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INTRODUCTION:Advancingwhole-genome
precision medicine requires understanding
how gene expression is altered by genetic var-
iants, especially those that are far outside of
protein-coding regions. We developed a com-
putational technique that scores how strongly
genetic variants affect RNA splicing, a critical
step in gene expression whose disruption con-
tributes tomany diseases, including cancers and
neurological disorders. A genome-wide analy-
sis reveals tens of thousands of variants that
alter splicing and are enriched with a wide

range of known diseases. Our results provide
insight into the genetic basis of spinal muscular
atrophy, hereditarynonpolyposis colorectal can-
cer, and autism spectrum disorder.

RATIONALE:Weused “deep learning” computer
algorithms to derive a computational model
that takes as input DNA sequences and ap-
plies general rules to predict splicing in human
tissues. Given a test variant, which may be up
to 300 nucleotides into an intron, our model
can be used to compute a score for how much

the variant alters splicing. The model is not
biased by existing disease annotations or pop-
ulation data and was derived in such a way that
it can be used to study diverse diseases and
disorders and to determine the consequences
of common, rare, and even spontaneous variants.

RESULTS: Our technique is able to accurately
classify disease-causing variants and provides
insights into the role of aberrant splicing in dis-
ease. We scored more than 650,000 DNA var-
iants and found that disease-causing variants
have higher scores than common variants and
even those associated with disease in genome-
wide association studies (GWAS). Our model
predicts substantial and unexpected aberrant
splicing due to variants within introns and exons,
including those far from the splice site. For
example, among intronic variants that are

more than 30 nucleotides
away from any splice site,
known disease variants al-
ter splicing nine times as
often as common variants;
among missense exonic
disease variants, those that

least affect protein function are more than five
times as likely as other variants to alter splicing.
Autism has been associated with disrupted

splicing in brain regions, so we used ourmeth-
od to score variants detected using whole-
genome sequencing data from individuals
with and without autism. Genes with high-
scoring variants include many that have pre-
viously been linked with autism, as well as
new genes with known neurodevelopmental
phenotypes. Most of the high-scoring variants
are intronic and cannot be detected by exome
analysis techniques.
When we scored clinical variants in spi-

nal muscular atrophy and colorectal cancer
genes, up to 94% of variants found to alter
splicing using minigene reporters were cor-
rectly classified.

CONCLUSION: In the context of precision
medicine, causal support for variants inde-
pendent of existing whole-genome variant
studies is greatly needed. Our computational
model was trained to predict splicing from
DNA sequence alone, without using dis-
ease annotations or population data. Conse-
quently, its predictions are independent of
and complementary to population data, GWAS,
expression-based quantitative trait loci (QTL),
and functional annotations of the genome.
As such, our technique greatly expands the
opportunities for understanding the genetic
determinants of disease.▪
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“Deep learning” reveals the genetic origins of disease. A computational system mimics the bi-
ology of RNA splicing by correlating DNA elements with splicing levels in healthy human tissues. The
system can scan DNA and identify damaging genetic variants, including those deep within introns.This
procedure has led to insights into the genetics of autism, cancers, and spinal muscular atrophy.
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To facilitate precision medicine and whole-genome annotation, we developed a
machine-learning technique that scores how strongly genetic variants affect RNA splicing,
whose alteration contributes to many diseases. Analysis of more than 650,000 intronic
and exonic variants revealed widespread patterns of mutation-driven aberrant splicing.
Intronic disease mutations that are more than 30 nucleotides from any splice site alter
splicing nine times as often as common variants, and missense exonic disease mutations
that have the least impact on protein function are five times as likely as others to alter
splicing. We detected tens of thousands of disease-causing mutations, including those
involved in cancers and spinal muscular atrophy. Examination of intronic and exonic
variants found using whole-genome sequencing of individuals with autism revealed
misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence
for causal variants and should enable new discoveries in precision medicine.

R
egulatory cis elements constitute a sub-
stantial portion of the human genome
(1, 2) and form the “regulatory code” that
directs gene expression, depending on
cellular conditions. The development of

computational “regulatory models” that can
read the code for any gene and predict relative
concentrations of transcripts (3–5) raises the
possibility that these models can be used to
identify variants that lead to misregulated gene
expression and human disease (6). Unlike many
existing approaches (7–9), regulatory models do
not suffer from the ascertainment biases inher-
ent in databases of disease annotations. Here, we
describe a system that uses a regulatory model

of splicing to find and score disease mutations
(Fig. 1A).

