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High-throughput transcriptomic profiling approaches have revealed that alternative splicing (AS) of precursor
mRNAs, a fundamental process by which cells expand their transcriptomic diversity, is particularly wide-
spread in the nervous system. AS events detected in the brain aremore highly conserved than those detected
in other tissues, suggesting that they more often provide conserved functions. Our understanding of the
mechanisms and functions of neural AS events has significantly advanced with the coupling of various
computational and experimental approaches. These studies indicate that dynamic regulation of AS in the
nervous system is critical for modulating protein-protein interactions, transcription networks, and multiple
aspects of neuronal development. Furthermore, several underappreciated classes of AS with the aforemen-
tioned roles in neuronal cells have emerged from unbiased, global approaches. Collectively, these findings
emphasize the importance of characterizing neural AS in order to gain new insight into pathways that may
be altered in neurological diseases and disorders.
Introduction
Neurogenesis is characterized by global changes in the tran-

scriptomes and proteomes of differentiating cells. Many of

these changes are critical for the transition from neural stem

or precursor cells to neurons. Subsequent steps of neuronal

development, including neuronal migration, axonal and dendritic

outgrowth, establishment of synaptic connections, and neuronal

plasticity, are further refined by coordinated, spatio-temporal

crosstalk among various gene regulatory pathways. In recent

years, fundamental roles for alternative splicing (AS) in neural

development and in the establishment and function of neuronal

networks have become increasingly evident.

AS is one of many processes that mediate gene regulation in

metazoans. During AS of precursor mRNA (pre-mRNA), different

combinations of 50 and 30 splice site pairs are selected, resulting

in the generation of diverse mRNA and protein variants. Ad-

vances in high-throughput, genome-wide technologies along

with the development of computational tools have spurred the

identification of novel AS events to unprecedented levels. These

data indicate that AS regulation is highly variable among species

and that the frequency of AS increases with species complexity

(Barbosa-Morais et al., 2012; Merkin et al., 2012), with tran-

scripts from �95% of human multi-exon genes undergoing AS

(Pan et al., 2008; Wang et al., 2008).

Despite the overall extensive species specificity of AS, many

of the identified AS events are conserved and are subject

to cell-, tissue-, or developmental-specific regulation (Calarco

et al., 2011; Kalsotra and Cooper, 2011). Remarkably, AS is

especially prevalent and more highly conserved in nervous sys-

tem tissues of vertebrates (Barbosa-Morais et al., 2012; Jelen

et al., 2007; Merkin et al., 2012). It is thought that such high AS

frequencies may contribute to the functional complexity of the
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nervous system. Mutations in neural RNA-binding proteins

(RBPs) involved in AS regulation and aberrations in neural AS

patterns have been linked to neurological disorders and disease

(Licatalosi and Darnell, 2006).

Fundamental goals in the field are to elucidate the functions of

the AS events detected in transcriptome profiling studies and to

determine their mechanisms of regulation. Understanding how

AS impacts the activities of proteins is central to addressing

how global impairments in AS networks may result in cellular

dysfunction. This review discusses recent studies incorporating

high-throughput technologies, computational methods, and

focused approaches to provide timely insights into emerging

principles of AS in the nervous system. We direct the reader

to several reviews that describe related topics and past discov-

eries (Braunschweig et al., 2013; Calarco et al., 2011; Darnell,

2013; Irimia and Blencowe, 2012; Li et al., 2007; Licatalosi

and Darnell, 2010; Norris and Calarco, 2012; Zheng and Black,

2013).

An Overview of the cis- and trans-Acting Factors that
Regulate Alternative Splicing
A conserved set of cis-acting elements known as the core

splicing signals (50 and 30 splice sites, branch site, and polypyr-

imidine tract) guides the interactions between spliceosomal

components and pre-mRNA. However, these core signals are

not sufficient to ensure correct splice site selection and to regu-

late AS. These decisions are further regulated by the combinato-

rial control of short, degenerate RNA motifs known as exonic/

intronic splicing enhancers or silencers, which are bound by

trans-acting splicing factors. Notably, analyses of the arrange-

ment of clusters of such motifs led to the development of RNA

splicing maps, which correlate the binding position of an RBP
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Figure 1. Position-Dependent Activities of
Splicing Regulators
(A) Representative RNA splicing maps of tissue-
enriched AS factors. The position of CLIP-Seq tag
enrichment (purple, yellow, or green curves) around
the regulated alternative exon (dark gray box)
typically correlates with enhancing (blue lines) or
repressive (red lines) activities of most tissue-en-
riched splicing factors characterized so far (left
panel). Binding of the factor downstream of the
target exon is usually associated with exon inclu-
sion, while binding within or upstream of the exon is
associated with exon skipping. However, nSR100
does not display position-dependent asymmetric
regulation and instead binds to the upstream intron
to promote exon inclusion (right panel).
(B) Examples of combinatorial activities of AS reg-
ulators. Top left: Ptbp1 and Rbfox proteins bind
on opposite sides of the regulated exon and exert
opposing effects. Top right: Ptbp1 and nSR100
proteins both bind upstream of the regulated
exon and nSR100 can counteract the negative
activity of Ptbp1. Bottom: Nova and Rbfox
proteins act synergistically to repress (left) or
enhance (right) inclusion of the regulated exon.
The binding motif sequences of the factors are
indicated.
(C) Cell-type-specific expression and combinato-
rial effects of UNC75 and EXC7 result in distinct
neural AS patterns in different neuron subtypes in
C. elegans. The binding motif sequences of the
factors are indicated.
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with its effect on AS regulation (Figure 1A) (Darnell, 2010; Witten

and Ule, 2011). This was first demonstrated for the neural

splicing regulator Nova (see below); clusters of YCAY Nova

binding motifs positioned downstream of regulated exons are

associated with exon inclusion, whereas YCAY clusters located

within or upstream of target exons are associated with exon

skipping (Ule et al., 2006). This asymmetric position-dependent

activity was subsequently found to apply to several other tis-

sue-enriched splicing modulators (Licatalosi et al., 2012; Llorian

et al., 2010; Tollervey et al., 2011; Weyn-Vanhentenryck et al.,

2014; Xue et al., 2009), although an exception to this pattern

has been reported (Raj et al., 2014).

The amalgamation of these and other cis-features into an inte-

grated ‘‘splicing code’’ (Wang and Burge, 2008) resulted in a
Neu
breakthrough in understanding tissue-

dependent AS patterns. Machine-learning

algorithms have been developed that

reliably predict AS regulation in mouse

and human tissues from input genomic

sequence (Barash et al., 2010; Xiong

et al., 2015; Zhang et al., 2010). Most of

the cis-regulatory features that are predic-

tive of tissue-dependent splicing patterns

are located within�300 nucleotides of the

splice sites. These regions are highly en-

riched in binding sites of RBPs known to

be important for AS regulation and, in gen-

eral, are more conserved than distal in-

tronic sequences (Barash et al., 2010;

Xiong et al., 2015). However, changes in
the location or presence of a largely conserved set of cis-fea-

tures surrounding exons have resulted in the rapid evolution of

species-dependent AS regulation (Barbosa-Morais et al., 2012;

Brooks et al., 2011; Jelen et al., 2007; Merkin et al., 2012,

2015). Differences in key trans-regulatory proteins, many of

which are themselves alternatively spliced and display

species-/lineage-specific AS, likely also contributed to the

remarkable divergence in AS patterns between species (Bar-

bosa-Morais et al., 2012; Merkin et al., 2012). It will be of interest

to determine the functions and regulatory targets of species- and

lineage-specific isoforms of splicing factors.

