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tissues. The complexity of the problem was 
then reduced in two ways. First, the 27 sam-
ples were grouped into four tissue categories 
(CNS, muscle, digestion and the embryo) for 
comparison. Second, relative percent inclu-
sion levels were made discrete as three prob-
abilities: increased, decreased or unchanged 
inclusion in a particular tissue compared to 
a baseline. A machine learning algorithm was 
developed to discover which features were 
associated with increased or decreased exon 
inclusion in each tissue category. The algo-
rithm was tested against exons not used for 
training for its ability to predict increased or 
decreased relative inclusion levels in pairwise 
comparisons of different tissue categories. An 
accuracy of ~90% was achieved, attesting to 
the validity of the method.

The collection of sequence features is 
perhaps the heart of this study. The authors 
compiled a list of 1,014 diverse features using 
data in the literature and their own intu-
ition. Most of the features were based on 
oligomeric sequences discovered in various 
types of experiments—for example, sets of 
predicted and validated hexamer sequences 
from statistical analysis of the transcriptome, 
ligand sequences for splicing factors and posi-
tional weight matrices for sequences derived 
by functional selection. But the feature list 
also included the density of all possible base 
trimers, dimers and even single bases. RNA 
structure was taken into account as predicted 
single-strandedness around regions such as 
the splice sites. Splice site scores, the creation 
of premature stop codons, frame shifts, exon 
length and evolutionary conservation were 
also included. In addition, the features were 
considered separately for seven different 
regions: the alternatively spliced exon and 300 
nt of its intronic flanks plus the upstream and 
downstream exons and their proximal intronic 
flanks. These last four regions can be located 
thousands of nucleotides away from the exon 
in question. The separate consideration of 
these seven regions multiplies the number of 
features tracked. Whereas tissue-specific splic-
ing motifs have been discovered by genomic 
analysis in the past (e.g., ref. 9), this study 
stands out for its comprehensiveness and its 
inclusion of distant locations.

About 200 of the original 1,014 features 
proved to be useful in predicting alternative 
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The rules governing exon splicing in different 
cell types to generate protein diversity are com-
plex and apparently manifold. In a recent paper 
in Nature, Barash et al.1 have applied machine 
learning to high-throughput splicing data to 
identify combinations of sequence features that 
can be analyzed to predict tissue-specific alter-
native splicing patterns. By using a multitude 
of features to describe an RNA molecule and 
focusing on cell-specific splicing decisions, the 
authors have provided a much richer picture of 
the code underlying alternative splicing than 
has been achieved previously.

In contrast to transcription and translation, 
in which the flow of information from DNA 
to pre-mRNA and from mRNA to protein is 
governed by simple codes, the processing of 
pre-mRNA to mRNA is less straightforward. 
Extracting exons from pre-mRNA and splicing 
them together to create mRNA requires, first 
and foremost, a mechanism for distinguishing 
exons and introns. Intron recognition always 
takes place during the splicing event itself, 
which is catalyzed by the large spliceosomal 
machinery comprising five RNA molecules 
and >100 proteins. In contrast, exon recogni-
tion is thought to occur before the splicing 
reaction. The main evidence for this is that dis-
ruption of an individual splice site most often 
leads to the entire exon being skipped.

How early exon recognition takes place is not 
well understood. The sequences immediately 
surrounding the splice sites themselves do not 
contain enough information to demarcate the 
borders of exons. Several lines of evidence have 
shown that additional information exists in 
short degenerate sequence motifs that lie both 
within and outside the exons. These genetic ele-
ments have been shown to interact with specific 
RNA-binding proteins to either enhance or 
silence splicing, but the underlying mechanisms 
have remained elusive. The composition, loca-
tion and function of these sequence elements 
have been called the ‘splicing code’2–5.

Deciphering the splicing code is more com-
plicated than analyzing the linear arrange-
ment of these sequence elements, for several 

Splicing by cell type
Mauricio A Arias, Shengdong Ke & Lawrence A Chasin

A comprehensive study identifies sequence features that predict tissue-specific alternative splicing.

reasons. First, RNA can fold into intricate 
three-dimensional structures, driven mostly 
by base pairing between different regions of 
the molecule. The availability of a pre-mRNA 
sequence to bind an RNA-binding protein 
therefore depends on its structure. Pre-mRNA 
structure itself could also play a direct role 
in splicing. Second, as splicing can take place 
while RNA is being transcribed, it can be influ-
enced by the transcription complex, which may 
act as a conduit for the delivery of gene-specific 
splicing factors and/or by pausing of transcrip-
tion to allow a splice site to be recognized6. 
Third, chromatin structure is emerging as a 
possible modulating factor in splicing (e.g., refs. 
7 and 8). Thus, the splicing code can involve 
DNA sequences as well as RNA.

The situation is even more complicated 
because the splicing code can produce multiple 
outcomes in a given cell type and can be inter-
preted differently in different cellular environ-
ments. The result is alternative splicing, with 
the same gene giving rise to multiple mRNA 
isoforms and their corresponding protein iso-
forms. Although most exons are spliced con-
stitutively—that is, included with near 100% 
efficiency in all mature mRNA molecules 
produced in all tissues examined—a large 
minority are alternatively spliced, such that 
almost all mammalian genes undergo some 
alternative splicing. Alternative splicing can 
generate a proteome that is much larger than 
the transcriptome, thereby explaining the rela-
tive complexity of higher organisms without 
much of a difference in genome size. Tissue-
specific alternative splicing adds another layer 
to the splicing code, with differences between 
tissues presumably mediated by different rep-
ertoires or levels of splicing factors or chro-
matin structures. The code for tissue-specific 
alternative splicing may be part and parcel of 
the general code or distinct from it, or the two 
may overlap.

