view,
C

among 49 available and modeled by homology tertiary protein

structures containing microexons, the corresponding residues

are largely surface accessible and unlikely to significantly affect

the folding of the overlapping or adjacent protein domains (Fig-

ure S6A; Extended Experimental Procedures).

Microexons Modulate the Function of
Interaction Domains
Neural-regulated microexons are significantly enriched in do-

mains that function in peptide and lipid-binding interactions (Fig-

ures 5F and S5L; p = 1.73 10�6; proportion test). Overall, genes

with microexons are highly enriched in modular domains

involved in cellular signaling, such as SH3 and PH domains (Fig-

ure S5M). Conversely, unlike longer neural exons (Buljan et al.,

2012; Ellis et al., 2012), they are depleted of linear binding motifs

(Figures 5G and S5N; p < 0.005; proportion tests for all compar-

isons). Moreover, proteins containing microexons are signifi-

cantly more often central in protein-protein interaction networks

and detected in stable protein complexes compared to proteins

with other types of alternative exons (Figures 5H, S5O, and S5P;

p % 0.004 for all comparisons; Wilcoxon rank-sum test). Taken

together with the data in Figure 1, these results suggest that mi-

croexons may often regulate interaction domains to facilitate the

remodeling of protein-interaction networks associated with

signaling and other aspects of neuronal maturation and function.

To test this hypothesis, we employed luminescence-based

mammalian interactome mapping (LUMIER; Barrios-Rodiles

et al., 2005; Ellis et al., 2012) and coimmunoprecipitation-west-

ern blot assays to investigate whether the insertion of a highly

conserved, neural-regulated 6 nt microexon in the nuclear

adaptor Apbb1 affects its known interactions with the histone

acetyltransferase Kat5/Tip60 and amyloid precursor protein

App (Figures 6A–6D). Previous genetic and functional studies

have revealed multiple functions for the Apbb1-Kat5 complex

(Cao and Sudhoff, 2001; Stante et al., 2009), and that the loss

of Kat5 activity is associated with developmental defects that

impact learning and memory (Pirooznia et al., 2012; Wang

et al., 2004, 2009) (see Discussion). Apbb1 contains two phos-

photyrosine-binding domains, PTB1 and PTB2, which bind

Kat5 and App, respectively (Cao and Sudhoff, 2001). Exempli-

fying the distinct protein features of neural microexons des-

cribed above (Figure 5), the Apbb1microexon adds two charged

residues (Arg and Glu) to the PTB1 domain near its predicted

interaction surface (Figures 6A and 6B; Extended Experimental

Procedures). LUMIER and coimmunoprecipitation-western

analysis reveal that inclusion of the microexon significantly en-

hances the interaction with Kat5, whereas there is little to no ef-

fect on the interaction with App (Figures 6C, 6D, S6B, and S6C).

Substitution of both microexon residues with alanine also

enhanced the Kat5 interaction, although to a lesser extent than

the presence of Arg and Glu (Figure 6C). This suggests that the

primary function of this microexon is to extend the interface

with which Apbb1 binds its partner proteins.

We also examined the function of a 9 nt microexon in the

AP1S2 subunit of the adaptor-related protein complex 1 (AP1).

The AP1 complex functions in the intracellular transport of cargo

proteins between the trans-Golgi apparatus and endosomes by

linking clathrin to the cargo proteins during vesicle membrane
ell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc. 1515
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Figure 3. Switch-like Regulation of Microexons during Neuronal Differentiation

(A) Heatmap of PSI changes (DPSIs) between time points during differentiation of ESCs to glutamatergic neurons in vitro (Hubbard et al., 2013). Yellow/pink

indicate increased/decreased PSI at a given transition (T1 to T5). Unsupervised clustering detects eight clusters of exons based on their dynamic PSI regulation
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See also Figure S4.
formation (Kirchhausen, 2000) and is important for the somato-

dendritic transport of proteins required for neuronal polarity (Fa-

rı́as et al., 2012). Interestingly, mutations in AP1S2 have been

previously implicated in phenotypic features associated with

ASD and X-linked mental retardation (Borck et al., 2008; Tarpey

et al., 2006). Coimmunoprecipitation-western analyses reveal

that the microexon in AP1S2 strongly promotes its interaction

with another AP1 subunit, AP1B1 (Figures 6E and S6D). This

observation thus provides additional evidence supporting an

important role for microexons in the control of protein interac-

tions that function in neurons.