The major classes of splicing factors that regulate constitutive

and alternative splicing comprise the heterogeneous nuclear

ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR)
ron 87, July 1, 2015 ª2015 Elsevier Inc. 15
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proteins, the majority of which are widely expressed across tis-

sues. In addition, several splicing regulators have been identified

that display cell- or tissue-specific or enriched expression (Cal-

arco et al., 2011; Kalsotra and Cooper, 2011; Li et al., 2007).

Notably, most of these proteins are enriched in neural and/or

muscle tissues, which harbor among the most extensive yet

conserved repertoires of AS events in vertebrates (Barbosa-

Morais et al., 2012; Braunschweig et al., 2013; Merkin et al.,

2012).

Splicing-sensitive microarrays and high-throughput RNA

sequencing (RNA-seq) have greatly facilitated the discovery of

AS events across tissues and during development, with RNA-

seq representing the current method of choice (Calarco et al.,

2011; Irimia and Blencowe, 2012; Licatalosi and Darnell, 2010).

RNA-seq datasets have provided reliable quantitative measure-

ments of the dynamics of AS patterns during neuronal differenti-

ation (Braunschweig et al., 2014; Hubbard et al., 2013; Irimia

et al., 2014; Raj et al., 2014) and have been further utilized to

investigate the contribution of AS to transcriptome complexity

in brain tissues (Barbosa-Morais et al., 2012; Merkin et al.,

2012). Furthermore, multiple variations of in vivo UV-induced

crosslinking immunoprecipitation coupled to high-throughput

sequencing methods (herein referred to as CLIP-Seq) have revo-

lutionized transcriptome-wide studies of RNA-protein interac-

tions (Darnell, 2010; König et al., 2011). These assays determine

the direct in vivo targets of an RBP and provide further insight

into the molecular mechanisms of RNA-protein interactions.

Data from CLIP-Seq studies can also be integrated with tran-

scriptome-wide AS regulatory data from RNA-seq and/or micro-

arrays to derive RNA splicing maps. This approach was first

demonstrated using Nova CLIP-Seq data (Licatalosi et al.,

2008), and the results were consistent with the previous RNA

splicing map obtained by analyzing Nova binding motifs sur-

rounding target exons (Ule et al., 2006). It is worth noting that an-

alyses of CLIP-Seq data are subject to technical challenges

associated with nucleotide crosslinking biases, unique mapping

of short reads, and the abundance of target transcripts. Estab-

lishing RNA splicing maps using computational approaches is

therefore a valuable complementary approach because it can

also be used to analyze sets of splicing events associated with

specific motifs or transcripts (i.e., those of low abundance) that

are not amenable to detection by CLIP-Seq procedures (Barash

et al., 2010; Cereda et al., 2014; Raj et al., 2014; Xiong et al.,

2015; Zhang et al., 2013).

Neural Splicing Regulatory Networks
Nova Proteins

Tissue-specific AS is often organized at the level of ‘‘splicing

regulatory networks,’’ which consist of specific subsets of co-

regulated exons within functionally related genes. These exon

networks are likely coordinated to ensure proper development

and function. This type of regulatory control was initially

described for Nova1 and Nova2 (Ule et al., 2005). Nova proteins

were identified as neuronal antigens targeted by autoimmune re-

sponses in patients with paraneoplastic opsoclonus myoclonus

ataxia (POMA), a neurological disorder characterized by

dysfunction of the motor nervous system (Buckanovich et al.,

1993; Yang et al., 1998). Nova1 knockout mice display extensive
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apoptosis in brain stem and spinal cord motor neurons resulting

in grossmotor failure and eventual postnatal death (Jensen et al.,

2000). On the other hand, Nova2 null mice exhibit misregulation

of the activity-dependent long-term potentiation of the slow

inhibitory postsynaptic current (Huang et al., 2005). Nova double

knockout mice are paralyzed and die immediately after birth

(Ruggiu et al., 2009). Using a combination of Nova2�/� mice

and splicing microarray analysis, Darnell and colleagues estab-

lished a Nova regulatory network consisting of neural alternative

exons in genes associated with synaptic and axon guidance

roles (Ule et al., 2005) and subsequently expanded this network

using CLIP-Seq data and computational approaches (Licatalosi

et al., 2008; Ule et al., 2006; Zhang et al., 2010).

Rbfox Proteins

Similar approaches have since been used to investigate the

roles of additional neural-enriched splicing factors. The Rbfox

family consists of three paralogs: Rbfox1 (also known as

A2bp1), Rbfox2 (also known as Rbm9), and Rbfox3 (also known

as NeuN). Using CLIP-Seq, Rbfox-RNA interactions were

recently mapped in the mouse brain (Lovci et al., 2013; Weyn-

Vanhentenryck et al., 2014). The RNA-binding profiles of the

three Rbfox proteins were found to be comparable, in line with

the strong sequence similarities between their RNA-binding

domains and the RNA sequence motifs that they recognize

(Weyn-Vanhentenryck et al., 2014). A Bayesian network was

used to model the Rbfox splicing network by merging compu-

tationally predicted binding sites, CLIP-Seq data, Rbfox-depen-

dent exons, and several evolutionary characteristics. A sig-

nificant fraction of Rbfox-regulated AS events that exhibit

dynamic changes in inclusion levels during brain development

were also identified (Weyn-Vanhentenryck et al., 2014). These

studies complement and extend previous investigations of the

networks of exons regulated by Rbfox proteins (Jangi et al.,

2014; Yeo et al., 2009; Zhang et al., 2008).

Central-nervous-system-specific deletion of Rbfox1 results in

mice with increased susceptibility to spontaneous and induced

seizures and heightened excitability of neurons in the dentate gy-

rus (Gehman et al., 2011). In contrast, mice with central-nervous-

system-specific deletion of Rbfox2 are not prone to seizures

but rather exhibit abnormal cerebellar development, including

reduced size, improper migration and dendritic arborization of

Purkinje cells, and increased cell death (Gehman et al., 2012).

Furthermore, Rbfox1 and Rbfox2 proteins display spatially and

temporally distinct expression patterns in subregions of the

developing and adult cerebellum (Gehman et al., 2012). Collec-

tively, these observations suggest that Rbfox proteins have

overlapping yet distinct activities during brain development

and neuronal function, similar to the observations made with

Nova and other splicing regulators (see below).

Ptbp1 and Ptbp2 Proteins

Ptbp1 and its paralog Ptbp2 are known to function predomi-

nantly as repressors of neural AS, although a small but significant

subset of Ptbp1/Ptbp2-enhanced AS events has also been iden-

tified (Boutz et al., 2007; Llorian et al., 2010; Xue et al., 2009).