A computational model of splicing

Misregulation of splicing contributes substan-
tially to human disease (10), so we developed a
computational model of splicing regulation that
can be applied to any sequence containing a
triplet of exons (Fig. 1B). The method extracts
DNA sequence features (or cis elements) and,
for a given cell type, uses them to predict the
percentage of transcripts with the central exon
spliced in (C), along with a Bayesian confi-
dence estimate. To train the model, we mined
10,689 exons that displayed evidence of alternative
splicing and extracted 1393 sequence features
from each exon and its neighboring introns and
exons. RNA sequencing (RNA-seq) data from
the Illumina Human Body Map 2.0 project
(NCBI GSE30611) were used to estimate C for
each exon in each of 16 human tissues, and the
model was trained to predictC given the tissue
type and the sequence features. Unlike existing
methods (3, 11, 12), our computational model
was derived using human data, incorporates over
300 new sequence features, and outputs real-
valued absoluteC values for individual tissues,
rather than categorical C values for tissue dif-
ferences (13).
We observed good agreement (R2 = 0.65) be-

tween code-predicted C and RNA-seq–assessed
C for exons that were held out during training
(Fig. 1C). On the task of classifying high (C ≥ 67%)

versus low (C ≤ 33%) inclusion, the area under
the receiver-operator characteristic curve (AUC)
is 95.5%. For quality control, we only examined
exon-tissue combinations (n = 56,784) for which
the standard deviation of the RNA-seq–assessed
C was less than 10%, and cross-validation was
used to ensure that test cases were not used
during training (13) (table S3). The prediction
accuracy was even higher (R2 = 0.94, AUC =
99.1%) for the 50% of predictions with highest
confidence (n = 28,392). The model is robust
and accurate for categories of data that were
not included during training, including genes
with low expression, genes from excluded chro-
mosomes, tissue differences in splicing levels,
tissues from independent sources, and splicing
levels quantified by reverse transcription poly-
merase chain reaction (RT-PCR) (13).
We next investigated whether our computa-

tional model accounts for the effects of known
RNA-binding proteins (RBPs), which are key
splicing regulators. We compared how well the
calculated RBP binding affinity from Ray et al.
(14) correlated with the observed variation in
splicing and found 2080 strong correlations
(P < 0.01, multiple hypothesis-corrected permu-
tation test). Then we correlated the RBP bind-
ing affinities with the residual splicing activity
not captured by the code, which was obtained
by subtracting the code predictions from the ob-
served values. The number of strong correlations
dropped to 60, which suggests that our compu-
tational model mostly encompasses the collec-
tive effects of known RBPs (Fig. 2) (13).
Our model also accounts for the effects of

disruptions in trans-acting factors. We examined
knockdown data for Muscleblind-like (MBNL)
RBPs in HeLa cells (15). There were 664 exons
that exhibited a significant change in RNA-seq–
assessedC upon MBNL knockdown, as well as
26,457 exons whose levels did not change sig-
nificantly upon knockdown. When we scored
exons according to how much the model pre-
dicted that C would change when the MBNL
features were removed in silico, we found that
MBNL-regulated exons frequently had higher
scores [P = 6.2 × 10–57, Kolmogorov-Smirnov (KS)
test, 31.4%]. The computational model predicted
the effects ofMBNL knockdownmore accurately
than direct examination of MBNL binding sites
[10.9% improvement in the AUC; P = 1.4 × 10–14,
bootstrap test (13)].
In contrast to correlation-based linear meth-

ods, where sequence features act independently,
our computational model incorporates crucial
context-dependent effects. When we derived
tissue-specific linear models by searching over
the most predictive set of sequence features,
they always accounted for significantly less data
variance (R2 < 0.49) than our context-dependent
model (R2 = 0.65). We found that in our model,
the same feature can influence C differently in
different cis contexts established by other se-
quence features and in different trans contexts
specified by cell type (13) (figs. S14 and S15).
For instance, 40 of the 100 most strongly pre-
dictive sequence features frequently switched
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the direction of their effect in at least one tis-
sue, depending on cis context.
We wondered whether our computational

model could accurately predict differences in
splicing levels between individuals using only
their genotype. We analyzed genotype and RNA-
seq data for lymphoblastoid cell lines from four
individuals (16) and used our model to predict
C in white blood cells, for pairs of individuals
that have differing SNPs (13). When we exam-
ined 99 exons that exhibited a significant differ-
ence in RNA-seq–assessed C between pairs of
individuals and whose predicted difference in
C was above a noise threshold, we found that
our technique correctly predicted the direction
of change in 73% of cases (P = 3.5 × 10–6, bi-
nomial test).