Microexons Are Misregulated in Individuals with ASD
The properties ofmicroexons described above suggest that their

misregulation could be associated with neurological disorders.

To investigate this possibility, we analyzed RNA-seq data from

the superior temporal gyrus (Brodmann areas ba41/42/22) of

postmortem samples from individuals with ASD and control sub-

jects, matched for age, gender, and other variables (Experi-

mental Procedures). These samples were stratified based on

the strength of an ASD-associated gene-expression signature

(Voineagu et al., 2011), and subsets of 12 ASD samples with

the strongest ASD-associated differential gene-expression sig-

natures and 12 controls were selected for further analysis.

Remarkably, within these samples, 126 of 504 (30%) detected

alternative microexons display a mean DPSI > 10 between

ASD and control subjects (Figure 7A); of these, 113 (90%) also

display neural-differential regulation. By contrast, only 825 of

15,405 (5.4%) longer (i.e., >27 nt) exons show such misregula-
(clusters I–VIII, legend). Right, top: scheme of the neuronal differentiation assay, ti

each microexons (gray lines) in five selected clusters; red lines show the median

(B) Representative RT-PCR assaysmonitoring AS patterns ofmicroexons during n

Enah (12 nt), and Shank2 (9 and 21 nt).

See also Figure S3.

C

tion (Figure 7A); of these, 285 (35%) correspond to neural-regu-

lated exons. Significant enrichment for misregulation among

microexons compared to longer exons was also observed

when restricting the analysis to neural-regulated exons,

including subsets of neural-regulated microexons and longer

exons with similar distributions of neural versus non-neural

DPSI values (Figure S7A; p < 2 3 10�4; proportion test; data

not shown). Similar results were observed when analyzing data

from a different brain region (Brodmann area ba9) from the

same individuals (data not shown). RT-PCR experiments on a

representative subset of profiled tissues confirmed increased

misregulation of microexons in autistic versus control brain sam-

ples (Figure S7B). Analysis of the proportions of microexons dis-

playing coincident misregulation revealed that the vast majority

(81.3%) have a DPSI > 10 in at least half of the ASD-stratified

brain samples (Figure S7C). However, only 26.9% (32/119) of

the genes containing misregulated microexons overlapped

with the 2,519 genes with significant ASD-associated misregula-

tion at the level of gene expression. This reveals that largely

distinct subsets of genes are misregulated at the levels of

expression and microexon splicing in the analyzed ASD sub-

jects. In contrast, a comparison of autistic subjects that pos-

sessed a weaker ASD-related differential gene-expression

signature did not reveal significant misregulation of microexons

or of longer exons (data not shown). These data reveal frequent

misregulation of microexon splicing in the brain cortices of some

individuals with ASD.

Consistent with a widespread and important role for nSR100

in the regulation of microexons (Figure 4), nSR100 mRNA
me points of sample collection and analyzed transitions. Right, bottom: PSIs for

for the cluster at each time point.

euronal differentiation in Ap1s2 (9 nt), Mef2d (21 nt), Apbb1 (6 nt), Ap1b1 (21 nt),
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Figure 5. Microexons Possess Distinct Protein-Coding Features

For each analysis, values are shown for neural-regulated, 3–15 nt microexons and longer (>27 nt) exons, as well as non-neural AS exons (see Figure S5 for other

types of exons).

(A) Percent of exons with a high average (>0.67), mid-range (0.33 to 0.67), and low disorder rate (<0.33).

(B) Fraction of amino acids (AA) that overlap a PFAM protein domain.

(C) Percent of AA within PFAM domains predicted to be on the protein surface.

(D) Percent of AA types based on their properties; p values correspond to the comparison of charged (acid and basic) versus uncharged (polar and apolar) AAs.

(E) Percent of exons that are adjacent to a domain (within 0–5 [black] or 6–10 AAs [gray]); p values correspond to the comparison of exons within 0–5 AAs.

(F) Percent of residues overlapping PFAM domains involved in linear motif or lipid binding.

(G) Percent of residues overlapping binding motifs predicted by ANCHOR.

(H) Percent of exons with proteins identified as belonging to one or more protein complexes (data from Havugimana et al., 2012).