These proteins have largely mutually exclusive expression pat-

terns in the nervous system as Ptbp1 promotes skipping of a

neural-specific exon (exon 10) in Ptbp2 transcripts. The conse-

quent introduction of a premature termination codon in Ptbp2
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transcripts results in their turnover by nonsense-mediated decay

(NMD) (Boutz et al., 2007; Spellman et al., 2007). Ptbp1 is ex-

pressed in most non-neural tissues and neural precursor cells

but is silenced in developing neurons by the microRNA miR-

124 (Makeyev et al., 2007). This mechanism for suppressing

Ptpb1 function contributes to the inclusion of the neural-specific

Ptbp2 exon, thus facilitating Ptbp2 expression at a later stage

during neural development (Boutz et al., 2007; Spellman et al.,

2007). Ptbp2 is also subject to autoregulation and cross-regula-

tion by Rbfox2 via AS coupled to NMD (Jangi et al., 2014).

To investigate the role of Ptbp2 during neurogenesis,

knockout mice have been recently characterized. Ptbp2 null

mice die shortly after birth and exhibit misregulation of AS in

genes involved in cytoskeletal remodeling and cell proliferation

(Licatalosi et al., 2012) as well as in neurite growth and synaptic

transmission (Li et al., 2014). Furthermore, Ptbp2 knockout

brains display reduced neural progenitor pools and premature

neurogenesis (Licatalosi et al., 2012). Conditional knockout of

Ptbp2 in neurons of the higher forebrain resulted in widespread

cortical neuronal death and degeneration in vivo and in vitro (Li

et al., 2014). Ptbp2 also plays an important role in embryonic-

specific repression of alternative exons. As Ptbp2 expression

decreases from its highest levels in the embryonic brain to mod-

erate levels during postnatal development, a cohort of exons

switch from being skipped in embryos to displaying enhanced

inclusion in adults (Li et al., 2014; Licatalosi et al., 2012; Zheng

et al., 2012). Thus, sequential downregulation of Ptbp1 followed

by Ptbp2 contribute to the activation of neural exon networks at

the appropriate stages of development.

nSR100/Srrm4

The neural-specific SR-related protein of 100 kDa (nSR100/

Srrm4) is expressed specifically in neurons of multiple brain sub-

regions and sensory organs (Calarco et al., 2009; Irimia et al.,

2014; Nakano et al., 2012; Quesnel-Vallières et al., 2015).

nSR100 is highly conserved across vertebrates but is not found

in invertebrates, suggesting that its emergence was associated

with the increased regulatory and functional complexity of the

vertebrate nervous system (Calarco et al., 2009). nSR100 regu-

lates a conserved network of human- andmouse-brain-enriched

AS events in genes involved in neural functions, including

cytoskeletal organization, guanosine triphosphate hydrolase

(GTPase) signaling, and synaptic membrane dynamics (Calarco

et al., 2009; Quesnel-Vallières et al., 2015; Raj et al., 2014).

Notably, nSR100 promotes expression of Ptbp2 by activating

the inclusion of Ptbp2 exon 10, which prevents turnover of

Ptbp2 transcripts by NMD (Calarco et al., 2009). Furthermore,

nSR100 promotes expression of a subset of neural genes by

activating the inclusion of a neural-specific exon in the transcrip-

tion factor REST/NRSF (see below) (Raj et al., 2011).

Knockdown of nSR100 impairs neurite outgrowth and leads to

neurodevelopmental defects in zebrafish and mice, consistent

with nSR100’s neuronal expression profile and its modulation

of neural gene activities (Calarco et al., 2009; Quesnel-Vallières

et al., 2015; Raj et al., 2011). Widespread loss of nSR100 in a

conditional nSR100/Srrm4 knockout mouse results in extensive

(>85%) neonatal death, in part due to a respiratory defect (Ques-

nel-Vallières et al., 2015). Further examination revealed abnor-

malities in the branching of motor neurons innervating the
diaphragm, altered formation of cortical layers of the forebrain,

and axonal midline crossing defects in the corpus callosum. A

mutation in the Bronx waltzer (bv) mouse, which causes deaf-

ness, balance defects, and aberrant AS patterns in genes ex-

pressed in the inner ear, has been mapped to the nSR100/

Srrm4 locus (Nakano et al., 2012). Collectively, these pheno-

types reveal critical in vivo roles of nSR100 during nervous sys-

tem development.

Additional Neural-Enriched Alternative Splicing Factors

The regulatory targets and mechanisms of additional RBPs

with enriched expression in neural tissues and implicated in

AS regulation (e.g., Mbnl, TDP-43, Hu/Elav) have also been

investigated using similar global profiling techniques as those

described above (Charizanis et al., 2012; Ince-Dunn et al.,

2012; Modic et al., 2013; Tollervey et al., 2011). It is worth noting

that intricate neural splicing regulatory networks are not

restricted to the vertebrate nervous system. RNA-seq profiling

of two splicing factors in C. elegans (UNC-75, related to CELF

family, and EXC-7, related to Hu/ELAV family) revealed that

they also control AS of distinct groups of alternative exons in

genes with neuronal functions (Norris et al., 2014). Similarly,

RNA-seq analysis upon knockdown of the splicing factor Pasilla

(ortholog of Nova1 and Nova2) in D. melanogaster resulted

in changes in AS of genes enriched in neuronal activities, cyto-

skeletal dynamics, and sexual reproduction (Brooks et al.,

2011). Thus, genome-wide studies have provided insight into

the conserved organizational features of regulated AS im-

parted by multiple neural-enriched trans-factors across different

organisms.

Combinatorial Action of trans-Factors Regulates Neural

Splicing Networks

Tissue-specific AS patterns result from the cumulative effects

of the binding and activities of several splicing factors. Pioneer-

ing work demonstrated this principle in the context of the

neuronal-specific N1 exon of the SRC tyrosine kinase, which is

dependent on the combinatorial activities of Ptbp1, Ptbp2,

Rbfox, and additional hnRNP and SR proteins (Li et al., 2007).

Complementing the use of advanced computational methods

for inferring combinations of cis-regulatory elements that control

neural-specific AS (Barash et al., 2010; Zhang et al., 2010), RNA-

seq and CLIP-Seq datasets can be used for global investigation

of the combinatorial activities of multiple AS factors. For

example, it was discovered that �30% of nSR100-activated

AS events are repressed by Ptbp1 (Raj et al., 2014). Moreover,

nSR100 and Ptbp1 show maximal co-expression in neural pre-

cursor cells and immature neurons, where inclusion of target

exons was detected (Raj et al., 2014). These and additional ob-

servations provided evidence that nSR100 acts during neuro-

genesis to overcome the negative activity of Ptbp1 and promote

its program of exon inclusion (Figure 1B). Systematic investiga-

tion of how this exon network is activated during neurogenesis

revealed a unique organization of cis-regulatory elements,

including distally located branch sites and polypyrimidine se-

quences, as well as the presence of UGC intronic cis-elements

upstream of target exons that all contribute to suboptimal 30

splice sites and consequent exon skipping in the absence of

nSR100 in non-neural cells (Raj et al., 2014). In contrast, in neural

cells, nSR100 binds the UGC motif and interacts with multiple
Neuron 87, July 1, 2015 ª2015 Elsevier Inc. 17
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early spliceosomal components to enhance 30 splice site recog-

nition. Ptbp1 occupies binding sites located upstream of the

nSR100 recognition motif. The separation of the antagonistic

cis-elements enables nSR100 binding to overcome Ptbp1-medi-

ated repression, facilitating rapid switch-like changes in inclu-

sion levels of target exons. Comparison of RNA splicing maps

revealed similar opposing regulatory relationships between

Ptbp1 and Nova proteins (Cereda et al., 2014) and between

Ptbp1 and Rbfox proteins (Figure 1B) (Li et al., 2015). In contrast

to the aforementioned antagonistic activities, a subset of Nova-

dependent exons is also synergistically regulated by Rbfox

(Figure 1B) (Zhang et al., 2010). Similar approaches can be

used to systematically determine regulatory overlap between

combinations of other neural splicing factors.

