
Articles
https://doi.org/10.1038/s41587-020-0437-z

1Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. 2Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 
3Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA. 4Department of Computer Science and 
Engineering, University of Minnesota, Minneapolis, MN, USA. 5Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. 
6These authors contributed equally: Thomas Gonatopoulos-Pournatzis, Michael Aregger, Kevin R. Brown. ✉e-mail: t.gonatopoulos@gmail.com;  
b.blencowe@utoronto.ca; j.moffat@utoronto.ca

Recent breakthroughs in gene editing technologies have trans-
formed mammalian cell genetics and disease research1–4. In 
particular, genome-scale screens employing CRISPR–Cas 

nucleases have already begun to deliver unprecedented insight into 
genotype–phenotype relationships5. For example, such screens have 
defined genes required for human cell line proliferation that share 
functional, evolutionary and physiological properties with essential 
genes in other organisms6–9. These studies have ushered in a new 
era of functional genomics by enabling the systematic perturbation 
and characterization of genes that underlie biological processes and 
phenotypes10–16.

Despite these advances, current major challenges in genomics 
include the development of efficient tools for the comprehensive 
mapping of GIs—that is, deviations from expected phenotypes 
when multiple genetic perturbations are combined—as well as the 
functional interrogation of sizable genomic fragments such as alter-
native exons. For example, an important question is the extent to 
which combinations of paralogous mammalian genes are important 
for phenotypic robustness. In particular, despite the widespread 
emergence of paralogous genes in higher organisms as a conse-
quence of small-scale and whole-genome duplication events dur-
ing vertebrate evolution17, it is unclear to what extent paralogs have 
redundant or distinct functions in human cells for a given pheno-
type. Similarly, it is also not known to what extent annotated alter-
native exons contribute to critical cell functions.

Key to addressing these questions is the generation of tools 
for combinatorial genetic perturbation. Although screening sys-
tems employing expression of two or more Cas9 guides have been 
described18–22, these approaches have limitations that impact their 
efficiency, including recombination between duplicated promot-
ers and expression cassettes18,23–26. Cas12a (formerly Cpf1) nuclease 
possesses intrinsic RNase activity and can generate multiple guide 
RNAs from a single concatemeric gRNA transcript27–29, making this 
an attractive option for combinatorial gene targeting. However, the 
previously reported efficiency of generation of multiple indels in 
the same cell with Cas12a is less than 15%28,30. Nevertheless, Cas12a 
has been exploited in a positive-selection screen to identify pairwise 
GIs between tumor suppressor genes that, when ablated, acceler-
ated tumor growth in a mouse model of metastasis30. With strong 
selection pressure, rare editing events can lead to small numbers 
of clones with substantial positive growth potential. In contrast, 
detection of negative growth effects presents a greater challenge as 
it requires highly efficient genetic perturbation systems.

To address the limitations of current screening approaches 
we describe CHyMErA, a system that uses coexpression of 
Streptococcus pyogenes (Sp)-Cas9 and Lachnospiraceae bacterium 
(Lb)-Cas12a nucleases, together with ‘hybrid guide’ (hg)RNAs gen-
erated from fusions of Cas9 and Cas12a gRNAs expressed from a 
single promoter. Through iterative rounds of pooled hgRNA library 
construction, screening, and the use of deep learning, we describe 
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optimized hgRNA designs for the human and mouse genomes 
and demonstrate that the resulting constituent Cas12a gRNA effi-
ciencies are comparable to those of efficient Cas9 gRNAs. Using 
CHyMErA, we perform screens with optimized hgRNA libraries 
targeting 672 human paralog pairs (representing >90% of predicted 
duplicate paralog genes in the human genome), explore chemoge-
netic interactions in the mTOR pathway and interrogate the func-
tions of 2,157 alternative cassette exons in cell fitness. These screens 
demonstrate a previously unappreciated degree of complexity of 
GIs among paralogous genes, reveal new chemical GIs, and identify 
numerous alternative exons that impact cell growth.

Results
Development of a hybrid CRISPR–Cas system for programmable 
multisite genome editing. To develop a multitargeting CRISPR 
editing platform, we compared different lentiviral-based approaches 
employing gRNAs designed to direct deletion of exon 8 of the mouse 
Ptbp1 gene by targeting flanking intronic sequences (see Methods). 
Employing Cas9 with constructs expressing two gRNAs results in 
poor exon deletion efficiency (Supplementary Fig. 1a,b and data 
not shown). We reasoned that combination of the relatively efficient 
Cas9 system with Cas12a, which affords combinatorial targeting 
through gRNA multiplexing28,29, would generate a more effective 
system. Accordingly, we generated cell lines coexpressing Sp-Cas9 
and either Lb-Cas12a or Acidaminococcus sp. BV3L6 (As)-Cas12a, 
together with hgRNAs fusing Cas9 and Cas12a guides (Fig. 1a  
and Supplementary Fig. 1c,d). These hgRNAs are processed by 
Cas12a RNase activity (Supplementary Fig. 1e)28,29, liberating indi-
vidual Cas9 and Cas12a gRNAs for loading into their respective 
nucleases (Fig. 1a).

Cas9 and Cas12a hgRNA pairs targeting sequences flanking 
Ptbp1 exon 8 yield deletion efficiencies of 10–43% in mouse embry-
onic stem cells (Fig. 1b). These efficiencies are substantially higher 
than for any other tested combination of Cas nucleases (Fig. 1b and 
data not shown). Increased editing efficiency was also observed for 
hgRNA pairs targeting other alternative exons for deletion in mouse 
and human cells (Supplementary Fig. 1f). Next, we tested combina-
tions of Cas9 and Cas12a hgRNAs targeting the HPRT1 and TK1 
genes, which, when knocked out, result in cells becoming resistant 
to 6-thioguanine (6-TG) or thymidine block, respectively. Lentiviral 
transduction of CHyMErA hgRNA constructs targeting HPRT1 and 
TK1, with Cas12a and Cas9 respectively, results in strong resistance 
to both treatments (Fig. 1c). Importantly, sequential drug treatment 
leads to generation of dual-resistant cell populations, confirming 
combinatorial editing within the same cells (Supplementary Fig. 1g).  
Furthermore, multiplexing of up to three Cas12a guides results  

in robust editing after the addition of intergenic (that is, negative  
control) guide sequences at internal positions while keeping an 
HPRT1-targeting guide at the last position of a multitargeting 
hgRNA construct (Fig. 1c).

We next tested the efficiency of CHyMErA in a pooled screen 
format. Lentiviral-based, positive-selection screens were performed 
in human HAP1 cells with pools of hgRNAs targeting ~1,000 human 
genes, including HPRT1 or TK1, using hgRNA pairs where one 
gRNA is directed to a constitutive exon sequence that, when dis-
rupted, is expected to result in loss of gene function, and the other 
gRNA is directed to a control intergenic sequence (Supplementary 
Table 1). Additional hgRNAs were tested that target intronic sites 
flanking the same exons and were expected to result in exon dele-
tion (Fig. 1d). Following treatment with 6-TG, 95.8% of all library 
constructs were undetectable, indicating strong negative selection 
driven by the drug treatment. Importantly, we also observed strong 
enrichment of hgRNAs targeting HPRT1 exonic sequences, and 
hgRNAs comprising Cas9–Cas12a pairs targeting HPRT1 exons 
for deletion (Wilcoxon rank-sum test, P < 2.2 × 10−16; Fig. 1e and 
Supplementary Fig. 1h). Furthermore, 94 and 67% of hgRNAs that 
directly target exon sequences are also enriched using the same cri-
teria. Similar results were obtained for guides targeting TK1 after 
double-thymidine block in HAP1 cells (Supplementary Fig. 1i). 
These experiments also reveal that Lb-Cas12a is more efficient 
at editing compared to As-Cas12a (Fig. 1c,e and Supplementary  
Fig. 1i; see also below). Collectively, these data demonstrate that 
coexpression of Cas9, Cas12a and hgRNAs represents an effective 
system for combinatorial genetic perturbation, including deletion 
of sizable genetic elements.

Optimization of Cas12a gRNAs employed by CHyMErA. While 
the rules for the design of efficient Cas9 gRNAs are well estab-
lished31–34, the parameters governing the editing efficiency of Cas12a 
guides are less well understood. Accordingly, we generated human 
and mouse hgRNA ‘optimization’ libraries targeting core essential 
genes for inactivation and exons for deletion. These optimiza-
tion libraries target more than 450 core essential genes33 with over 
6,000 Cas9 and Cas12a exon-targeting guides and over 35,000 exon-
flanking guides. They also contain 1,000 control constructs targeting 
intergenic regions, which control for toxicity induced by double-
stranded (ds)DNA breaks (see Methods, Supplementary Fig. 2a and 
Supplementary Tables 1 and 2). To construct these hgRNA libraries, 
we developed a two-step cloning strategy (Supplementary Fig. 2b; 
see also Methods), generated high-titer lentiviral stocks and trans-
duced them at a low multiplicity of infection (MOI) into HAP1 and 
CGR8 embryonic stem cells (Fig. 1f). Following puromycin selection  