All p values correspond to proportion tests except for (A) (three-way Fisher’s test) and (C) (Wilcoxon rank-sum test). See also Figure S5.
expression is, on average, significantly downregulated in the

brains of the analyzed ASD versus control subjects and to an

even greater extent in brain samples with the strongest ASD-

associated signature compared to the controls (�10%, p =

0.014, FDR < 0.1, Figure 7B and data not shown). These differ-

ences were confirmed by qRT-PCR assays for a representative

subset of individuals (p < 2.8 3 10�4 for all normalizations;

two-sided t test; Figure S7D). Moreover, relative to other exons,

nSR100-dependent microexons are significantly more often

misregulated in brain tissues fromASD compared to control sub-

jects (Figure 7C; p < 0.01 for all comparisons; proportion test).

Notably, we also observe significantly higher correlations be-

tweenmicroexon inclusion and nSR100mRNA expression levels

across the stratified ASD samples and controls for those micro-

exons regulated by nSR100 relative to thosemicroexons that are
1518 Cell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc.
not regulated by this factor (Figure 7D; p = 1.43 10�7; Wilcoxon

rank-sum test).

A GO analysis of genes with ASD-associated misregulation of

microexons reveals significant enrichment of terms related to ax-

onogenesis and synapse biology (Figure 7E), processes that

have been previously implicated in autism (Gilman et al., 2011;

Parikshak et al., 2013; Voineagu et al., 2011). Many of the corre-

sponding genes act in common pathways and/or physically

interact through protein-protein interactions (Figure 7F). More-

over, misregulated microexons are also significantly enriched

in genes that have been genetically linked to ASD (p < 0.0005;

Fisher’s exact test), including many relatively well-established

examples such as DNTA, ANK2, ROBO1, SHANK2, and

AP1S2. Other genes with misregulated microexons have been

linked to learning or intellectual disability (e.g., APBB1,
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Figure 6. Microexons Regulate Protein-Protein Interactions

(A) Structural alignment of APBB1-PTB1 (pink) and APBB1-PTB2 (cyan) domains. Residues located at the protein-binding interface of APBB1-PTB2 are shown in

blue. Inset shows the microexon residues in APBB1-PTB1 (E462-R463).

(B) Upon superimposition of APBB1-PTB1 (pink) and APBB1-PTB2 (cyan) domains, the microexon (magenta) is located close to the APBB1-PTB2-binding

partner (APP protein fragment, blue), suggesting that the microexon in PTB1 may affect protein binding.

(C) Quantification of LUMIER-normalized luciferase intensity ratio (NLIR) values for RL-tagged Apbb1, with or without the microexon, or with a mutated version

consisting of two alanine substitutions (ALA-mic.), coimmunoprecipitated with 3Flag-tagged Kat5.

(D and E) 293T cells were transfected HA-tagged Apbb1 (D) or AP1S2 (E) constructs, with or without the respective microexon, together with 3Flag-tagged Kat5

(D) or AP1B1 (E), as indicated. Immunoprecipitation was performed with anti-Flag (D) or anti-HA (E) antibody, and the immunoprecipitates were blotted with anti-

HA or anti-Flag antibody, as indicated. Results shown in (E) were confirmed in a biological replicate experiment (Figure S6D).

p values in (C) and (D) correspond to t tests for four and three replicates, respectively; error bars indicate SEM. Asterisk in (E) indicates a band corresponding to

the light chain of the HA antibody.
TRAPPC9, and RAB3GAP1). In this regard, it is interesting to

note that the microexons we have analyzed in APBB1 and

AP1S2 are significantly misregulated in the brain samples from

ASD subjects (p < 0.05; Wilcoxon rank-sum test; Figure S7E).

Taken together with data in Figures 5 and 6, the results suggest

that themisregulation ofmicroexons, as well as of longer alterna-

tive exons (Corominas et al., 2014; Voineagu et al., 2011), may

impact protein-interaction networks that are required for normal

neuronal development and synaptic function. Disruption of mi-

croexon-regulated protein-interaction networks is therefore a

potentially important mechanism underlying ASD and likely other

neurodevelopmental disorders.

DISCUSSION

In this study, we show that alternative microexons display the

highest degrees of genomic sequence conservation, tissue-spe-

cific regulatory conservation, and frame-preservation potential,

relative to all other classes of AS detected to date in vertebrate

species. Unlike longer neural-regulated exons, neural microex-

ons are significantly enriched in surface-accessible, charged

amino acids that overlap or lie in close proximity to protein do-

mains, including those that bind linear motifs. Together with their
C

remarkably dynamic regulation, these observations suggest that

microexons contribute important and complementary roles to

longer neural exons in the remodeling of protein-interaction net-

works that operate during neuronal maturation.