A key area of future investigation is to understand the mecha-

nisms by which splicing regulators act together. For example, it

is currently not known how nSR100 acts in a dominant positive

manner over Ptbp1, nor how Rbfox and Nova proteins impart

synergistic activities on regulated target exons. Changes in

RNA structure and/or the composition of proximal splicing com-

plexes potentially underlie such effects.

Combinatorial activities of multiple splicing factors may also

contribute to AS differences between neuronal subtypes. In a

recent study, two-color splicing reporters corresponding to

genes known to be involved in neural functions were devel-

oped to monitor exon inclusion at single-neuron resolution

in C. elegans (Norris et al., 2014). Reproducible patterns of dif-

ferential exon inclusion in several reporters were observed

between various neuronal subtypes. For example, the exon-

16-included isoform of unc-16 was detected in both

GABAergic and cholinergic neurons, while the skipped isoform

was only observed in GABAergic neurons. A forward genetics-

based screen identified UNC-75 and EXC-7 as activators of

unc-16 exon 16 AS. Notably, lack of EXC-7 expression in

GABAergic neurons resulted in partial exon 16 inclusion by

UNC-75, while co-expression of the proteins in cholinergic

motor neurons stimulated maximal inclusion levels (Figure 1C).

Furthermore, RNA-seq data identified a significant subset of

co-regulated exons, indicating widespread combinatorial activ-

ities of the two proteins.

Investigating Biological Functions of Neural Alternative
Splicing Events
The impact of specific neural splice variants on neuronal differ-

entiation, morphology, maturation, and/or activity is generally

not understood. Nevertheless, multiple examples demonstrating

critical roles of neural isoforms have been reported. For example,

expression of the neural isoform of Disabled-1, which is involved

in Reelin signaling, rescued neuronal migration defects observed

in cortices of Nova2 null mice (Yano et al., 2010). Expression of

an isoform including a 6-nucleotide (nt) neuronal ‘‘microexon’’

(see below) in Unc13b, a protein that is important for neuritogen-

esis, significantly stimulated neurite outgrowth and rescued a

neurite extension defect in nSR100 mutant hippocampal neu-

rons, whereas expression of an isoform lacking this exon did

not rescue these phenotypic defects (Quesnel-Vallières et al.,

2015). The extent to which other neural AS events are functional

remains an important outstanding question.
18 Neuron 87, July 1, 2015 ª2015 Elsevier Inc.
Alternative Splicing Remodels Protein-Protein
Interaction Networks
Recent analyses of the impact of tissue-specific AS networks at

the protein level have revealed several important insights. Tis-

sue-specific alternative exons are more often frame preserving

than other classes of alternative and constitutive exons (Fagnani

et al., 2007; Sugnet et al., 2006; Xing and Lee, 2005) and are en-

riched in predicted post-translational modification sites (Buljan

et al., 2012) such as phosphorylation sites (Merkin et al., 2012;

Zhang et al., 2010). Furthermore, tissue-regulated exons, espe-

cially those spliced specifically in brain and muscle tissues,

frequently overlap unstructured or highly disordered regions

that embed conserved linear motifs, which are often the sites

of ligand and protein-protein interactions (PPIs) (Buljan et al.,

2012; Ellis et al., 2012; van der Lee et al., 2014). Consistent

with these observations, proteins encoded by tissue-specific

exons tend to have a higher number of interaction partners and

form hubs within interaction networks (Buljan et al., 2012; Ellis

et al., 2012).

To test whether differential inclusion of brain-enriched

nSR100-dependent exons modulate PPIs, an automated co-

immunoprecipitation assay using luminescence-basedmamma-

lian interactome mapping (LUMIER) was employed (Barrios-

Rodiles et al., 2005; Ellis et al., 2012). In this assay, bait cDNA

variants with and without a target neural exon are generated

for each gene of interest and are fused to Renilla luciferase.

The bait isoforms are co-expressed with known or putative

Flag-tagged interaction partners (prey). Co-immunoprecipitation

of a bait isoform with a prey protein is semiquantitatively

measured using a normalized readout from the Renilla luciferase

and is used to assess whether inclusion of an alternative exon al-

ters one or more PPIs. It was observed that approximately one-

third of analyzed nSR100-dependent exons promoted and/or

repressed various PPIs (Ellis et al., 2012). This indicated that

an important function of nSR100 is to promote the inclusion of

exons that remodel PPI networks during neurogenesis. Further

studies are required to determine the precise mechanisms by

which AS modulates PPIs. For example, it is not well understood

how disordered regions overlapping neural exons contribute to

specific partner interactions nor towhat extent post-translational

modifications of these regions contribute to interaction affinities

and/or binding specificities.

Identification and Characterization of a Highly
Conserved Program of Neuronal Microexons
Recently, a new RNA-seq pipeline was developed to system-

atically identify and analyze all major classes of AS events,

including cassette-type exons, alternative 50/30 sites, retained in-

trons, and ‘‘microexons,’’ from a panel of �50 diverse cell and

tissue types from mouse and human (Irimia et al., 2014). Of the

�2,500 AS events with neural-differential regulation, a group of

�300 alternative microexons, 3 to 27 nt in length, display strong

enrichment for inclusion in neurons versus all other cell types

analyzed (Irimia et al., 2014). Remarkably, there is a strong in-

verse relationship between the length of an alternative exon

and its tendency to be included in neural cells and tissues,

with 3- to 15-nt microexons displaying the strongest degree of

neural inclusion. Similar results were observed in a parallel study
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by Ponting and colleagues, who utilized a broader length defini-

tion for microexons (%51 nt) (Li et al., 2015).

Examples of alternative microexons have been previously re-

ported (e.g., SRC N1 exon) (Black, 1991), but the high degree of

neuronal-specific splicing and additional global features of this

class of exons had not been previously appreciated. In the recent

studies, neuronal microexons were found to be significantly more

often conserved and frame preserving than longer neural alterna-

tive exons (Irimia et al., 2014; Li et al., 2015).Moreover, sequences

of the upstream and downstream flanking intronic regions of

microexons were found to be more highly conserved than se-

quences surrounding longer neural alternative exons, suggesting

the presence of important cis-acting elements that are critical for

their regulation (Irimia et al., 2014; Li et al., 2015).

To search for trans-regulators of microexons, Irimia et al.

analyzed RNA-seq datasets monitoring AS upon knockdown

or overexpression of known neural AS regulators, including

Ptbp1, Ptbp2, Rbfox1, Mbnl, and nSR100. Among these,

nSR100 had the most pronounced and widespread effects; it

was observed to promote the inclusion of more than half of all

detected neuronal-specific microexons. Furthermore, nSR100

CLIP-Seq reads overlapping UGC motifs are enriched adjacent

to 30 splice sites flanking microexons, confirming direct regula-

tion by the protein. On the other hand, Li et al. identified Rbfox

and Ptbp1 proteins as regulators by searching for conserved

hexamer motifs that are enriched proximal to alternatively

spliced microexons. CLIP-Seq tags from the three Rbfox

proteins are enriched in intronic regions downstream of neu-

ral-regulated microexons, suggesting that Rbfox proteins

enhance microexon inclusion. In contrast, Ptbp1-RNA crosslink

tags display a high density upstream of the microexons, indi-

cating that Ptbp1 represses microexon inclusion. nSR100-regu-

lated events were not analyzed in the latter study, although

differences between the results of the two studies can also

be attributed to the different length definitions assigned to

microexons.