Fig. 1 | Development of CHyMErA, a screening platform for combinatorial genetic perturbations. a, Schematic overview of CHyMErA. A hgRNA 
consisting of a fusion of Cas9 and Cas12a gRNAs is expressed under a single U6 promoter. Cas12a RNA processing activity cleaves hgRNA to generate 
functional Cas9 and Cas12a gRNAs. b, PCR assay monitoring of Ptbp1 exon 8 deletion efficiency using paired Cas9 intronic guides (left), paired Cas12a 
intronic guides (middle) or CHyMErA (right). Representative data from two to four independent experiments. c, HAP1 cells expressing Cas9 and Cas12a 
(Lb or As) were transduced with lentiviral expression cassettes for multiplexed hgRNAs encoding an increasing number of targets as indicated. For 
all hgRNA constructs, the first and last positions encode a TK1-targeting Cas9 and HPRT1-targeting Cas12a gRNA, respectively, while the intervening 
positions encode intergenic Cas12a gRNAs (left). To assay resistance to thymidine block and 6-TG treatment, cells were either control (Con)-treated 
or challenged with 250 μM thymidine or 6 μM 6-TG. Cell viability was measured by alamarBlue staining 4 d post treatment, relative to the nontargeting 
control. Bars indicate mean ± s.d. of three independent biological replicates. Immunoblot was performed to detect HPRT1 levels, and β-actin was used 
as a loading control (right). Representative data from two independent experiments. d, Schematic of hgRNA constructs designed to mutate or delete 
exons by targeting exonic or flanking intronic sequences, respectively (top). Cas9- and Cas12a-mediated exon mutation guide pairs are indicated in black 
and blue, while exon excision and the respective control guide pairs are indicated in red and yellow, respectively. Overview of positive-selection screens 
in which cells were treated with 6-TG (bottom). e, Enrichment of guide pairs targeting exons in HPRT1 for deletion (red) or gene knockout (black, Cas9; 
blue, Cas12a) in 6-TG-treated (6 μM; y axis) versus nontreated (x axis) HAP1 cells. Intronic/intergenic control hgRNAs are indicated in yellow, and non-
HPRT1-targeting constructs detectable in at least one 6-TG-treated replicate (n = 9,659) are shown in gray. Screens performed with Lb-Cas12a (left) and 
As-Cas12a (right). f, Overview of CHyMErA library generation and experimental setup for genetic screens. g, LFC distribution of Cas9 gRNAs (upper) or 
Cas12a gRNAs (lower) targeting essential (solid lines) and nonessential (dotted lines) genes for the indicated time points (T6, T12, T18) in HAP1 cells. 
Left: Lb-Cas12a screen; right: As-Cas12a screen. crRNA, CRISPR RNA.
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for 2 d, cells were collected for the reference T0 time point. The 
remaining cells were split into three parallel replicates and passaged 
independently every 3 d for 18 d (T18) while maintaining ~250-fold 

library coverage. Genomic DNA was isolated at the T0, T6, T12 and 
T18 time points, and hgRNA barcode sequences were quantified by 
paired-end sequencing (Fig. 1f; see also Methods).
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Analysis of log2 fold-change (LFC) distributions for each time 
point shows strong depletion of hgRNAs from both Lb- and 
As-Cas12a libraries where Cas9 guides target core fitness genes 
and Cas12a guides target nonfunctional intergenic sequences, in 
both HAP1 and mouse CGR8 cells (Fig. 1g, Supplementary Fig. 2c 
and Supplementary Tables 3 and 4). LFC distributions also show 
strong depletion of hgRNAs where Cas12a guides target essential 
genes and Cas9 guides target nonfunctional intergenic sequences, 
an effect that is significantly stronger with Lb-Cas12a compared 
to As-Cas12a nuclease (Wilcoxon rank-sum test, P = 1.5 × 10−150; 
Fig. 1g and Supplementary Fig. 2c). These results demonstrate the 
potential of Lb-Cas12a and hgRNA libraries in performing multi-
site-targeting negative selection screens. Since Lb-Cas12a outper-
formed As-Cas12a, the former was used for the remainder of the 
study and, for simplicity, is referred to below as Cas12a.

Deep learning prediction of efficient Cas12a guides. Using data 
from human and mouse libraries targeting essential genes, we 
developed machine learning models based on convolutional neu-
ral networks (CNNs), Lasso regression and random forests (RF), to 
predict features of the most active Cas12a guides (see Methods and 
Supplementary Fig. 2d). The CNN algorithm, named CHyMErA-
Net, achieved an area under the receiver operating characteristic 
curve (AUC) of 77% for both human and mouse cells (Fig. 2a,b 
and Supplementary Fig. 2e). The other approaches performed simi-
larly, although with slightly reduced predictive power (Fig. 2a,b and 
Supplementary Fig. 2e).

The weights assigned to each feature in the Lasso classifier 
were used to determine parameters underlying optimal Cas12a 
guides and target sites. Active guides are neutral with respect 
to GC content, although there is a preference for G at the first  
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position proximal to the PAM sequence, depletion of T at the  
first nine positions, and for a C at the PAM-distal 23rd nucleo-
tide (Fig. 2c,d). Similar nucleotide preferences were observed in 
the filters learned by the CNN classifier (Supplementary Fig. 2f).  
Little predictive information is attributed to secondary structure, 
melting temperature, 6-nt regions flanking the target site or the 
4-nt PAM sequence (Fig. 2d, Supplementary Fig. 2g and data not 
shown). In contrast to previous studies employing As-Cas12a35,36, 
we did not detect enrichment of active guides in regions with 
chromatin accessibility (Supplementary Fig. 2h). Supporting the 
accuracy of the CNN predictions, we observed a strong negative 
correlation between the CHyMErA-Net score for hgRNAs target-
ing essential genes and LFC guide scores between T0 and T18 
(Fig. 2e). A comparison of CHyMErA-Net scores with those of 
DeepCpf1, a recently described deep learning algorithm that pre-
dicts Cas12a guide activity36, revealed comparable performance 
with the exception that the best CHyMErA-Net-scored guides 
outperformed those determined by DeepCfp1 (Fig. 2f). These 
analyses support CHyMErA-Net’s scoring approach as a robust 
and quantitative method for predicting Cas12a guide activity at 
endogenous loci.

Gene inactivation using CHyMErA dual-targeting outperforms 
conventional single-targeting. Using the Cas12a guide design 
principles inferred by CHyMErA-Net, we designed an optimized 
hgRNA library that comprised 58,332 hgRNAs targeting 4,993 genes 
having the highest expression across five commonly used human 
cell lines (see Methods); 30,848 combinatorial and single-targeting 
hgRNAs directed at 1,344 human paralogs and 22 hand-selected 
gene–gene pairs of interest; and 3,566 control hgRNAs targeting 
intergenic or exogenous sequences for the assessment of single- ver-
sus dual-cutting effects (Supplementary Table 5).

Fitness screens were performed in HAP1 and hTERT-immortal-
ized retinal pigment epithelial (RPE1) cells constitutively express-
ing Cas9 and Cas12a (Supplementary Fig. 1d). These cell lines 
were selected based on their differential dependency on TP53; 
while RPE1 cells harbor a wild-type (WT) TP53 gene, HAP1 cells 
have a loss-of-function mutation in TP53 (ref. 37). Quantification 
of hgRNA abundance showed correlated depletion of hgRNAs tar-
geting core fitness genes compared to controls in both cell lines 
(Supplementary Fig. 3a and Supplementary Table 6; Spearman’s 
ρ = 0.62). Notably, CNN-optimized Cas12a guides (individual 
Cas12a guides paired with intergenic control guides) were more 
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efficiently depleted than Cas12a guides tested in the optimization 
screen (Fig. 3a; P = 1.4 × 10−28, Wilcoxon rank-sum test), confirm-
ing that our CNN algorithm identifies more effective guides.

We next assessed whether the combination of Cas9 and Cas12a 
guides in hgRNAs would result in increased signal in fitness screens 
(Fig. 3b). We considered that the probability of loss-of-function 
indel frequencies caused by a single Cas9 or Cas12a gRNA tar-
geting a given gene would be enhanced if a second indel event 
were introduced in the same gene in the same cell. As controls, 
we compared LFC distributions for nontargeting and intergenic-
targeting hgRNAs. On average, hgRNA constructs targeting inter-
genic regions show no net LFC (Fig. 3c) although there is a modest  
correlation between the number of genomic cuts and reduced fit-
ness (Supplementary Fig. 3b), consistent with previous reports6,38,39. 
With these observations in mind, when comparing single- versus 
dual-targeting of genes in our screens, single-targeting constructs 
were always paired with an intergenic-targeting guide to control  
for this effect.

Targeting essential genes with both Cas9 and Cas12 guides via 
hgRNAs results in significantly higher depletion in both HAP1 
(2.8×) and RPE1 (2.6×) cells, compared to targeting with single 
Cas9 or Cas12 guides in the context of hgRNAs (Welch’s two- 
sample t-test, P < 2.2 × 10−16; Fig. 3c and Supplementary Fig. 3c). It 
is noteworthy that, despite RPE1 cells harboring a WT TP53 gene 
(Supplementary Fig. 3e), the efficiency of targeting core essential 
genes between these lines is comparable (Fig. 3c). The enhanced 
dropout of dual-targeted genes appears to be independent of the 
distance between paired sites (Supplementary Fig. 3d). Importantly, 
the number of fitness genes identified by dual-targeting substan-
tially exceeds that detected through single-targeting, yielding ~600 
and 1,500 additional genes for HAP1 and RPE1 cells, respectively 
(Fig. 3d,e and Supplementary Table 7).

To independently assess whether these additional genes are 
important for cell growth, we examined their fitness profiles in  
the Cancer Dependency Map dataset (DepMap40, Supplementary 
Fig. 3f), which comprises data from CRISPR loss-of-function screens 
in 558 cancer cell lines performed using a different single-targeting 
Cas9 gRNA library. The distribution of CERES scores (a measure of 
essentiality that corrects for copy number alterations at target sites) 
for core essential genes has a median of −0.96, while genes detected 
by both single- and dual-targeting have a median CERES score of 
−0.61. Interestingly, fitness genes identified only by dual-targeting 
hgRNAs have a distribution with a median of −0.16, which is signi
ficantly lower than that of nonessential genes (P < 0.001, Wilcoxon 
rank-sum test; Supplementary Fig. 3f). Thus, dual-targeted-only 
genes appear to have distinct, less pronounced fitness defects  
across a broad range of cell lines, which fail to be detected when 
targeted by single gRNAs. Collectively, these results indicate that 
targeting the same gene twice in the same cell using CHyMErA 
significantly increases the efficiency of gene disruption, and thus 
improves the sensitivity of detection of genes with relatively modest 
effects on cell fitness.

CHyMErA detects digenic interactions. To assess the efficacy of 
the multisite-targeting capacity of CHyMErA for mapping GIs, we 
used CNN-optimized hgRNAs to target pairs of genes involved 
in a small number of known digenic interactions (Supplementary 
Tables 5 and 6). These gene pairs were targeted either individually 
or in combination by Cas9 and Cas12a gRNAs, and LFC values for 
double-knockouts were compared with the sums of LFCs for single-
knockouts (Fig. 4a and see Methods). This screen detected expected 
GIs between TP53 and its negative regulators MDM4 and MDM2 
in RPE1 cells, which express WT TP53 (Fig. 4b and Supplementary 
Fig. 4a). However, these interactions were not detected in HAP1 
cells, which harbor an expressed but inactive mutant version of TP53 
(TP53-S215G)41 (Fig. 4b and Supplementary Fig. 4a). CHyMErA also  

captured known negative GIs between MCL1 and BCL2L1 (ref. 18,19), 
and between KDM6B and BRD4 (ref. 21) (Supplementary Fig. 4b), 
effectively demonstrating its utility in mapping digenic interactions 
in mammalian cells.