Most microexons display high inclusion at late stages of

neuronal differentiation in genes (e.g., Src [Black, 1991], Bin1,

Agrn,Dock9,Shank2, andRobo1) associatedwith axonogenesis

and the formation and function of synapses. Supporting such

functions, an alternative microexon overlapping the SH3A

domain of Intersectin 1 (Itsn1) has been reported to promote

an interaction with Dynamin 1 and was proposed to modulate

roles of Itsn1 in endocytosis, cell signaling, and/or actin-cyto-

skeleton dynamics (Dergai et al., 2010). A neural-specific micro-

exon in Protrudin/Zfyve27 was recently shown to increase its

interaction with the vesicle-associated membrane protein-asso-

ciated protein (VAP) and to promote neurite outgrowth (Ohnishi

et al., 2014). Similarly, in the present study, we show that a 6

nt neural microexon in Apbb1/Fe65 promotes an interaction

with Kat5/Tip60. Apbb1 is an adaptor protein that functions in

neurite outgrowth (Cheung et al., 2014; Ikin et al., 2007) and syn-

aptic plasticity (Sabo et al., 2003), processes that have been

linked to neurological disorders including ASD (Hussman et al.,

2011). Consistent with these findings, we have previously shown
ell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc. 1519
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Figure 7. Microexons Are Often Misregulated in ASD

(A) Percent of alternative exons of each length class that are misregulated in ASD (absoluteDPSI > 10 between PSI-averaged ASD and control groups in ba41/42/

22 brain regions). Dark shading, lower inclusion in ASD; light shading, higher inclusion in ASD; p values correspond to proportion tests.

(B) Expression of nSR100 across the 12 control and 12 ASD individuals. Adjusted FPKMs were calculated using a regression analysis that accounts for variation

derived from differences in RNA integrity, brain sample batch, sequencing depth, and 50–30 bias in measurements of gene-level FPKM values.

(C) Percent of exons within each length classmisregulated in autistic compared to control brains (average absoluteDPSI > 10) for nSR100-regulated (DPSI > 25 in

the nSR100-overexpressing compared to control 293T cells) and non-nSR100-regulated (absolute DPSI < 5) exons.

(D) Distribution of correlation coefficients between PSIs and nSR100 expression values across stratified ASD and control samples for microexons that are (n = 59)

or are not (n = 69) regulated by nSR100. Only microexons with sufficient read coverage to derive accurate PSI quantifications in at least 9 ASD and 9 control ba41/

42/22 samples were included. p value correspond to Wilcoxon rank-sum test.

(E) GO categories significantly enriched in genes with microexons that are misregulated in ASD.

(F) A protein-protein interaction network involving genes with ASD misregulated microexons (DPSI > 10) in ba41/42/22 brain regions. Genes with major effect

mutations, and smaller effect risk genes, are indicated in red and shaded ovals, respectively. Genes grouped by functional category are indicated.

See also Figure S7.
that nSR100 promotes neurite outgrowth (Calarco et al., 2009). In

the present study, we further demonstrate that it controls the

switch-like regulation of most neural microexons, and that its

reduced expression is linked to the altered splicing of microex-

ons in the brains of subjects with ASD.

Many of the conserved, neural-regulated microexons identi-

fied in this study are misregulated in ASD individuals, including

the microexon in AP1S2 that strongly promotes an interaction

with the AP1B1 subunit of the AP1 intracellular transport com-
1520 Cell 159, 1511–1523, December 18, 2014 ª2014 Elsevier Inc.
plex. Intriguingly, several other genes containing microexons

are genetically linked to ASD, intellectual disability, and/or func-

tions inmemory and learning (see Results). Another link to ASD is

the observation that nSR100 is strongly coexpressed in the

developing human brain in a gene network module, M2, which

is enriched for rare de novo ASD-associated mutations (Parik-

shak et al., 2013). Furthermore, additional genes containing mi-

croexons may have as yet undiscovered roles in ASD and or

other neuropsychiatric disorders. For example, the microexon



in APBB1 is also significantly misregulated in brain tissues from

ASD subjects (Figures S7B and S7E). It is possible that the mis-

regulation of microexons, at least in part through altered expres-

sion of nSR100, perturbs protein-interaction networks required

for proper neuronal maturation and function, thus contributing

to ASD as well as other neurodevelopmental disorders. Consis-

tent with this view, recent reports have begun to link individual

microexons with neurodevelopmental disorders, including ASD

(Zhu et al., 2014), schizophrenia (Ovadia and Shifman, 2011),

and epilepsy (Rusconi et al., 2014). The discovery and character-

ization of widespread, neural-regulated microexons in the pre-

sent study thus enable a systematic investigation of new and

highly conserved mechanisms controlling protein-interaction

networks associated with vertebrate nervous system develop-

ment and neurological disorders.