Remarkably, microexons are frequently misregulated in the

brainsof subjectswithautismspectrumdisorder (ASD), and these

changes significantly correlate with reduced levels of nSR100

(Irimia et al., 2014). Previously, downregulation of RBFOX

expression and misregulation of the RBFOX splicing regulatory

network—comprising mostly longer alternative exons—were

also observed in ASD patients (Voineagu et al., 2011; Weyn-Van-

hentenryck et al., 2014). In addition, a recent study demonstrated

that nSR100- and Nova1-mediated control of the inclusion of

a 12-nt microexon in LSD1 (also known as KDM1A), a histone

H3K4 demethylase, contributes to neuronal excitability in mice

(Rusconi et al., 2014). This regulation was proposed to be impor-

tant for susceptibility to seizure and could represent a molecular

event that underlies epilepsy.

It is currently unclear to what extent misregulation of neuronal

exons contributes to neurological disorders. For example, does

disruption of neuronal AS impact neuropathology and behavioral

characteristics of patients with ASD? Generating mouse

models with altered expression of known splicing regulators of

neuronal microexons may provide a valuable means to investi-

gate the role of these short exons in epilepsy and ASD. Another

exciting application of the mouse models could be to develop
and test potential therapeutics for disorders, for example, agents

that act to modulate the expression of critical splicing regulators

such as nSR100. In this regard, it is interesting to note that stra-

tegies for manipulating the expression of the Survival of motor

neuron (SMN) protein, a key factor required for snRNP assembly,

have been effective in correcting disease-associated pheno-

types in mouse models of spinal muscular atrophy (Foust

et al., 2010; Hua et al., 2011).

Functions of Neuronal Microexons

An important question stemming from the aforementioned ob-

servations is whether the inclusion of a few amino acids can alter

the activity of the encoded protein. Most neuronal microexons

exhibit pronounced switch-like regulation—from low to very

high inclusion levels—during late stages of neuronal differentia-

tion (Figure 2A), suggesting that they may function in terminal

neurogenesis (Irimia et al., 2014). Notably, unlike longer neural

exons that overlap disordered regions enriched in linear binding

motifs, microexons are highly enriched in modular interaction

domains associated with cellular signaling (e.g., PTB, SH2

domains). Thus, inclusion of microexons represents a comple-

mentarymechanism for regulating PPI networks and other ligand

interactions that are important for neuronal function (Irimia et al.,

2014; Li et al., 2015).

Consistent with this view, insertion of a 6-nt microexon in

the nuclear adaptor protein Apbb1 enhances its interaction

with Kat5/Tip60, a histone deacetylase (Irimia et al., 2014). The

Apbb1 microexon adds two charged residues (Arg and Glu) to

a phosphotyrosine-binding domain (PTB) domain, which binds

Kat5. Alanine substitution experiments and structural modeling

suggest that the insertion of these two residues enhances bind-

ing of Kat5 by increasing the interaction surface of Apbb1. Simi-

larly, inclusion of a 9-ntmicroexon in AP1S2, which is a subunit of

the adaptor-related protein complex 1 (AP1) complex that func-

tions in the intracellular transport of cargo proteins, strongly pro-

motes an interaction with AP1B1, another AP1 complex subunit

(Figure 2B) (Irimia et al., 2014).

Several studies have highlighted an important role for micro-

exons in regulating neurite extension (Figure 2B). For example,

it has been shown that a neural-specific 21-nt microexon in

Zfyve27, which encodes Protrudin, a membrane protein involved

in polarized vesicular trafficking in neurons, increases its interac-

tion with the vesicle-associated membrane protein-associated

protein (VAP) (Ohnishi et al., 2014). Furthermore, expression of

transcripts including the neural microexon in Zfyve27-deficient

hippocampal neurons promoted neurite outgrowth more effi-

ciently than expression of transcripts lacking the microexon. In

another recent example, inclusion of the aforementioned 12-nt

microexon in LSD1 (LSD1+8a isoform) switches the activity of

the protein from a co-repressor to a co-activator by promoting

an interaction with the supervillin protein (SVIL). Together, these

interactions result in demethylation of the repressive H3K9me2

mark to activate the expression of target genes and impact

neurite morphogenesis (Laurent et al., 2015).

Microexons also overlap functionally important domains of

transcription factors involved in nervous system development.

For example, microexons in three members of the Mef2 family

of transcriptional activators (Mef2A, Mef2C, and Mef2D) over-

lap transactivation domains and are highly included in brain
Neuron 87, July 1, 2015 ª2015 Elsevier Inc. 19



A B Figure 2. Microexon Regulation and
Function
(A) Median percent spliced in (PSI) levels of alter-
native neural microexons (top panel), and changes
in gene expression (bottom panel) of Rbfox (blue),
Ptbp1 (orange), and nSR100 (green) proteins dur-
ing in vitro differentiation of embryonic stem cells
(ESCs) to cortical glutamatergic neurons (Hubbard
et al., 2013). Opposing activities and expression
levels of Rbfox, nSR100, and Ptbp1 regulate mi-
croexon inclusion.
(B) AS of microexons (indicated in red) can
impact neuronal protein-protein interactions
(PPIs), neurite outgrowth, and neuronal transcrip-
tion networks.
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tissues (McDermott et al., 1993; Yu et al., 1992; Zhu et al.,

2005). Each of the microexon-containing isoforms has been

shown to possess increased transcriptional activator function

compared to the isoforms lacking these exons based on re-

porter assays (Zhu et al., 2005). Furthermore, as embryonic

stem (ES) cells differentiate into neurons, these microexons

display nSR100-dependent switch-like regulation from com-

plete skipping to >85% inclusion in neurons (Raj et al., 2014).

Taken together, these data suggest that inclusion of Mef2

microexons during neurogenesis may convert Mef2 isoforms

to more potent activators, thus regulating the expression of a

network of neural genes (Figure 2B). However, Mef2 transcrip-

tional targets and the functions of the Mef2 splice variants are

not well established in neuronal cells, and therefore require

further investigation.

Although generally frame preserving, microexons can also

modulate protein activity by altering the reading frame. For

example, an nSR100-promoted, 16-nt neuronal microexon in

mouse REST/NRSF transcripts, a transcriptional repressor that

silences a multitude of genes involved in neural functions in

non-neuronal cells, introduces a termination codon that pro-

duces a truncated isoform known as REST4 (Raj et al., 2011).