CHyMErA screens uncover functional relationships between 
paralogous genes. Although genetic redundancy helps ensure phe-
notypic robustness42, it also limits the detection of gene functions 
using single-gene loss-of-function approaches43. We therefore used 
CHyMErA to systematically target 1,344 genes that represent para-
log pairs (excluding gene families with more than two paralogs), 
and targeted these either individually or in combination using the 
CNN-optimized hgRNA library described above (Supplementary 
Table 5). This set of paralogs represents genes that encode proteins 
involved in a broad range of biological processes (for example, cell 
cycle, protein trafficking, splicing, protein turnover and modifica-
tion, and metabolism).

Following the strategy for scoring of hgRNAs targeting genes 
involved in known digenic interactions described above, we exam-
ined the effect of targeting paralogs (single versus combinatorial tar-
geting) in HAP1 and RPE1 cells. Notably, 33% (219 pairs) of tested 
paralog pairs in HAP1 cells and 18% (122 pairs) in RPE1 cells dis-
play a nonadditive fitness phenotype when targeted in combination, 
as compared to expected phenotypes from targeting each paralog 
individually (Fig. 4c,d, Supplementary Fig. 4c–f and Supplementary 
Table 8). As in yeast44, the majority of these effects represent nega-
tive GIs, although positive interactions are also detected (Fig. 4e,f 
and Supplementary Fig. 4g,h). Negative GIs include several para-
log pairs known to exhibit functional redundancy (for example, 
SEC23A–SEC23B, AR1D1A–AR1D1B and TIA1–TIAL1 (refs. 45–47),  
as well as strong yet previously uncharacterized negative inter
actions (SAR1A–SAR1B, RAB1A–RAB1B, LDHA–LDHB, RBM26–
RBM27 and hnRNPF–hnRNPH3), whereas positive GIs were 
detected between STK38–STK38L and TET1–TET2 (Fig. 4e,f, 
Supplementary Fig. 4g,h and Supplementary Table 8). Importantly, 
GIs between paralogous genes (LDHA–LDHB, SLC16A1–SLC16A3, 
ROCK1–ROCK2 and SP1–SP3) were also independently validated in 
HAP1 clonal knockout cell lines, with a clear fitness defect observed 
in double-knockouts compared to the corresponding single- 
knockouts (Supplementary Fig. 4i).

A relatively strong GI observed in both HAP1 and RPE1 cells 
involves paralogous genes encoding the RNA recognition motif-
containing proteins RBM26 and RBM27 which, to our knowledge 
have not previously been characterized. To validate and further 
investigate the functional interaction between RBM26 and RBM27, 
we performed single and double small interfering (si)RNA knock-
downs (Supplementary Fig. 4j). Depletion of RBM27 has little 
effect on the proliferation of HAP1 or RPE1 cells, whereas their 
combined depletion results in a more than additive effect on cell 
viability (Supplementary Fig. 4k). Moreover, RNA-sequencing 
(RNA-seq) profiling of HAP1 cells following siRNA knockdown 
of RBM26 and RBM27 reveals that their co-depletion results in a 
72% increase in the number of genes with altered expression com-
pared to that of both single-knockdowns (2,073 versus 1,204 genes, 
P < 2.2 × 10–16, Fisher’s exact test; Fig. 4g,h and Supplementary  
Table 9). Interestingly, genes downregulated following RBM26  
and/or RBM27 co-depletion are enriched in terms related to the 
cell cycle (Supplementary Fig. 4l and Supplementary Table 10). 
Collectively, these analyses demonstrate the efficacy of CHyMErA 
in detecting known and new GIs between pairs of paralogous genes, 
including a previously unknown interaction between RBM26 and 
RBM27 that shapes the human transcriptome.

CHyMErA increases the sensitivity of chemogenetic screens. 
Chemical–genetic interactions can uncover molecular mecha-
nisms and targets of drug action. For example, the identification of 
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genes that impact small-molecule modulation of the mTOR path-
way, which plays a central role in regulation of protein synthesis, 
autophagy and cell growth, is of considerable interest48,49. To test 
the utility of CHyMErA in the detection of small-molecule GIs, we 
treated HAP1 cells transduced by the dual-gene and paralog-target-
ing hgRNA library with the catalytic mTOR inhibitor Torin1, which 
targets mTORC1 and mTORC2 kinase complexes50. To identify 
genes whose depletion alters the response to Torin1, we compared 
hgRNA LFC distributions with or without drug treatment. This 
analysis identifies 17 and 8 single-guide-targeted genes as Torin1 
suppressors and sensitizers, respectively, whereas dual-targeting 
identifies 77 suppressors and 56 sensitizers at the same false discov-

ery rate (FDR) (Fig. 5a,b, Supplementary Fig. 5a and Supplementary 
Table 11). The PRC2 complex member encoded by the EED gene 
scores amongst the top three positive chemical GIs for both single- 
and dual-targeting hgRNAs (Fig. 5b,c). This finding was confirmed 
by treating HAP1 WT and EED knockout cells with Torin1, where 
an increased tolerance of mTOR inhibition was observed in EED-
deficient cells (Supplementary Fig. 5b). We also identify 20 positive 
and 20 negative chemical GIs amongst paralog pairs (suppressors 
and sensitizers, respectively), including genes not identified when 
individually targeted (FDR < 0.01; Fig. 5a,d, Supplementary Fig. 5c 
and Supplementary Table 11). As examples, the Torin1 sensitivity 
screen identifies previously described regulators and downstream 
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effectors of mTOR signaling, including FBXW7 (ref. 51), GSK3A 
and GSK3B (ref. 52), Rho signaling components such as ROCK1 and 
ROCK2 (ref. 53) and RAL GTPases54 (Fig. 5c). Previously unseen 
Torin-GIs include genes in the Hippo signaling and diphthamide 
modification pathways, as well as those in multiple transcriptional 
and chromatin regulators associated with the EMSY–KDM5A–
SIN3B complex, the Polycomb repressive complex 2 (PRC2) and the 
pBAF complex (Fig. 5c and Supplementary Fig. 5d,e). These data 
highlight the utility of CHyMErA as an effective tool in the discovery  
of new chemical GI relationships.

CHyMErA as a tool for exon-resolution functional genomics. We 
next applied CHyMErA to the large-scale screening of exon function.  

To this end, we designed a CNN-optimized hgRNA library tar-
geting 2,157 alternative cassette exons for deletion in RPE1 cells, 
using multiple hgRNAs directed at flanking intronic sequences. 
Furthermore, each intronic Cas9 and Cas12a gRNA was also paired 
with intergenic gRNAs to control for nonspecific toxicity. The 
library further included Cas9 gRNAs directly targeting sequences 
within constitutive exons, to assess the phenotypic impact of inac-
tivation of genes harboring targeted alternative exons (see Methods 
and Supplementary Table 12). The analyzed alternative exons are 
detected in transcripts expressed across a panel of human cell lines 
and belong to functionally diverse genes with a range of fitness 
profiles and conservation levels (Supplementary Table 12, and see 
Methods). Among the targeted exons, 132 are frame-altering and 
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predicted to result in gene inactivation via truncation of the coding 
sequence, or else introduction of a premature termination codon 
with potential to elicit nonsense-mediated messenger RNA decay. 
The frame-altering category includes exons in both fitness and 
nonfitness genes, affording a comparative measure of the efficiency  
of hgRNAs in directing exon deletion and guide depletion in cell 
fitness screens.

To assess the efficiency of exon deletion, we first determined 
which guide pairs display significant dropout or enrichment 
compared to intergenic–intergenic control guide pairs. We then 
scored the percentage of targeted frame-disrupting exons in fit-
ness and nonfitness genes based on the fraction of significantly 
depleted guide pairs. As expected, among the guide pairs displaying 
a significant dropout phenotype there is a strong enrichment for  
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frame-disruptive exons residing in fitness genes compared to exons 
in nonfitness genes (Fig. 6a–c and Supplementary Fig. 6a; P < 0.001, 
Fisher’s exact test). This enrichment is not detected for single-cut-
ting intronic–intergenic control guide pairs (Fig. 6a–b). The stron-
gest separation (~4.5-fold) between fitness and nonfitness genes is 
observed with exons for which there is a significant dropout of at 
least 18% of tested hgRNA exon-deletion pairs (Fig. 6a–c). These 
results demonstrate that CHyMErA is capable of interrogating the 
phenotypic consequences of exon deletion in the context of large-
scale dropout screens.

CHyMErA reveals alternative exons that impact cell fitness. We 
next used CHyMErA to investigate the consequences of deleting 
frame-preserving cassette exons on cell fitness in RPE1 cells. Of 
2,025 frame-preserving cassette exons targeted for deletion, 124 
resulted in significant depletion of guides (Fig. 6d and Supplementary 
Table 13). These ‘fitness exons’ are significantly enriched in essen-
tial genes (Fig. 6e; P < 0.00012, Mann–Whitney U-test) and, 
according to RNA-seq analysis, display a significantly skewed dis-
tribution towards increased inclusion levels (Supplementary Fig. 
6b; P = 0.012, Mann–Whitney U-test). However, we do not detect 
apparent differences between exons impacting fitness versus those 
that do not when comparing exon length or overlap with annotated 
functional domains (Supplementary Fig. 6c,d). Validating the speci-
ficity of CHyMErA for exon deletion, several hgRNAs that produce 
strong phenotypes in the screen are also found to have greater edit-
ing efficiency relative to hgRNAs targeting the same exons but with 
marginal LFC values (Supplementary Fig. 6e).

Among the frame-preserving exons impacting cellular fitness 
is exon 12A of the BIN1 gene (Fig. 6d and Supplementary Fig. 6f). 
BIN1 is a tumor suppressor that interacts with MYC and inhibits 
MYC-dependent transformation55. Our observation is in agree-
ment with a previous study linking exon 12A to cell proliferation 
by abolishing a BIN1–MYC interaction56, and aberrant splicing of 
this exon has been observed in melanoma cells57. In addition to 
capturing alternative exons with known roles in proliferation, our 
screen reveals alternative exons with unexpected roles in cell fitness 
(Fig. 6d and Supplementary Fig. 6f) and provides a resource for 
prioritization of alternative splicing events for future investigation. 
Overall, the results demonstrate the utility of CHyMErA as an effec-
tive method for systematic investigation of the function of alterative 
exons when coupled with an appropriate biological assay.