EXPERIMENTAL PROCEDURES

RNA-Seq Data and Genomes

Unless stated otherwise, RNA-seq data were generated from poly(A)+ RNA

(Table S1). Analyses used the following genome releases: Homo sapiens,

hg19; Mus musculus, mm9; Gallus gallus, galGal3; Xenopus tropicalis, xen-

Tro3; Danio rerio, danRer7; Callorhinchus milii, v1.0.

AS Analysis Pipeline

Amultimodule analysis pipeline was developed that uses RNA-seq, expressed

sequence tag (EST), and cDNA data, as well as gene annotations and evolu-

tionary conservation, to assemble libraries of exon-exon junctions (EEJs) for

subsequent read alignment to detect and quantify AS events in RNA-seq

data. For cassette exons, three complementary modules were developed for

assembling EEJs: (1) a ‘‘transcript-based module,’’ employing cufflinks (Trap-

nell et al., 2010) and alignments of ESTs and cDNAs with genomic sequence

(Khare et al., 2012); (2) a ‘‘splice site-based module,’’ utilizing joining of all hy-

pothetically possible EEJ combinations from annotated and de novo splice

sites (Han et al., 2013); and (3) a ‘‘microexon module,’’ including de novo

searching of pairs of donor and acceptor splice sites in intronic sequence.

Alt3 or Alt5 events were quantified based on the fraction of reads supporting

the usage of each alternative splice site. Intron retention was analyzed as

recently described (Braunschweig et al., 2014). See Extended Experimental

Procedures for additional details. All described human microexons and asso-

ciated features are provided in Tables S5 and S6.

LUMIER Assay

HEK293T cells were transiently transfected using Polyfect (QIAGEN) with Re-

nilla luciferase (RL)-tagged Apbb1, with or without inclusion of the microexon,

or with a version consisting of two alanine substitutions, together with 3Flag-

tagged Kat5. Subsequent steps were performed essentially as described pre-

viously (Ellis et al., 2012).

Immunoprecipitation and Immunoblotting

HEK293T cells were transiently transfected using Lipofectamine 2000 (Life

Technologies). Cells were lysed in 0.5% TNTE. After preclearing with protein

G-Sepharose, lysates were incubated with anti-Flag M2 antibody (Sigma) or

anti-Hemagglutinin (HA) antibody (Roche) bound to Protein-G Dynabeads (Life

Technologies) for 2 hr at 4�C. Immunoprecipitates were washed five times

with 0.1% TNTE, subjected to SDS-PAGE, transferred onto nitrocellulose, and

immunoblotted with the anti-HA antibody (Roche) or anti-Flag M2 antibody

(Sigma). Detectionwas achieved using horseradish peroxidase-conjugated rab-

bit anti-rat (Sigma) or sheep anti-mouse secondary antibodies (GE Healthcare)

and chemiluminescence. ImageJwas used for quantification of band intensities.

Analysis of Microexon Regulation

Available RNA-seq data from splicing factor-deficient or -overexpressing sys-

tems were used to identify misregulated exons andmicroexons (see Extended
C

Experimental Procedures). To investigate regulation by nSR100, we used

PAR-iCLIP data and motif enrichments analyses, as recently described (Raj

et al., 2014).

Comparison of ASD and Control Brain Samples

We analyzed 22 autistic individuals and 20 controls matched by age and

gender. Samples from superior temporal gyrus (Brodmann areas ba41/42/

22) were dissected, retaining gray matter from all cortical layers, and RNA

was isolated using the miRNeasy kit (QIAGEN). Ribosomal RNA was depleted

from 2 mg total RNA with the Ribo-Zero Gold kit (Epicenter) and then size-

selected with AMPure XP beads (Beckman Coulter). An average of 64 million,

50 bp paired-end reads were generated for each sample (Table S1). The 12

case and 12 control samples with the strongest ASD-associated differential

gene-expression signature were selected for downstream analyses (Extended

Experimental Procedures for details). Sample selection was independent of

any information on splicing changes.
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