This variant lacks critical zinc finger DNA binding domains

required for transcriptional silencing of target genes,

thereby enabling their expression during neural differentiation

(Figure 2B). Downregulation of REST is critical for neuronal matu-

ration in in vitromodels of neuronal differentiation (Su et al., 2006,

2004; Xue et al., 2013). However, low levels of REST expression

are still detected in neurons. A proposed function of neuron-

specific REST4 is to act as a dominant-negative modulator

by hetero-oligomerization and sequestration of full-length

REST (Shimojo et al., 1999). However, it currently remains

to be determined to what extent neural-specific AS of REST
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transcripts contributes to neuronal differ-

entiation and maturation and whether

REST4 has additional functions in this

process.

Identification of Cryptic Nonsense-
Mediated Decay Exons
The coupling of AS with NMD (AS-NMD)

plays an important role in modulating the

levels of proteins, including numerous
splicing regulators and core spliceosomal components (Jangi

et al., 2014; Lareau et al., 2007; Saltzman et al., 2008; Yap and

Makeyev, 2013). In recent studies, important roles for AS-NMD

in the regulation of neuronal gene expression have been uncov-

ered. By profiling mRNA abundance in the brains ofNova double

knockout mice, over 200 transcripts involved in synaptic func-

tions were found to display reduced mRNA levels (Eom et al.,

2013). Unexpectedly, CLIP-Seq experiments revealed that

Nova binds to the introns of these regulated transcripts and pro-

motes skipping of a previously unannotated class of neuronal

exons. Because the expression of these exons is generally

not observed at high levels in brain transcripts from wild-type

mice, and their functional significance was unclear, they were

described as being ‘‘cryptic.’’ The inclusion of cryptic exons in

the absence of Nova introduces premature termination codons

that initiate NMD of transcripts (Figure 3A). Furthermore, the

cryptic exons are subject to activity-dependent regulation; the

induction of seizures in mice resulted in changes in AS of these

exons, likely as a result of a change in the localization of Nova

from the nucleus to the cytoplasm (Figure 3A). Thus, Nova-

dependent dynamic regulation of cryptic exons may represent

a novel mechanism to modulate the levels of synaptic proteins

in neurons after seizure.

Functions of Intron Retention in the Regulation of Neural
Gene Expression
Transcript and protein abundance can also be modulated by

intron retention, which either prevents the export of transcripts

to the cytoplasm, leading to nuclear RNA degradation, or else

can result in turnover of the retained intron-containing transcripts

in the cytoplasm via NMD (Figure 3B) (Ge and Porse, 2014; Yap

and Makeyev, 2013; Yap et al., 2012). It was previously shown

that Ptbp1 negatively regulates the expression of several



A

B

Figure 3. Regulation of Neural Gene
Expression via Alternative Splicing
(A) Activity-dependent nucleocytoplasmic shuttling
of Nova protein can alter AS of cryptic exons and
modulate the levels of synaptic proteins via intro-
duction of a premature termination codon (red
pentagon) and nonsense-mediated decay.
(B) Intron retention can modulate gene expression
via nuclear sequestration or nonsense-mediated
decay. Left: In non-neural cells, Ptbp1 promotes
retention of terminal 30 introns, leading to their nu-
clear sequestration and degradation, thereby sup-
pressing the expression of several synaptic genes.
However, miR-124-mediated silencing of Ptbp1 in
neurons enables splicing and expression of these
genes. Right: As embryonic stem (ES) cells differ-
entiate into neurons, intron retention is used as a
mechanism to downregulate expression of cell di-
vision genes via introduction of a premature
termination codon (red pentagon) and nonsense-
mediated decay. Orange bar, retained intron. Pur-
ple bar, 30 UTR.
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proteins with neuronal functions, including Ptbp2 and Gabbr1,

via AS-NMD (Makeyev et al., 2007). To test whether Ptbp1 has

a more extensive role in neural gene expression, RNA-seq

profiling was performed following Ptbp1 knockdown in neuro-

blastoma cells (Yap et al., 2012). A small yet significant subset

of genes—several of which encode pre-synaptic proteins—

was upregulated under these conditions. Surprisingly, these

transcripts are not subject to NMD. Instead, Ptbp1 inhibits

splicing of introns at the 30 end of these genes, resulting in their

nuclear retention and turnover via components of the nuclear

RNA surveillance machinery (Figure 3B). As Ptbp1 is downregu-

lated during neuronal differentiation, the target introns are

spliced out and the corresponding mature mRNAs are detected

in the cytoplasm. These observations suggest that Ptbp1-medi-

ated control of intron retention is an important mechanism gov-

erning protein expression during neuronal development.

To investigate whether intron retention is utilized as a wide-

spread gene-regulatory mechanism in mammals, an RNA-seq

pipeline was designed to detect intron retention events and

applied to more than 40 diverse mouse and human cell and tis-

sue types (Braunschweig et al., 2014). Remarkably, retained

introns were detected in transcripts from most genes and

displayed higher complexity and regulatory conservation in the

nervous system. Furthermore, intron retention was inversely

correlated with global cytoplasmic mRNA steady-state levels,

consistent with its known functions in nuclear sequestration

and NMD. To determine the functional significance of alternative

retained introns in neural cells, the expression levels of tran-

scripts with regulated intron retention were monitored during

in vitro differentiation of ES cells into cortical glutamatergic neu-

rons. Genes exhibiting higher intron retention in neurons were

enriched in functions (e.g., cell cycle) that are not critical or

less required for the physiology of differentiated neurons,

whereas genes with reduced levels of intron retention in neurons
Neu
compared to ES cells were enriched in

synaptic functions (Figure 3B). These find-

ings support the proposal that cells

frequently employ intron retention as an

on/off switch to ensure the expression of biologically relevant

subsets of genes.

Global Profiling of Alternative Splicing in Neural Cell
Adhesion Factors
The mammalian neurexin genes and the Drosophila Dscam1

gene represent the most extensive cases of AS regulation docu-

mented so far. The remarkable diversity of AS patterns in these

two neural cell recognition factors plays a key role in the estab-

lishment of neuronal circuits. Together with genetic approaches

and single-neuron imaging tools, RNA-seq now provides a

powerful method to comprehensively probe the AS landscape

and dynamics of neurexin and Dscam1 isoforms in neural cells

and during development.

Neurexin Proteins

Neurexins and neuroligins are trans-synaptic cell adhesion pro-

teins that interact with each other and are located on the pre-

synaptic and post-synaptic membranes, respectively. These

proteins play critical roles in synapse organization/assembly,

synaptic transmission, and synaptic identity. Each of the three

mammalian neurexin genes is transcribed from two independent

promoters, resulting in the generation of six principal neurexins

(Nrxn1a– Nrxn3a, Nrxn1b–Nrxn3b). Neurexins are subjected to

highly regulated and extensive AS at up to six canonical splice

sites (SS#1–SS#6), whereas neuroligins possess one canonical

splice site (SS#A), with the exception of neuroligin 1, which addi-

tionally contains SS#B.