Discussion
Identifying GIs and the roles of gene segments is crucial in the 
advancement of knowledge of gene function and how genome alter-
ations contribute to diseases and disorders58. Pioneering studies 
using budding yeast have generated global GI networks and wiring 
diagrams of cellular function44,59. However, systematic mapping of 
GIs in mammalian cells has been hampered by the lack of efficient 
and readily scalable targeting systems18–22,45,60. Similarly, while it is 
well established that disruption of splicing regulators and individual 
exons can significantly impact development and lead to diseases 
and disorders61–63, there is a lack of efficient gene targeting systems 
for the systematic functional interrogation of exons, or other gene 
regions. The results in the present study support the efficacy of 
CHyMErA as a system for addressing these timely challenges.

Previously described CRISPR-based multitargeting strate-
gies coexpress pairs of Cas9 guides18,20,22,60,64,65. However, these 
approaches have limited efficiency, especially when attempting  
synchronous targeting (for example, for gene segment deletion)  
(Supplementary Fig. 1a,b). More recent systems employing ortho
logous Staphylococcus aureus Cas9 and Sp-Cas9 enzymes19,66, 
like CHyMErA, have increased editing efficiency, possibly due to 
reduced recombination through the use of different transactivating 
CRISPR RNAs. However, CHyMErA is on average more efficient in 

regard to gene segment deletion (Supplementary Fig. 7a,b), prob-
ably due to its unique feature of affording coexpression of multi-
ple (up to four) machine learning-optimized gRNAs from a single 
hgRNA, which allows synchronous dsDNA breaks. Consistently, 
recent studies employing Cas12a-processed polycistronic guides for 
multitargeting displayed increased editing efficiency as compared 
to the use of single Cas12a gRNAs67,68. Moreover, the combination 
of Cas9 and Cas12a systems leverages twice the number of possible 
targeting sites in comparison to the use of either enzyme alone—that 
is, the human genome contains 227.3 M Cas9 (NGG) and 207.6 M 
Cas12a (TTTV) candidate PAM target sites (Supplementary Fig. 7c).  
Engineering Cas9, Cas12a or other Cas enzymes for increased edit-
ing efficiency69,70 and target specificity is expected to further expand 
the targeting landscape of the CHyMErA system. Furthermore, 
CHyMErA can be combined with multiple effector domains5,71 to 
afford more complex assays, such as interrogating the effects of 
simultaneous inactivation and activation of different sets of genes 
in the same cells.

In conclusion, CHyMErA represents an efficient and versatile 
system for the combinatorial perturbation of genetic elements in 
mammalian cells. As such, we anticipate its future use in charting 
GIs and the functions of genome segments, such as the myriad of 
previously uncharacterized alternative splicing events and noncod-
ing RNA sequences linked to development and disease.
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Methods
Cell culture methods. HAP1 cells were obtained from Horizon Genomics (clone 
C631; sex: male with lost Y chromosome; RRID: CVCL_Y019). hTERT-RPE1 or 
RPE1 cells were obtained from ATCC (catalog. no. CRL-4000). Neuro-2A (N2A) 
cells were obtained from ATCC (catalog. no. CCL-131). Mouse CGR8 embryonic 
stem cells were obtained from the European Collection of Authenticated Cell 
Cultures. Human HAP1 cells were maintained in low-glucose (10 mM), low-
glutamine (1 mM) DMEM (Wisent, no. 319-162-CL) supplemented with 10% 
FBS (Life Technologies) and 1% penicillin/streptomycin (Life Technologies). 
Human hTERT-RPE1 cells were maintained in DMEM with high glucose and 
pyruvate (Life Technologies) supplemented with 10% FBS (Life Technologies) 
and 1% penicillin/streptomycin (Life Technologies). Mouse neuroblastoma 
Neuro-2A (N2A) cells were grown in DMEM (high-glucose; Sigma-Aldrich) 
supplemented with 10% FBS, sodium pyruvate, nonessential amino acids and 
penicillin/streptomycin. CGR8 mouse embryonic stem cells were grown in 
gelatin-coated plates in GMEM supplemented with 100 μM β-mercaptoethanol, 
0.1 mM nonessential amino acids, 2 mM sodium pyruvate, 2 mM l-glutamine, 
5,000 units ml–1 of penicillin/streptomycin, 1,000 units ml–1 of recombinant mouse 
LIF (all Life Technologies) and 15% ES fetal calf serum (ATCC). Cells were 
maintained at subconfluent conditions. Cells were dissociated using Trypsin (Life 
Technologies), and all were maintained at 37 °C and 5% CO2. Cells were regularly 
monitored for mycoplasma infection.

Lenti-Cas12a vector construction. A nucleoplasmin nuclear localization signal 
(NLS) was added at the C terminus of an N-terminal SV40 NLS-tagged Cas12a 
followed by a Myc tag using conventional restriction enzyme cloning, to generate 
As- or Lb-Cas12a-NLS-MYC-2A-NeoR lentiviral-based expression vectors named 
plenti-As-Cas12a-2xNLS and plenti-Lb-Cas12a-2xNLS, respectively.

pLCHKO hgRNA vector construction. The pLCHKO vector for hgRNA 
expression was derived from the pLCKO vector (Addgene, no. 73311) by inverting 
the U6 expression cassette consisting of a stuffer sequence containing BfuAI/
BveI sites followed by a RNA polymerase III transcription termination signal 
(AAAAAAA). Cloning of hgRNAs into the vector was performed as follows.  
First, the pLCHKO vector was digested with BsmBI, and oligos containing the 
Cas9 and Cas12a guides separated by a 32-nt spacer containing BsmBI/Esp3I  
sites were ligated. Separately, the tracrRNA-Direct Repeat (DR) fragment  
was cloned into a TOPO vector by annealing and ligating oligos encoding  
BsmBI-tracrRNA-DR-BsmBI.

BsmBI-tracrRNA-Lb-Cas12a_DR-BsmBI:
5′-cgtctctGTTTCAGAGCTATGCTGGAAACAGCATAG

CAAGTTGAAATAAGGCTAG
TCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTAATTTC

TACTAAGTGTAGATagagacg-3′
BsmBI-tracrRNA-As-Cas12a_DR-BsmBI:
5′-cgtctctGTTTCAGAGCTATGCTGGAAACAGCATAG

CAAGTTGAAATAAGGCTAG
TCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTAATTTCT

ACTCTTGTAGATagagacg-3′
BsmBI restriction recognition sites are in lower case and underlined, optimized 

tracrRNA72 are in upper case and Cas12 DR is in upper case and bold.
In the second cloning step, the 32-nt spacer was excised from pLCHKO vectors 

containing the dual guides using BsmBI, and the Cas9 tracrRNA-Cas12a DR 
fragment was ligated (see also Supplementary Fig. 2a).

pPapi constructs were cloned using oligos (generated by Twist Biosciences) as 
described previously19.

Cell line generation. Previously generated HAP1 and hTERT-RPE1 clonal cell 
lines expressing Cas96,33 were transduced with lentivirus carrying the As- or Lb-
Cas12a-2A-NeoR expression cassette, and transduced cells were selected with G418 
(500 µg ml–1) for 2 weeks. HAP1 and RPE1 Cas9–Cas12a cells were not subjected 
to single-cell isolation but were used as pools in CHyMErA screens. HAP1 Cas9–
Cas12a cells became diploid during the selection process, as determined by ploidy 
analysis using flow cytometry.

Neuro-2A and CGR8 cells were transduced with lentivirus carrying the 
Cas9-2A-BlasticidinR-expressing cassette (Addgene, no. 73310) and selected with 
blasticidin (10 µg ml–1 for N2A and 6 µg ml–1 for CGR8) for 10 d. Cas9-expressing 
cell lines were then transduced with lentivirus carrying the As- or Lb-Cas12a-
2A-NeoR expression cassette and selected with G418 (500 µg ml–1). After 14 d 
of selection, N2A single cells were sorted by manual seeding of a single-cell 
suspension at 0.6 cells per well in 96‐well plates. A cell clone with high editing 
efficiency was selected for subsequent CHyMErA screens. CGR8 Cas9–Cas12a 
cells were not subjected to single-cell isolation but instead were used as pools in 
CHyMErA screens.

Toxicity assays using thymidine or 6-TG. To determine Cas9 and Cas12a editing 
efficiency, HAP1 and RPE1 cells expressing Cas9 and Cas12a were transduced 
with hgRNAs targeting TK1 (by Cas9) and HPRT1 (by Cas12a). After selection for 
transduced cells using 1 µg ml–1 of puromycin for 2 d, cells were reseeded and, after 

18 h, treated with either 2.5 mM thymidine or 6 µM 6-TG, or mock treated for  
4 d. 6-TG results in cell death whereas thymidine block causes cell cycle arrest. 
As such, both drugs strongly affect cell fitness. Cell viability was assessed by 
alamarBlue staining.

siRNA transfections and cell viability assays for RBM26–RBM27 interaction. 
HAP1 and RPE1 cell lines were transfected with 10 nM of siGENOME siRNA pools 
targeting RBM26 and RBM27 (Dharmacon) using RNAiMax (Life Technologies). 
A nontargeting siRNA pool was used as control. Cells were harvested 48 h 
post-transfection for RNA extraction. For cell viability assays, knockdown was 
performed for 72 h and viability was assessed by alamarBlue.

Validation of Torin1–EED chemicogenetic interaction. For validation of a 
Torin1 suppressor, HAP1 WT and EED knockout cells were treated with Torin1 at 
concentrations ranging from 0 to 100 nM for 4 d. Cell viability was measured post 
treatment using alamarBlue, and half-maximal inhibitory concentration values 
were calculated using GraphPad Prism software.

Validation of GIs between paralog pairs. HAP1 parental and knockout clones 
were transduced with lentiviruses derived from lentiCRISPRv2 Cas9 and gRNA 
expression cassettes targeting either an intergenic site in the AAVS1 locus or 
the corresponding paralog pair. Each gene was targeted with two independent 
gRNAs. Twenty-four hours after transduction, cells were selected with 1 µg ml–1 of 
puromycin for 48 h and seeded for proliferation assay. Cell viability was measured 
by alamarBlue after 6 d. Average viability of cells transduced with the two gene-
targeting gRNAs was calculated and normalized to the intergenic control gRNAs.

Assessment of Cas9–Cas12a editing by PCR. To determine Cas9 and Cas12a 
editing efficiency, cells expressing Cas9 and Cas12a were transduced with 
lentiviruses derived from dual pLCKO (see Supplementary Fig. 1a), pLCHKO or 
pPapi constructs targeting intronic regions flanking exons. Transduced cells were 
selected with 1 µg ml–1 of puromycin for 48 h, and gDNA was extracted using the 
PureLink Genomic DNA Kit (Thermo Fisher Scientific). Successful editing was 
assessed by PCR using primers flanking the targeted regions, and PCR products 
were resolved by agarose gel electrophoresis.