The study of Barash et al.1 tackles the tissue-
specific splicing code through a collaboration 
between computational and experimental 
researchers. The authors’ strategy was to reveal 
the elements of the code by associating the 
presence of sequence ‘features’ with splicing 
outcomes (Fig. 1). The latter, determined by 
high-throughput microarray measurements 
of mRNA levels, comprised 3,665 alterna-
tively spliced exons in 27 mouse cells and 
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splicing. This filtered list includes confirma-
tory assignments for binding sites of the poly-
pyrimidine tract–binding protein and the 
Nova splicing factor, for example, but it also 
suggests unexpected roles for the density of 
many short sequences and, intriguingly, for 
sequences residing in the far-flung adjacent 
exon regions. Importantly, in a post-processing 
step, the authors could identify many pairs of 
features that significantly co-occurred, sugges-
tive of specific molecular interactions. Overall, 
the results provide a list of players whose roles 
can now be followed up with mechanistic 
studies. The list also allows an exploration 
of the effect on splicing of single-nucleotide 
polymorphisms that disrupt important fea-
tures, a direction that could prove relevant 
to human disease. Even at this early stage, the 
authors were able to come up with evidence for 
increased gene expression in embryonic stem 
cells through the exclusion of alternatively 
spliced ‘killer’ exons that reduce mRNA lev-
els in adult tissue. Furthermore, the method 
itself can be applied to understand codes for 
processes other than splicing.

Although this comprehensive study rep-
resents an important advance, there is more 
to be done. An improved code would provide 
quantitative predictions of exon inclusion 
rather than just directionality. Additional wet 
validation experiments to test the importance 
of features would allow conclusions based on 
statistics to be accepted with confidence. The 
use of RNA-seq data to measure exon inclu-
sion should improve the accuracy of the code. 
Finally, tissue-specific levels of RNA-binding 
proteins, RNA-binding-protein occupancy 
and nucleosome position and modification 
may provide additional useful information. 

The strategy of Barash et al.1 was not aimed 
at determining a general code for exon defini-
tion but rather a code for alternative splicing—
the difference in the splicing of a given exon 
in two different environments. Although there 
may be differences in how alternative exons 
are defined10, it would be surprising if many of 
the features identified here do not turn out to 
reflect basic mechanisms in splice site recogni-
tion. Indeed, the comparison of two different 
states (tissues) can help pinpoint such factors. 
Perhaps the most important message from 
this work is that each exon does not march to 
the beat of a different drummer, but is spliced 
through a complex but knowable system based 
on a large but definable set of features.
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Figure 1  Scheme for associating RNA sequence features with splicing outcomes. Barash et al.1 used 
>1,000 diverse sequence features (top left); the examples shown here were chosen to illustrate their 
diversity. Each feature was also defined by the region in which it occurs, as indicated on the map on 
the lower left, where the alternatively spliced exon is shown in red. Exon inclusion data were originally 
measured in 27 mouse tissues or cell lines using microarrays and then consolidated into four tissue 
types: C, central nervous system; M, striated and cardiac muscle; D, digestion-related tissues; E, embryonic 
tissue and stem cells (upper right; darker shades represent higher exon inclusion levels). A machine 
learning algorithm was devised to associate particular features with particular splicing outcomes, the 
latter categorized as increased exon inclusion, increased exon exclusion or no difference between two 
tissue types. After training on a set of ~3,000 exons, the algorithm could reliably predict these splicing 
outcomes in a set of test exons.

Mitsuhiro Itaya is at the Laboratory of 
Genome Design Biology, Institute for Advanced 
Biosciences, Keio University, Yamagata, Japan. 
e-mail: mita2001@sfc.keio.ac.jp

The recent creation of a new bacterium 
Mycoplasma mycoides JCVI-syn1.0 from an 
artificially constructed genome represents a 
technical tour de force. The accomplishment, 
described in a paper by Gibson et al.1 of the 
J. Craig Venter Institute (JCVI; Rockville, MD, 
USA) published in Science, is the culmina-
tion of over a decade of effort to create a cell 
with an artificial genome. Although creation 
of a self-replicating cell using a computer as 
the starting point represents an important 
breakthrough for synthetic biology, several 

A synthetic DNA transplant
Mitsuhiro Itaya

The complete set of tools needed to synthesize a functional genome and 
transplant it into a mycoplasma cell opens up the possibility of mixing and 
matching natural and synthetic DNA to make genomes with new capabilities. 

key details of the transplantation protocol 
remain to be established. Moreover, gaps in our 
knowledge of genome biology and the expense 
of producing whole genomes synthetically will 
likely limit wide adoption of the approach for 
the foreseeable future.

The synthetic biology group at JCVI has 
developed and released several basic methods2–4 
that together have made up incremental steps 
toward the ultimate aim of creating a synthetic 
genome that can then be transplanted into a 
recipient (so-called chassis) organism. In their 
present paper, Gibson et al.1 now combine 
these methods and successfully apply them 
to design a particular mycoplasma strain that 
never existed before. The methods essentially 
comprise three major parts, as illustrated in 
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