The combination of AS and alternative promoter usage has the

potential to generate thousands of neurexin isoforms. The in vivo

repertoire of neurexin isoforms was recently investigated by

sequencing full-length transcripts from the adult mouse cortex

(Schreiner et al., 2014; Treutlein et al., 2014). Interestingly, tran-

scripts with a previously uncharacterized 27-nt alternativemicro-

exon were detected. This exon (SS#6) is highly conserved and is
ron 87, July 1, 2015 ª2015 Elsevier Inc. 21
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Figure 4. Dscam1 and Protocadherin
Isoforms Generate Extensive Diversity to
Mediate Neuronal Intercellular Recognition
(A) Schematic representations of the fly Dscam1
gene (alternative exons only) and mouse Pcdha,
Pcdhb, and Pcdhg gene clusters. Variable exons
within each of the four Dscam1 exon clusters (Ex 4,
Ex 6, Ex 9, and Ex 17) and within each Pcdh sub-
type are differentially color coded. Constitutive
exons are colored gray (Pcdha) and black (Pcdhg).
(B) Expression of identical combinations of
Dscam1 or Pcdh isoforms on neighboring cell
surfaces triggers homophilic binding. This type of
interaction results in contact-dependent repulsion
in Dscam1 and Pcdhg isoforms (no data for Pcdha
or Pcdhb so far). In contrast, expression of distinct
Dscam1 or Pcdh isoform combinations does not
initiate binding, allowing neurites to cross each
other and/or form synapses.
(C) Homophilic binding and repulsion enable den-
dritic avoidancebetweensister neurites of a neuron
(isoneuronal) while allowing interactions between
neurites of different neurons (heteroneuronal).
These interactions play fundamental roles in neural
circuit establishment and maintenance.
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specific to Nrxn1a and Nrxn3a. Furthermore, it maps to a flexible

hinge region that may modulate PPIs. A relatively lower but sig-

nificant number of neurexin transcripts were identified in which

several exons were skipped, resulting in the deletion of multiple

domains (Treutlein et al., 2014). Strikingly, all of the novel AS

events preserved the reading frame, but the functions of the

candidate proteins remain unclear. Collectively, over 2,000 AS

variants were discovered, confirming previous predictions

regarding the complexity of the neurexin transcript landscape

(Schreiner et al., 2014; Treutlein et al., 2014).

Similar to the findings discussed previously, AS of neurexin

has been shown to modulate PPIs and ligand interactions. For

example, inclusion of the alternative exon at SS#4 (SS4+)

decreases the affinity of neurexin for neuroligin 1 SSB+ variants

(Chih et al., 2006). Moreover, SS4+ and SS4� isoforms can

modulate binding of additional ligands such as CIRL/latrophilin

and LRRTMs (Boucard et al., 2012; Ko et al., 2009; Siddiqui

et al., 2010). To investigate the physiological relevance of altered

interactions upon AS, mice were generated in which SS#4 of

Nrxn3 is mutated so that it is constitutively used but is also

flanked by LoxP sites, enabling cre-mediated control of AS

(Aoto et al., 2013). Constitutive expression of presynaptic

Nrxn3-SS4+ resulted in changes in post-synaptic AMPA recep-

tor abundance and disrupted AMPA receptor trafficking. This

phenotype was proposed to result from changes in trans-synap-

tic binding between Nrxn-3 and LRRTMs and/or neuroligins,

which interact with AMPA receptors.

Dscam1 and Clustered Protocadherin Proteins

Dscam1 is among the most well studied examples of surface

receptors that undergo extensive neural AS—it is predicted to

generate approximately 38,016 splice variants (Hattori et al.,

2008; Zipursky and Grueber, 2013). The Dscam1 gene consists
22 Neuron 87, July 1, 2015 ª2015 Elsevier Inc.
of four blocks of alternative exons ar-

ranged in tandem, which introduce vari-

ability in the transmembrane segment
(exon 17) and three extracellular immunoglobulin domains

(exons 4, 6, and 9) (Figure 4A). The staggering diversity of

Dscam1 is critical for several aspects of neuronal wiring within

the fly brain, including regulating growth and targeting of axonal

branches (Chen et al., 2006) and for dendritic patterning and self-

avoidance (Figures 4B and 4C) (Hattori et al., 2009; Hughes et al.,

2007; Matthews et al., 2007; Soba et al., 2007).

To globally profile endogenous Dscam1 isoforms with varia-

tions in the three ectodomains, a recent study utilized a novel

method referred to as CAMSeq (Circularization-Assisted

Multi-Segment Sequencing) to analyze the transcriptomes of

Drosophila brains, developmental stages, and S2 cells (Sun

et al., 2013). An important feature of CAMSeq is the use of four

sequencing reads from each template to simultaneously deter-

mine exon usage in clusters 4, 6 and 9, and as a barcode to iden-

tify the sample. Remarkably, 18,496 out of 19,008 theoretically

possible isoforms from these three exon clusters were detected.

AS in each cluster was found to occur independently of the other

clusters, as was previously proposed. Furthermore, Dscam1 iso-

forms display differences in splicing patterns during develop-

ment and show a greater variety in brain tissues compared to

S2 cells.

Recent evidence corroborates a model for Dscam1 AS in

which exons are spliced in a stochastic manner to generate

extreme isoform diversity. The in vivo expression of each of the

12 exon 4 variants from the endogenous Dscam1 locuswas visu-

alized using distinct splicing reporters (Miura et al., 2013). The

choice of an exon 4 variant was found to be different for neurons

belonging to the same class and for neurons located in similar

positions in individual animals. These observations are consis-

tent with a dynamic, probabilistic mechanism of Dscam1 AS in

which a lack of distinctive regulation effectively confers unique
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cellular identities that contribute to the avoidance of inappro-

priate isoneuronal interactions. Random co-expression of multi-

ple Dscam1 isoforms may also serve a cell-intrinsic function.

Loss of Dscam1 exon 6 diversity in mechanosensory neurons

disrupted growth cone morphologies, while neighboring ‘‘wild-

type’’ neurons in contact with the mutants were unaffected (He

et al., 2014). Thus, it was proposed that a reduction in the

Dscam1 isoform pool likely induces increased same-isoform

encounters within a cell, causing more homophilic binding and

a gain of Dscam1 function that disrupts axon growth and

branching.

Notably, the vertebrate Dscam homologs do not display

the extensive levels of AS found in the fly Dscam1. Instead,

the mammalian clustered protocadherins (Pcdha, Pcdhb, and

Pcdhg), which consist of multiple variable exons organized into

discrete clusters and regulated via stochastic alternative pro-

moter usage, are thought to function in an analogous manner

(Figure 4) (Zipursky and Sanes, 2010). For example, Pcdhg iso-

forms mediate homophilic interactions that promote repulsion

between sister neurites of retinal starburst amacrine neurons

and Purkinje cells, enabling self/non-self-discrimination (Lefeb-

vre et al., 2012). Although Dscam1 isoforms greatly outnumber

the Pcdh isoforms (�19,000 Dscam1 isoforms with distinct ecto-

domains relative to 58 mouse Pcdh isoforms), recent evidence

strongly supports the proposal that Pcdhs generate sufficient

cell surface diversity to confer single cell identity. It was demon-

strated that all three subfamilies of Pcdhs are involved in highly

specific and combinatorial homophilic binding (Thu et al.,

2014). Pcdhs can also function in multimeric complexes,

although the details of these interactions are largely unclear.

Together, these two mechanisms likely result in significant cell

surface diversity and implicate Pcdhs in heteroneuronal recogni-

tion and neuronal circuit assembly (Thu et al., 2014).