Percentage exon deletion was calculated using ImageJ software. Exon-included 
and -excluded band intensities were corrected by subtracting the background, and 
values were normalized by product size. Intensity of the exon-included band was 
divided by the sum of the exon-included and -excluded bands; the result was then 
multiplied by 100 to obtain percentage exon deletion, which was rounded to the 
nearest integer.

Immunofluorescence. Cells were seeded on coverslips and fixed with 4% 
paraformaldehyde in PBS for 10 min at room temperature. Cells were then 
permeabilized with 1% NP-40 in antibody dilution solution (PBS, 0.2% BSA, 0.02% 
sodium azide) for 10 min and blocked with 1% goat serum for 45 min. Cells were 
incubated with anti-HA (1:1,000, Sigma) and anti-Myc antibodies (1:1,000, Sigma, 
no. M4439) for 1 h at room temperature. Subsequently, cells were incubated with 
Alexa Fluor488 goat anti-rabbit antibodies (1:500, Invitrogen, no. A-1108) and 
counterstained with 1 µg ml–1 of DAPI (Cell Signaling, no. 4083S) for 45 min in 
the dark. Finally, cells were visualized by confocal microscopy (WaveFX confocal 
microscope, Quorum Technologies).

Immunoblotting. Cells were lysed in buffer F (10 mM Tris pH 7.05, 50 mM NaCl, 
30 mM Na pyrophosphate, 50 mM NaF, 10% glycerol, 0.5% Triton X‐100) and 
centrifuged at 14,000 r.p.m. for 10 min. Supernatant was collected and protein 
concentration was determined using Bradford reagent (BioRad). Protein (10–
25 µg) was resolved on 4–12% Bis‐Tris gels (Life Technologies) by electrophoresis 
and then transferred to Immobilon‐P nitrocellulose membrane (Millipore) at 66 V 
for 90 min. Subsequently, proteins were detected using the following antibodies: 
anti-β‐actin (1:10,000, Abcam, no. ab8226), anti-Cas9 (1:4,000, Diagenode, no. 
C15200229), anti-Cpf1 (1:1,000, Sigma, no. SAB4200777), anti-P53 (1:2,000, 
Life Technologies, no. AHO0152), anti-pRb S807/811 (1:500, Cell Signaling, no. 
9308), anti-p21 (1:500, Cell Signaling, no. 2946) or anti-Myc (1:1,000, Sigma, no. 
M4439). After binding with HRP-conjugated secondary antibodies (1:5,000, anti-
Mouse Jackson ImmunoResearch, no. 715-035-151; anti-Rabbit, Cell Signaling 
Technology, no. 7074), proteins were visualized on X‐ray film using Super Signal 
chemiluminescence reagent (Thermo Fisher Scientific).

Cas12a RNA processing activity. HAP1 cells expressing both Cas9 and Cas12a 
or Cas9 alone were transduced with a lentiviral hgRNA expression cassette. RNA 
was extracted using TRIzol (Thermo Fisher Scientific). Subsequently, RNA was 
converted to complementary DNA using a Maxima H cDNA synthesis kit (Thermo 
Fisher Scientific) and random primers. Total and unprocessed Cas9 and Cas12a 
guides were amplified and quantified by quantitative PCR using a SensiFAST real-
time PCR kit (Bioline). Full-length (unprocessed) hgRNA was quantified using 
primers annealing to the beginning of the tracrRNA and to the end of the Cas12a 
guide. To quantify total levels of the Cas9 guide (processed and unprocessed), 
primers annealing to the beginning and end of tracrRNA were used. Cas12a 
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processing activity was estimated by normalizing the levels of unprocessed hgRNA 
to total levels of Cas9 gRNA.

Surveyor assays. On-target genomic editing efficiency was estimated using the 
Surveyor assay, as previously described73. Briefly, N2A cells were transduced 
with multiple independent Cas9- and gRNA-expressing viruses targeting Ptbp1 
intronic regions. Cells were selected in puromycin (2.5 μg ml–1) for 48 h and, 
4 d post-selection, genomic DNA was extracted using the PureLink Genomic 
DNA Kit (Thermo Fisher Scientific). After amplification of targeted loci by PCR 
(Supplementary Table 14), PCR products were denatured and reannealed to form 
heteroduplexes. Reannealed PCR products were incubated with T7 endonuclease 
(NEB) for 20 min at 37 °C, and cleavage efficiency was determined by agarose gel 
electrophoresis.

Lentiviral hgRNA library construction. For construction of CHyMErA libraries, 
Cas9 and Cas12a gRNA sequences were cloned into a lentiviral vector via two 
rounds of Golden Gate assembly. Oligo pools (113 nt) were designed carrying 
20-nt Cas9 and 23-nt Cas12a guide sequences separated by a 32-nt stuffer sequence 
flanked by BsmBI restriction sites, all flanked by short sequences containing BfuAI 
restriction sites (see Supplementary Fig. 2b). The oligo pools were synthesized on 
90k microarray chips by CustomArray Inc. (a member of GenScript), each with a 
density of ~94,000 sequences. Oligos were amplified by PCR over ten cycles using 
Q5 polymerase ((1) 98 °C, 30 s; (2) 98 °C, 10 s; (3) 53 °C, 30 s; (4) 72 °C, 10 s; (5) 72 °C, 
2 min; steps 2–4 repeated for nine cycles). Amplified oligos were purified on a PCR 
purification column, and an aliquot was run on 2% agarose gel to check purity. 
The pLCHKO hgRNA vector backbone was digested with BfuAI (NEB) overnight 
at 37 °C and BspMI (NEB) for 2 h. The digested backbone was dephosphorylated 
with rSAP (NEB) for 1 h at 37 °C and gel purified using the GeneJet gel extraction 
kit (Thermo Fisher Scientific). Amplified oligos were digested with BveI (Thermo 
Fisher Scientific, FastDigest) and ligated into the digested pLCHKO backbone 
using T4 ligase (NEB) in a combined reaction overnight over 12 cycles ((1) 37 °C, 
30 min; (2) 16 °C, 30 min; (3) 24 °C, 60 min; (4) 37 °C, 15 min; (5) 65 °C, 10 min; 
steps 1–3 were repeated for 11 cycles) using an empirically determined vector/insert 
ratio. The ligation mix was precipitated using sodium acetate and ethanol. The 
purified ligation reaction was used to transform Endura competent cells (Lucigen) 
by electroporation (1-mm cuvette, 25 uF, 200 Ω, 1,600 V), and a sufficient number 
of cells were plated on 15-cm ampicillin Luria–Bertani (LB) agar plates to reach a 
library coverage of 500–1,000-fold. Bacterial colonies were scraped from the plates, 
pooled and bacterial pellets were collected. The Ligation 1 library plasmid was 
extracted using a Mega-prep plasmid purification kit (Qiagen).

In the second step, Cas9 tracrRNA and the Cas12a direct repeat were inserted 
into the pooled library. The Ligation 1 plasmid library was digested overnight 
using Esp3I (Thermo Fisher Scientific, FastDigest) and BsmBI (2 h, 55 °C), 
dephosphorylated using rSAP (1 h, 37 °C) and purified on a PCR purification 
column. A TOPO vector carrying Cas9 tracrRNA and the Cas12a direct repeat 
was digested using Esp3I and subsequently ligated into the digested pLCHKO-
Ligation 1 vector overnight over 12 cycles ((1) 37 °C, 30 min; (2) 16 °C, 30 min; 
(3) 24 °C, 60 min; (4) 37 °C, 15 min; (5) 65 °C, 10 min; steps 1–3 were repeated for 
11 cycles) using a vector/insert ratio of 1:25. The ligation mix was precipitated 
using sodium acetate and ethanol. The purified ligation reaction was used to 
transform Endura competent cells (Lucigen) by electroporation (1-mm cuvette, 
25 uF, 200 Ω, 1,600 V), and a sufficient number of cells were plated on 15-cm 
ampicillin LB agar plates to reach a library coverage of 500–1,000-fold. Bacterial 
colonies were scraped from the plates, pooled and bacterial pellets were collected. 
The Ligation 2 library plasmid was extracted using a Mega-prep plasmid 
purification kit (Qiagen).

Library virus production and MOI determination. For library virus production, 
8 million HEK293T cells were seeded per 15-cm plate in high-glucose, pyruvate 
DMEM medium + 10% FBS. Twenty-four hours after seeding, cells were 
transfected with a mix of 6 µg of lentiviral pLCHKO vector containing the hgRNA 
library, 6.5 µg of packaging vector psPAX2, 4 µg of envelope vector pMD2.G, 48 µl 
of X-treme Gene transfection reagent (Roche) and 1.4 ml of Opti-MEM medium 
(Life Technologies). Twenty-four hours after transfection, the medium was 
replaced with serum‐free, high-BSA growth media (DMEM, 1.1 g 100 ml–1 BSA, 
1% penicillin/streptomycin). Virus-containing medium was harvested 48 h after 
transfection, centrifuged at 1,500 r.p.m. for 5 min, aliquoted and frozen at −80 °C.

For determination of viral titers, cells were transduced by titration of the 
lentiviral hgRNA library along with polybrene (8 µg ml–1). After 24 h, virus-
containing medium was replaced with fresh medium containing puromycin 
(1–2 µg ml–1) and cells were incubated for an additional 48 h. MOI of the titrated 
virus was determined 72 h post‐infection by comparing percentage survival of 
puromycin-selected cells to infected but nonselected control cells. Due to pre-
existing puromycin resistance, RPE1 cells were lifted and reseeded in media 
containing puromycin (20 µg ml–1) to achieve efficient selection of cells transduced 
with the lentiviral hgRNA library.

Pooled hgRNA dropout screens. For pooled screens, 3 × 106 cells were seeded 
in 15-cm plates. A total of 9 × 107 cells was transduced with lentiviral libraries 

at MOI = ~0.3 such that each hgRNA is represented in about 250–300 cells. 
Twenty-four hours after infection, transduced cells were selected with 1–2 µg ml–1 
of puromycin for 48 h. Cells were then harvested and pooled, and 3 × 107 cells 
were collected for subsequent gDNA extraction and determination of hgRNA 
at T0. Pooled cells were then seeded into three replicate plates, each containing 
2.1 × 107 cells (>200-fold library coverage), which were passaged every 3 d and 
maintained at >200-fold library coverage until T18. gDNA pellets from each 
replicate were collected on each day of cell passage.

Pooled positive-selection hgRNA screens for resistance to 6-TG and thymidine 
block. For positive-selection screens, 2 × 107 (1 × 107 cells per 15-cm plate) HAP1 
and CGR8 cells transduced with the human or mouse hgRNA optimization 
libraries (see Supplementary Tables 1 and 2), respectively, were seeded at T6 in 
triplicate, and 24 h later were treated with 2.5 mM thymidine or 6 µM 6-TG. After 
16 h, thymidine-treated cells were washed and released into normal media, and 
10 h later were treated with thymidine for a second time. Cells were maintained 
in media containing thymidine or 6-TG for the remainder of the screen. At T18, 
1.5 × 107 cells were collected for gDNA extraction, and hgRNA expression cassettes 
were amplified and subjected to high-throughput sequencing as described below.

Torin1 CHyMErA chemogenetic screen. To identify genes mediating sensitivity 
or resistance to mTOR inhibition, HAP1 cells were transduced with the CHyMErA 
library and, following selection, the population was continuously treated with 
Torin1 (Selleckchem, no. S2827) at a concentration resulting in 60% reduction in 
cell growth from d 3–18 (that is, the assay endpoint).

Preparation of CRISPR sequencing libraries and Illumina sequencing. Genomic 
DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega). 
The gDNA pellets were resuspended in TE buffer and concentration was estimated 
by Qubit using dsDNA Broad Range Assay reagents (Invitrogen). Sequencing 
libraries were prepared from the extracted gDNA (55 µg for HAP1, RPE1 and 
CGR8; 87.5 µg for N2A cells) in two PCR steps, the first to enrich gRNA regions 
from the genome and the second to amplify gRNA and attach Illumina TruSeq 
adapters with indices i5 and i7. Barcoded libraries were gel purified, fragment 
size distribution was assessed using a BioAnalyzer and final concentrations were 
estimated by quantitative PCR with reverse transcription. Sequencing libraries 
were sequenced on an Illumina NextSeq500 or NovaSeq using paired-end 
sequencing. The first read included 29 dark cycles, followed by 31 cycles for reading 
the Cas12a guide and an index read of 8 cycles. For the paired read, 20 dark cycles 
were followed by 30 cycles for reading the Cas9 guide and an index read of 8 cycles.

Dual-guide mapping and quantification. FASTQ files from paired-end 
sequencing were first processed to trim off flanking sequences up- and 
downstream of the guide sequence using a custom Perl script. Reads that did not 
contain the expected 3′ sequence, allowing up to two mismatches, were discarded. 
Preprocessed paired reads were then aligned to a FASTA file containing the 
library sequences using Bowtie (v.0.12.7) with the following parameters: -v 3 -l 18 
-chunkmbs 256 –t <library_name>. The number of mapped read pairs for each 
dual-guide construct was then counted and merged, along with annotations,  
into a matrix.

Human and mouse hgRNA optimization library design. Human and mouse 
hgRNA libraries were designed in which exonic regions of the reference core 
essential genes (CEG2)33 and nonessential genes were targeted either with Cas9 
(paired with an intergenic-targeting Cas12a guide) or Cas12a (paired with an 
intergenic-targeting Cas9 guide). To target constitutive exons of mouse core 
essential genes, we first identified all one-to-one orthologs of the CEG2 set. From 
all possible 23-nt Cas12a guides targeting these constitutive exons and adjacent to 
a TTTV 5′-end PAM sequence, we randomly selected up to 15 Cas12a guides per 
target exon. Cas9 gRNAs (20-nt) were selected based on previously defined rules33. 
Collectively, our optimization libraries target over 450 CEG2 essential genes and 
include up to 5 Cas12a and 3 Cas9 exon-targeting guides per exon, up to 15 Cas12a 
and 2 Cas9 exon-flanking guides per exon, as well as 1,000 control constructs 
targeting intergenic regions with spacing between target sites similar to that in the 
exon-targeting guide pairs (Supplementary Tables 1 and 2). To control for toxicity 
induced by hgRNA-directed dsDNA breaks, each gRNA sequence was paired 
with a gRNA targeting a noncoding intergenic sequence. In addition, the TK1 and 
HPRT1 genes were also targeted in the same manner. Furthermore, exon-deletion 
constructs targeting TK1 and HPRT1 were designed by pairing guides targeting 
intronic regions up- and downstream of selected exons with target sites located at 
least 100 nucleotides away from splice sites. The full contents of human and mouse 
optimization libraries can be found in Supplementary Tables 1 and 2, respectively.

Second-generation human dual-cutting and paralog hgRNA library design. 
A second-generation hgRNA library was designed in which the ~5,000 highest-
expressed genes across a panel of human cell lines (HAP1, RPE1, HEK293T, 
HCT116, HeLa and A375) were targeted either with Cas9 (paired with an 
intergenic-targeting Lb-Cas12a guide), Lb-Cas12a (paired with an intergenic-
targeting Cas9 guide) or simultaneously with both Cas9 and Lb-Cas12a guides 
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(dual-targeting). Target sites for the dual-targeting constructs were spaced between 
107 base pairs (bp) and >946 kb (median distance, 6,863 bp). In addition, hgRNAs 
targeting intergenic and nontargeting sites were included as controls. This portion 
of the library included 61,888 hgRNA constructs.

In the second part of the library, we targeted paralog gene pairs74 from gene 
families where both genes are expressed across a panel of human cell lines (HAP1, 
RPE1, HEK293T, HCT116, HeLa and A375). Of 1,381 strict human ohnolog 
families that have arisen from whole-genome duplications of vertebrate genomes74, 
we selected 1,344 paralogs (avoiding gene families with more than two paralogs). 
In addition we also targeted selected gene pairs of interest, some of which have 
previously been reported to interact genetically. All gene pairs were either targeted 
individually by Cas9 (paired with an intergenic-targeting Lb-Cas12a guide) or 
Lb-Cas12a (paired with an intergenic-targeting Cas9 guide), or with both Cas9 
and Lb-Cas12a guides paired in both possible orientations (dual-targeting). This 
portion of the library comprised 30,848 hgRNA constructs. The full contents of the 
human single-gene dual-targeting and paralog-targeting library can be found in 
Supplementary Table 5.

Exon-deletion hgRNA library design. For the first-generation exon-deletion 
hybrid guide library, murine exons in genes with a minimum expression level in 
N2A cells ≥5 corrected reads per kilobase of transcript per million mapped reads 
(cRPKM) and that are alternatively spliced in neural cells were selected according 
to any of the following criteria: (1) inclusion level >10 percentage spliced in (PSI) 
in N2A and dynamically regulated during neuronal differentiation75; (2) more 
highly included in neural compared to non-neural cells and tissues by an average of 
10 PSI, and also more highly included in N2A versus non-neural cells by an average 
of 10 PSI76; or (3) microexons up to 27 nt in length with >10 PSI in N2A and 
differentially spliced between neural and non-neural cells by an average of 10 PSI.

In regard to the exon-targeting library for use in human cells, alternative exons 
were selected as follows. Alternative splicing and host gene expression in HAP1 
cells was first quantified from RNA-seq data (unpublished) using vast-tools 1.2.077. 
Exons were selected with a PSI range >30 across 108 diverse tissues and cell types in 
VASTDB (http://vastdb.crg.eu), and that were at least moderately included (PSI ≥ 15) 
in either HAP1, HeLa, 293T or MCF7 cells with expression level cRPKM > 5 in the 
same cell line. In total, 4,290 candidate exons from stream 1 and 466 from stream 2 
were combined, and events were prioritized according to their requirement for 
cellular fitness in HAP1 cells6,33 and whether they preserved the open reading frame. 
After guide selection, this resulted in 324 frame-preserving events in essential genes, 
2,942 frame-preserving exons not in essential genes, 118 frame-disrupting events in 
essential genes and 40 events that were neither frame-preserving nor within essential 
genes. A group of control exons was also selected that were skipped in HAP1 cells 
(PSI < 3) but were included in at least one other cell type or tissue at PSI > 20, and 
whose host genes were clearly expressed in HAP1 cells (cRPKM > 5), irrespective 
of gene essentiality. For all exons, hgRNAs targeting intronic sites flanking the exon 
of interest were designed to introduce dsDNA breaks at intronic sites at least 100 bp 
distal from splice sites flanking the target exons. Each exon was targeted by multiple 
Cas9–Cas12a hgRNAs. Where possible (that is, depending on the availability of 
target sites), two individual Cas9 guides were paired with up to four Cas12a guides 
targeting both up- and downstream flanking intronic sequences, resulting in a total 
of 16 pairs of deletion-targeting hgRNA constructs for each exon. Furthermore, 
each intronic Cas9 and Cas12a gRNA was also paired with two intergenic gRNAs 
to control for nonspecific toxicity, adding 24 control hgRNA pairs per exon. 
Furthermore, each gene targeted by exon deletion hgRNAs was also targeted by 
exon-targeting Cas9 guides. Full contents of the human exon-targeting library can be 
found in Supplementary Table 12.

RNA-seq. RNA was extracted from HAP1 cells transfected with nontargeting 
siRNA, siRBM26 and/or siRBM27, as described above, using the RNeasy extraction 
kit (Qiagen) following the manufacturer’s recommendations. Two independent 
biological samples for each condition were generated, resulting in a total of eight 
samples. DNase-treated RNA samples were submitted for RNA-seq at the Donnelly 
Sequencing Center at the University of Toronto. Total RNA was quantified using 
Qubit RNA BR (catalog. no. Q10211, Thermo Fisher Scientific) fluorescent 
chemistry, and 1 ng was used to obtain RNA integrity number (RIN) using the 
Bioanalyzer RNA 6000 Pico kit (catalog. no. 5067-1513, Agilent). The lowest RIN 
was 8.7, and median was 9.6.

Total RNA (2.5 μg) per sample was processed using the MGIEasy Directional 
RNA Library Prep Set v.2.0 (protocol v. A0, catalog. no. 1000006385, Shenzhen) 
including mRNA enrichment with the Dynabeads mRNA Purification Kit (catalog. 
no. 61006, Thermo Fisher Scientific). RNA was fragmented at 87 °C for 6 min 
following the addition of 75% of the recommended volume of fragmentation buffer, 
to produce longer fragments. Libraries were amplified with 12 cycles of PCR.