Conclusions and Future Directions
In recent years, our understanding of how AS is dynamically

regulated in the nervous system and generates isoform diversity

with critical functions in neural development has been propelled

by technological advances in high-throughput profiling methods

and bioinformatics. Together with focused biochemical, molec-

ular, and cell biological methods, we now have a deeper grasp

of the mechanisms, functions, and impact of AS on neuronal

cell complexity and biology. The widespread detection of previ-

ously underappreciated neural AS events such as microexons,

cryptic exons, and retained introns and the characterization of

the underlying regulatory mechanisms signify a few of the

many important strides that have been made. Despite these ad-

vances and examples of elucidated functions, the impact of

most neural AS events on neuronal functions such as differenti-

ation, morphology, migration, electrophysiological activity, and

synapse formation is not known. Furthermore, how such AS

changes may affect behavior and other activities is poorly

defined. As discussed in the above sections, knockout mouse

models of splicing factors and in vitro cell culture systems are

useful tools with which to dissect the physiological functions

of uncharacterized splice isoforms. Moreover, the advent of

CRISPR/Cas9 genome editing (Doudna and Charpentier, 2014;

Hsu et al., 2014) has provided a powerful means with which to
genetically delete or insert exons of interest in cell culture or

whole animal models to systematically examine functions of

neural isoforms. Additional key areas of future investigation are

discussed below.

Neuronal Cell-Type-Specific Alternative Splicing

A limitation of most current investigations of neural AS regulation

is that they do not differentiate between the individual cell

types comprising brain tissues, such as neural precursor cells,

vascular cells, neurons, and glia. Typically, inferences are

made based on AS patterns that represent averages across

the whole brain or brain regions. Recently, highly pure popula-

tions of several neuronal and non-neuronal cell types from

mouse cerebral cortex were isolated and analyzed for differ-

ences in AS regulation (Zhang et al., 2014). Notably, thousands

of novel cell-type-dependent AS events were identified with

neurons possessing the highest degree of specific AS events.

These findings suggest that numerous additional targets of

neural splicing regulators may have been missed in previous

studies of AS regulation using brain samples containing mixed

cell types.

Furthermore, the identities of individual neurons are usually

not taken into consideration, which masks important AS differ-

ences that may exist between neuronal cell types. Gaining

deeper insight into AS patterns that are specific to neuronal sub-

types and individual neurons represents information that can be

valuable for fully understanding how neuronal complexity and

wiring arise. The aforementioned study in C. elegans revealed

multiple examples of neuron subtype-specific AS patterns (Nor-

ris et al., 2014). In another study, cell-type-specific AS of

Dscam2 was detected in the L1 and L2 visual system neurons

in flies (Lah et al., 2014). Dscam2 contains twomutually exclusive

exons; the variants Dscam2A and Dscam2B are expressed in L2

and L1 neurons, respectively. Similar to Dscam1, Dscam2 also

displays homophilic binding-mediated repulsion. Thus, restrict-

ing the expression of distinct Dscam2 isoforms to particular

neuron subtypes allows the L1 and L2 neurons to interact

without repelling each other. However, loss of cell-type speci-

ficity in Dscam2 isoform expression results in multiple aberra-

tions in neuronal wiring, including tiling defects and a reduction

in the sizes of synaptic arbors (Lah et al., 2014).

The scarcity of convenient tools to monitor and manipulate

isoform expression at the single-cell level has made it difficult

to perform large-scale studies of cell-type-specific AS. The

advent of single-cell RNA-seqmethods (Saliba et al., 2014) could

potentially resolve at least part of the challenge and be used to

detect additional examples of AS events that are differentially

regulated between individual neurons. Furthermore, it may iden-

tify cell-specific AS regulators based on differences in expres-

sion levels. The translating ribosome affinity purification (TRAP)

methodology, in which mice are genetically engineered to

produce a fluorescently tagged ribosomal protein in specialized

cell types of interest (Doyle et al., 2008; Heiman et al., 2014;

2008), can additionally be used to determine the translation pro-

file of individual cell types and detect cell-specific AS factors and

protein isoforms. Moreover, the CRISPR/Cas9 technique can

be used to delete neuron subtype-specific exons of interest

and examine the functions of corresponding isoforms. These

methods in combination with single-neuron imaging techniques
Neuron 87, July 1, 2015 ª2015 Elsevier Inc. 23
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will likely become powerful tools for future investigations into

cell-type-specific AS.

Identification of Additional Neural Alternative Splicing

Regulators

Currently identified regulators of neural AS events are estimated

to account for 40%–50% of AS events differentially regulated

between neural and non-neural tissues. Thus, the identification

of trans-acting factors and mechanisms associated with the

control of many additional neural-differential AS events repre-

sent important challenges for the future. To address this in a

timely and systematic manner, recently developed high-

throughput techniques can be utilized to screen for splicing

regulators. Fluorescent splicing reporters, which display GFP

or RFP expression depending on whether an exon is included

or skipped, are a common choice to monitor AS in vivo (Norris

et al., 2014; Orengo et al., 2006; Zheng et al., 2013). By screening

a cDNA library in a gain-of-function screen or an siRNA library in

a loss-of-function screen, changes in the fluorescence signal of

the reporter are used as readouts to identify positive or negative

regulators of an AS event of interest (Zheng et al., 2013). How-

ever, generating splicing reporters that efficiently recapture

endogenous splicing patterns is a difficult and laborious pro-

cess, and the number of events that can be monitored at the

same time is limited. Instead, RNAi-based high-throughput

screens that incorporate barcoding/multiplexing have been

developed to simultaneously profile multiple endogenous AS

events in an efficient and cost-effective manner (Papasaikas

et al., 2015; Tejedor et al., 2015) and are particularly promising

tools for uncovering new regulators of neural splicing.

Long Noncoding RNAs

Furthermore, characterizing interactions between AS factors

and long noncoding RNAs (lncRNAs) will be an important avenue

of research that may provide additional insights into the dy-

namics of AS regulation in neurons. For example, the brain-en-

riched lncRNAGomafu (also known asMiat) has been suggested

to play a role in modulating AS by sequestering the splicing pro-

teins SF1, Quaking-1, and SRSF1 in nuclear compartments in

non-activated neurons and releasing them upon neuronal activa-

tion (Barry et al., 2014; Tsuiji et al., 2011). In addition, Ptbp1 and

hnRNP K were found to be associated with the brain-specific

lncRNA TUNA and proposed to be recruited to promoters of

genes involved in ES cell pluripotency and neural differentiation

(Lin et al., 2014). However, the details of how lncRNAs mediate

splicing factor availability and/or activity in neurons are largely

unclear, and future work in this relatively new field may result

in exciting developments.

Deep Learning

The first iteration of machine-learning-based elucidation of the

splicing code demonstrated that it is feasible to systematically

decipher complex combinations of cis-regulatory elements that

underlie regulated splicing events (Barash et al., 2010). Since

then, additional parameters have been implemented to enhance

prediction accuracy, including the use of expanded training da-

tasets and incorporation of a ‘‘deep learning’’ approach that

samples thousands of potential models in train-test routines

(Xiong et al., 2015). An exciting application of the deep learning

(neural network) architecture is to generate (single) cell-type-

and tissue-specific predictions of AS regulation, including clas-
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ses of AS events not captured previously by this approach,

such as short-length-range microexons. This strategy should

enable the prediction of combinations of splicing regulators

that provide critical functions in biologically important AS events,

as defined by high-throughput PPI screening and other assays.

Moreover, it should facilitate the definition of genomic changes,

including normal and disease variants, that contribute to or

cause neurological disorders and disease.
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