The top stock (1 μl) of each purified final library was run on an Agilent 
Bioanalyzer dsDNA High Sensitivity chip (catalog. no. 5067-4626, Agilent) to 
determine an average library size of 581 bp, and to confirm the absence of dimers. 
Libraries were quantified using the Quant-iT dsDNA High Sensitivity fluorometry 
kit (catalog. no. Q33120, Thermo Fisher), pooled equimolarly and libraries in each 
of four replicate pools were then circularized using the MGIEasy Circularization 
Module (catalog no. 1000005260, Shenzhen).

From each of the four pools, 40 fmol of circularized library was sequenced 
2 × 150 bp on a single lane of an FCL flowcell on the MGISEQ-2000 platform  
(also known as the DNBSEQ-G400 platform, Shenzhen), for a total of four lanes  
of sequencing.

Analysis of CHyMErA screens. Depletion of dual-guide constructs was assessed 
with the Bioconductor package edgeR (v.3.18.1). Following depth normalization, 
only constructs with more than one count per million (CPM) in at least two 
samples were retained. Exon-targeting constructs resulting in significant depletion 
over time (active guides) were identified from T18 triplicate samples using 
the likelihood-ratio test, with LFC < 0 and FDR < 0.05. We found 1,073 guide 
constructs that were significantly active at this threshold in the HAP1 screen. In 
addition, 1,026 inactive (neutral) guides were identified where LFC = –0.5 to 0.5. 
These active and inactive sets were used to train the machine learning classifiers.

Of note, 4–6% of reads from plasmid pool samples map to recombined guide 
constructs. We noticed that the level of recombination strongly increased following 
lentiviral transduction of cell lines (to >19%). This suggests that the predominant 
source of recombination occurs as a result of template switching by viral reverse 
transcriptase during production of the lentiviral library or viral transduction,  
and not as the result of template switching during PCR amplification as  
recently suggested25,78,79.

Analysis of nucleotide composition of active Cas12a guides. The physical 
properties of Cas12a guides targeting exons of the ‘gold-standard essential’ genes 
were examined to optimize guide design. LFC at the screen endpoint was used as 
the measure of ‘activity’. Single-, di- and trinucleotide composition, GC content, 
PAM sequence and up- and downstream sequences were examined for the full set 
of exon-targeting guides, and also specifically for significantly depleted guides. 
Significantly depleted guides were defined as those with LFC < 0 and FDR < 0.05 
(HAP1, n = 1,073; CGR8, n = 1,749; N2A, n = 1,063).

Training classifiers to predict Cas12a guide activity. To better understand 
differences between Cas12a active and inactive guide sequences, and to help 
identify highly effective guides, we applied machine learning approaches to data 
from the pilot screen. We trained models using three different approaches: L1-
regularized logistic regression (L1Logit), RF and CNN. For our training set, we 
combined Cas12a guide sequences from Cas9 intergenic–Cas12a exonic hgRNAs 
from optimization screens performed in human and mouse cell lines (2,096 HAP1 
sequences, 2,401 CGR8 and 600 N2A), totaling 5,097 unique sequences. Each 23-bp 
guide sequence was extended by adding the upstream PAM sequence (4 bp) and 
flanking up- and downstream sequences (6 bp each), resulting in a total sequence 
length of 39 bp. Next, we assigned discrete labels to each guide according to its 
guide activity from the initial screen: active (FDR < 0.05, LFC < –1) and inactive 
(FDR ≥ 0.05, LFC = −0.5 to 0.5). To construct the features for model training, 
we transformed each sequence into a set of numerical features using one-hot 
encoding, resulting in a 4 × 39 binary matrix E such that element eij represents an 
indicator variable for nucleotide i (A, T, C and G) at position j. This representation 
serves as the main input to the CNN. To be amenable for L1Logit and RF, we 
converted this binary matrix into 156 individual nucleotide- and position-specific 
binary features. Additionally, we included binary features representing the 2-mer 
occurrences at every position (16 features per position), adding another 608 binary 
features for a total of 764 sequence-based features.

In addition to one-hot encoding of guide sequences, additional hand-crafted 
features were created: the predicted minimum free energy resulting from the 
secondary structure of the guide sequence, and melting temperatures for various 
segments of the guide sequence. For secondary structure prediction, we used 
RNAfold80 to calculate minimum free energy values for each 23-bp guide sequence. 
We used the MeltingTemp.Tm_NN() function in Biopython81 to calculate the 
melting temperature for the guide sequence, seed (positions 1–6), trunk (7–18) and 
promiscuous region (19–23). In total, we generated an additional five hand-crafted 
features. Together these features were used to augment the sequence-based features.

Predicting with chromatin accessibility information. To investigate the influence 
of chromatin accessibility on measured Cas12a guide activity, we used DNase 
hypersensitive sites from K562 cells82. We first identified the chromatin status 
of each guide target site in our dataset, and found that 92% of the guides were 
targeting ‘inaccessible’ sites. The highly unbalanced nature of this feature suggested 
to us that chromatin accessibility would not be an informative feature in our 
model, and thus it was excluded from further consideration.

CNN architecture for prediction of efficient Cas12a guides. To identify features 
associated with the most active Cas12a guides, we applied machine learning 
algorithms to predict efficient Cas12a guides as follows: Cas12a guides targeting 
exons of core fitness genes were first binned into active or inactive categories 
based on their observed relative depletion levels, as determined by LFC scores 
in HAP1 and CGR8 cells (Supplementary Fig. 2d). For each guide, we assembled 
features based on single, di- and trinucleotide composition, PAM sequence, up- 
and downstream sequences as well as genomic accessibility at the target site. The 
CNN consist of three main components: convolutional-pool layers, fully connected 
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layers, and an output layer. First, we begin by passing matrix E into a convolutional 
layer consisting of 52 filters of length 4. Each filter is a 4 × 4 matrix representing 
a motif to be learned from the data: in other words, a filter is a position weight 
matrix. During training, each filter scans along the input sequence and computes 
a score for each 4-mer, followed by a rectified linear unit activation. These 
activated scores are then passed through a pooling layer, where the average score is 
computed over a sliding window of 3. Next, to prevent overfitting of the model, the 
scores proceed through a dropout layer with a dropout rate of 0.22. At this stage, 
the convolution step has produced a set of summarized feature scores representing 
the input sequence. Before proceeding to the next fully connected layer, we extend 
the features set by concatenating the hand-crafted features described above. 
This new feature set is then passed to a single, fully connected hidden layer with 
12 units, followed by another dropout layer. Finally, the scores proceed through 
an output layer consisting of a sigmoid function. Training was carried out using 
the Adam optimizer with a learning rate of 0.0001 and minimization of binary 
cross-entropy loss function. By the end of training, the filters in the convolutional 
layer will have learned a set of motifs that are predictive of guide activity. All 
hyperparameters were chosen through cross-validation as described below, with 
the exception of pooling size for pooling layers, which was fixed.

Deep learning model selection. To implement conventional algorithms, the scikit-
learn framework83 was used. To implement CNN, Keras (https://keras.io) with 
TensorFlow84 backend was used. We randomly selected approximately 90% of the 
data for training, while the remaining 10% was withheld for testing. The sampling 
was stratified such that the relative proportions of each cell line were maintained:

Sample Train Test

HAP1 1,886 210
CGR8 2,160 241

N2A 540 60

To determine the optimal hyperparameters, we performed fivefold cross-
validation on the training data. For the conventional methods, we performed a grid 
search for the following parameters:
•	 L1Logit: alpha
•	 RF: number of trees

For CNN, we performed a random sampling search85 for the number of filters, 
filter size and batch size.

Evaluation of deep learning models. Performance of the classifiers was evaluated 
by prediction on heldout test data. For each algorithm, we compared models with 
and without the additional secondary structure and melting temperature features. 
Performance was measured based on AUC and average precision using the scikit-
learn functions auc() and average_precision_score().

To compare CHyMErA-Net scores with DeepCpf136, we calculated the scores 
of Cas12a guides in our libraries using DeepCpf1 and compared LFC trends by 
binning CHyMErA-Net and DeepCpf1 scores into ten bins of approximately 
equal size. Although our CNN predictions and DeepCpf1 were trained using 
different readouts (proliferation versus indel frequencies), nucleases (Lb- versus 
As-Cas12a) and with different amounts of data (5,097 training sequences versus 
15,000 sequences for DeepCpf1), we observed strong negative slopes for scores 
from both classifiers.

Scoring of GIs in the optimized library. Data were scored for GIs by comparison 
of observed LFC values for dual-targeting constructs to a null model derived from 
exonic–intergenic guides. We assumed an additive model of GIs for genes A and 
B (Equation 1), where GIs are called when the observed LFC values for a double-
knockout (Equation 2) significantly differed from the sum of single-knockout 
LFCs (Equation 3). We compared the set of double-knockout LFCs for each gene 
pair to the set of all sums of single-knockout LFCs using the Wilcoxon rank-sum 
test followed by Benjamini–Hochberg FDR correction. We performed significance 
testing only on expected and observed sets with matching orientations, where Cas9 
targets gene A and Cas12a targets gene B or vice versa, resulting in two P values 
per gene pair. Most Cas9 guides had three replicates and most Cas12a guides had 
five, but the number of replicates varied slightly across gene pairs (Supplementary 
Table 5). To avoid false positives, we called only significant GIs for a gene pair if 
both tested orientations were significant at FDR < 0.1 with the same LFC sign. If, 
for example, both orientations for a specific gene pair were significant but with 
opposing signs on the LFC, that gene pair was not called as a significant GI. All 
scored data are shown in Supplementary Table 8.

LFCAB ¼ LFCA þ LFCB þ GIAB ð1Þ

Equation (1) is an additive model of GIs for genes A and B.

Observed1 ¼ ACas9iBCas12aj ji 2 1¼ 3 ^ j 2 1¼ 5
� �

Observed2 ¼ BCas9iACas12aj ji 2 1¼ 3 ^ j 2 1¼ 5
� � ð2Þ

Equation (2) gives the gene-pair-specific set of observed LFCs for testing GIs. The 
set of all exonic–exonic LFCs where the Cas9 gRNA targets gene A and the Cas12a 
gRNA targets gene B for orientation 1, and vice versa for orientation 2.

Expected1 ¼ ACas9i þ BCas12aj ji 2 1¼ 3 ^ j 2 1¼ 5
� �

Expected2 ¼ BCas9i þ ACas12aj ji 2 1¼ 3 ^ j 2 1¼ 5
� � ð3Þ

Equation (3) gives the gene-pair-specific set of expected LFCs for testing GIs. 
The set of all sums of exonic–intergenic LFC values where the Cas9 gRNA targets 
gene A and the Cas12a gRNA targets gene B for orientation 1, and vice versa for 
orientation 2.

MAGeCK scoring of dual-targeting library. Because the dual-targeting library 
lacked the gold-standard negative genes required by the BAGEL algorithm, 
we employed model-based analysis of genome-wide CRISPR–Cas9 knockout 
(MAGeCK) to score these data. Input matrices were prepared using a bespoke 
R script. A matrix of read counts was prepared separately for each single- and 
dual-targeting subset, along with a design matrix. Single-targeting constructs were 
identified as having one exon-targeting guide (either Cas9 or Cas12a) paired with 
an intergenic-targeting guide, while dual-targeting constructs comprise two exon-
targeting guides. Each extracted matrix was filtered to remove guide constructs 
that had zero reads in all samples. MAGeCK was run using the following command 
line: mageck mle --count-table <count_file> -<design-matrix> -norm-method 
median -output-prefix <sampleName>.mle. Significantly depleted genes were 
called where beta score < 0 and FDR < 0.05.

Analysis of DepMap data. Data from the DepMap screening platform (DepMap 
Public 19Q1) were downloaded from https://depmap.org/portal/download/. The 
matrix consisted of CERES-adjusted, gene-level fitness scores for 558 screened cell 
lines. Gene annotations were parsed to gene symbols in R, and analyzed with no 
further adjustments. CERES scores for the four gene sets (CEG2, gold-standard 
negatives, dual-targeting only and single-targeting–dual-targeting overlap) were 
aggregated and plotted together.

Scoring of differential response to mTOR inhibition. Data were scored for 
differential response to mTOR inhibition by comparison of LFC values for the 
HAP1 screen with or without Torin1 drug treatment, across four different types 
of guide and two time points. The types of guide analyzed included (1) single-
targeting guides targeting a single gene, (2) dual-targeting guides targeting a single 
gene, (3) single-targeting guides targeting a single paralogous gene and (4) dual-
targeting guides targeting paralogous gene pairs in a combinatorial manner. All 
LFC values with or without Torin1 treatment were compared separately at T12 and 
T18 using Wilcoxon rank-sum tests between treated and untreated LFCs for each 
gene, followed by Benjamini–Hochberg FDR correction.

Data were processed as follows. (1) Each gene was targeted by three Cas12a 
and two Cas9 guides, with three replicates per guide. To measure Torin1 response 
for each gene, these guide LFCs were aggregated, including replicates, to test sets 
of 15 LFCs – Torin1 against corresponding sets of 15 LFCs + Torin1. (2) Each gene 
was dual-targeted by six guides with three replicates per guide. To ensure that the 
statistical power of this analysis was equivalent to the statistical power for (1), one 
of the six dual-targeting guides was randomly dropped for each contrast before 
comparing sets of 15 guides with replicates with or without Torin1 as in (1). (3) 
Each gene was targeted by five Cas12a guides and three Cas9 guides, with three 
replicates per guide. These guide LFCs were aggregated, including replicates, to test 
sets of 24 LFCs – Torin1 against corresponding sets of 24 LFCs + Torin1. (4) Each 
paralog pair was targeted by 15 guides in each orientation, with three replicates 
per guide. To ensure that the statistical power of this analysis was equivalent to the 
statistical power of (3), the mean of each replicate was taken and 6 of the remaining 
30 guides across both orientations were randomly dropped before testing for 
differential Torin1 response.

Gene ontology analysis was performed using GOrilla86 (http://cbl-gorilla.
cs.technion.ac.il). Hits that were called at FDR < 0.1 at the early and late time 
points were included in the target list, and all targeted genes were used as 
background. For data visualization we display terms with <900 members and 
enriched at FDR < 0.05.

RNA-seq analysis of RBM26 and/or RBM27 knockdown experiments. To 
quantify gene expression, pretrimmed reads were pseudoaligned to the GENCODE 
human gene annotation v.29. Transcript-level quantifications were aggregated per 
gene using the R package tximport, and differential expression between control 
non-targeting and RBM26 and/or RBM27 knockdown was assessed using the 
classic mode (exactTest) in edgeR. Genes changing more than two-fold and with 
FDR < 0.05 were deemed significantly different. To compare overlaps in changes 
between treatments, only genes expressed at RPKM > 5 in at least one treatment 
were considered.

Gene Ontology analysis of genes with LFC > 1, FDR < 0.05 and RPKM > 5 was 
performed with FuncAssociate87 (http://llama.mshri.on.ca/funcassociate/) using 
all detected genes (RPKM > 5) as background. For plotting, overlapping categories 
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were removed when >70% of changing genes overlapped with another category 
with a more significant enrichment.

Analysis of exon deletion screens. Dropout rates were scored for significant 
exonic deletion events by comparison to a null distribution derived from 
intergenic–intergenic guides. We compared the LFC of each intronic–intronic 
hgRNA construct to the LFC distribution of all intergenic–intergenic guide pairs, 
and called intronic–intronic pairs as significant at a threshold of P < 0.05 using a 
one-tailed test based on empirical null distribution.

A targeted exon was deemed a hit if >18% of intronic–intronic pairs targeting 
the exon produced a significant negative LFC, including at least one pair for which 
neither the Cas9 nor the Cas12a guide, in combination with an intergenic guide, 
resulted in significant dropout, measured similarly to that described for intronic–
intronic pairs above. This threshold was chosen to maximize the difference in hit 
rates for frame-disrupting exons in expressed genes whose deletion is known to 
cause a growth defect, compared to exons that are skipped or within nonexpressed 
genes in the given cell line. Growth-related fitness in RPE1 cells was derived from 
a previous study6, and both gene expression and exon inclusion were scored from 
RNA-seq data6 using vast-tools.

Reporting Summary. Further information on research design is available in the 
Life Sciences Reporting Summary.

Data availability
The hgRNA sequences and contents of all libraries are included in supplementary 
tables. The datasets generated and analyzed in this study are included in the 
manuscript and deposited at the website http://crispr.ccbr.utoronto.ca/chymera. 
Raw fastq files for all sequencing data are available upon request and at the Gene 
Expression Omnibus: RBM26 and RBM27 RNA-seq data, GSE144078; CRISPR 
screens sequencing read archive, GSE144281.

Code availability
Descriptions of analyses, tools and algorithms are provided in Methods. Custom 
code for generation of hgRNA counts from fastq files, code for CHyMErA-Net and 
code for analysis of screens with the dual-targeting/paralog and exon-targeting 
libraries are available at Github (https://github.com/BlencoweLab/chymeranet) and 
at http://crispr.ccbr.utoronto.ca/chymera.
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Illumina Nextseq500, Novaseq 6000 (https://www.illumina.com/) 
WaveFX confocal microscope, Quorum Technologies (http://quorumtechnologies.com/)

Data analysis Bowtie 0.12.7 & 1.1.1 (https://en.wikipedia.org/wiki/Bowtie_(sequence_analysis)),  
R 3.5 & 3.6 (various functions; https://www.r-project.org/) 
Bioconductor EdgeR 3.24.3 & 3.26.8 (https://bioconductor.org/packages/release/bioc/html/edgeR.html) 
Bioconductor tximport 1.12.3 (https://git.bioconductor.org/packages/tximport) 
Biopython 1.69 (https://biopython.org/) 
RNAfold 2.4.11 (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) 
scikit-learn 0.21.1(https://scikit-learn.org/stable/index.html) 
Keras 2.2.4 (https://keras.io) 
TensorFlow 1.13.1 (https://www.tensorflow.org/) 
GraphPad Prism 8.1.1 (https://www.graphpad.com/scientific-software/prism/) 
Vast-tools 2.2.2 (https://github.com/vastgroup/vast-tools) 
Perl 5.12.4 & 5.16.3 (https://www.perl.org/) 
Salmon 0.14.1 (https://combine-lab.github.io/salmon/) 
GOrilla gene ontology tool (http://cbl-gorilla.cs.technion.ac.il/) 
ImageJ 1.46 (https://imagej.nih.gov/ij/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All raw data is available upon request. There is no restriction on data availability.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculations were performed and sample sizes were arbitrarily chosen according to convention in the field. For small-scale 
experiments, the number of replicates exceeds at least 3 biological replicates (= independent experiments) and/or at least 3 technical 
replicates (= repeated measurements of the same original sample). For screens, the initial mutagenized cell pool was split into 3 replicates 
post-selection and processed independently in all downstream steps.

Data exclusions No data were excluded from any experiments and figures shown.

Replication We present no experimental results that were not reproducible.

Randomization Screen samples were processed and sequenced in a randomized manner and labelled with numbers instead of sample names.

Blinding No sample allocation to groups was performed, so blinding was not relevant to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-β-Actin (Αbcam ab8226) 

anti-Cas9 (Diagenode C15200229) 
anti-LbCpf1 (Sigma SAB4200777) 
anti-P53 (Life Technologies AHO0152) 
anti-pRb S807/811 (Cell Signalling 9308) 
anti-p21 (Cell Signalling 2946) 
anti-Myc (Sigma M4439) 
anti-Mouse (Jackson ImmunoResearch 715-035-151) 
anti-Rabbit (Cell Signaling Technology 7074)

Validation All antibodies are commercially available, were validated by the manufacturers and are routinely used in scientific studies and 
publications. Furthermore, positive and negative controls built into our experimental design further confirmed specificity of the 
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Cas9, LbCpf1 and Myc antibodies. Finally the TP53, pRb and p21 antibodies confirmed well established expression responses to 
DNA damage.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HAP1 cells were obtained from Horizon (clone C631, sex: male with lost Y chromosome, RRID: CVCL_Y019). RPE1 (CRL-4000), 
N2A (CCL-131) and HEK 293T cells were obtained from ATCC. CGR8 cells were obtained from ECACC (07032901). HAP1 
individual gene knock-out cell lines were obtained from Horizon: EED (HZGHC001200c001), LDHA (HZGHC004917c008), 
SLC16A1 (HZGHC002882c002), ROCK2 (HZGHC000061c017), SP1 (HZGHC001141c002), ARID1A (HZGHC000618c010), 
DNAJA1 (HZGHC004473c007). 

Authentication HAP1 and RPE1 cells were authenticated by STR profiling at the Centre for Applied Genomics (TCAG) at the Hospital for Sick 
Children (SickKids) in Toronto. HAP1 cells were also whole-genome sequenced.

Mycoplasma contamination All cell lines were routinely tested and confirmed negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

None of the cell lines used in this study is listed as commonly misidentified.
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