Genome-wide analysis of splicing
misregulation and disease

To assess the implications of genetic variation
for splicing regulation, wemapped 658,420 single-

nucleotide variations (SNVs) to exonic and in-
tronic sequences containing the regulatory code
for ~120,000 exons in ~16,000 genes (13). Of
these SNVs, 543,525 are single-nucleotide poly-
morphisms (SNPs), which are common (minor
allele frequency or MAF > 1%) (17), whereas
114,895 have been linked to diseases and are
mostly rare (MAF < 1%) (18). To score the effect
of every SNV on splicing regulation, we applied
the regulatory model to the sequence with and
without the SNV and computed the difference
in predicted splicing level, DC, for each tissue
(Fig. 3A). We studied the effects of SNVs using
the largest value of DC across tissues, as well as
a “regulatory score” that aggregates the mag-
nitude of DC across tissues (13).
The code provides an unprecedented view

of the impact of SNVs on splicing regulation
(Fig. 3B). It reveals 20,813 unique SNVs that dis-
rupt splicing (|DC| ≥ 5%; table S4), frequently in
a way that depends on cis context (13) (fig. S21).
Diverse methods of validation support the func-

tional impact of these disruptions. Intronic SNVs
that are close to splice sites frequently cause
misregulation, but 465 intronic SNVs that are
more than 30 nucleotides (nt) from any splice
site also induce substantive changes. Within
exons, we found that significant deviations are
induced by 9525 nonsense SNVs and 1273 mis-
sense SNVs but also by 579 synonymous SNVs—a
result supported by recent data showing that
synonymous mutations frequently contribute to
human cancer (19).
To explore the causal implications of high-

scoring SNVs in the context of disease, we ex-
amined whether disease SNVs are predicted to
disrupt splicing (|DC| ≥ 5%) more frequently
than common SNPs, of which a large portion
are thought to be under neutral selection (20).
We plotted the locations and DC for 81,608
disease SNVs located up to 100 nt into exons or
up to 300 nt into their adjacent introns (Fig. 3C).
Our technique reveals widespread processes

whereby disease SNVs cause misregulation of
splicing. Databases of disease annotations were
not used to train our model, so it is not suscep-
tible to overfitting already discovered disease
SNVs or inherent ascertainment biases (7–9).
We found that intronic disease SNVs that are

more than 30 nt from any splice site are 9.0
times as likely to disrupt splicing regulation
relative to common SNPs in the same region
(P = 5.1 × 10–68, two-sample t test, n = 1639 and
n = 24,535). Within exons, synonymous disease
SNVs are on average 9.3 times as likely as syn-
onymous SNPs to disrupt splicing regulation
(P = 8.0 × 10–116, two-sample t test, n = 2652
and n = 4510).
Missense SNVs have previously been exam-

ined mainly in the context of how they alter
protein function (7). Our method enables the
exploration of their effects on splicing regula-
tion. We found that missense disease SNVs are
not more likely to disrupt splicing than missense
SNPs (P = 0.22, two-sample t test, n = 58,918 and
n = 2981), which contradicts previously published
evidence that they do (P ≈ 0.05) (9). However,
when we examined 789 and 1757 missense dis-
ease SNVs that minimally and maximally alter
protein function as indicated by Condel (21)
analysis, we found that SNVs that minimally
alter protein function are on average 5.6 times
as likely to disrupt splicing regulation (P = 4.5 ×
10–14, two-sample t test), elucidating a “disease
by misregulation” mechanism (13).
We found that within introns, the regulatory

scores of 457 SNPs thatwere implicated in genome-
wide association studies (GWAS) and that map
to regulatory regions (22) are quite similar to non-
GWAS SNPs (P = 0.27, KS test, n = 262,804),
whereas the scores of disease SNVs are signifi-
cantly higher (P < 1 × 10–320, KS test, 71.2%, n =
280,638). Fewer than 5% of GWAS SNPs are esti-
mated to cause misregulation in a fashion similar
to disease SNVs (13), indicating that our method
can detect disease SNVs that are not detectable
by GWAS (Fig. 4A). In further support of the
functional specificity of our approach, we found
that the regulatory scores of disease SNVs with
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Fig. 1. Detecting damaging genetic variants using a com-
putational model of splicing. (A) Top: Machine learning is
used to infer a computational model of splicing, by correlating
DNA elements with splicing levels in healthy human tissues. Bottom: Genetic variants arising from a wide
array of diseases and technologies can be detected and filtered using the computational model, enabling
explorations into the genetics of disease. (B) For a given cell type, the computational model extracts the
regulatory code froma test DNA sequence and predicts the percentage of transcriptswith the exon spliced
in, C. (C) Predictions are made for 10,689 test exons profiled in 16 tissues; exons and tissues are binned
according to their RNA-seq–assessed values of C, and for each bin (column) the distribution of code-
predicted C is plotted (n = 56,104).
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strong experimental evidence are substantially
higher than those with weak or indirect evi-
dence (Fig. 4B).

Next, we used the computational model to
analyze three human diseases with different char-
acteristics: spinal muscular atrophy (autosomal-

recessive single gene), nonpolyposis colorectal
cancer (oligogenic), and autism spectrum dis-
order (multigenic).

Spinal muscular atrophy (SMA)

To explore misregulation of SMN1/2, which is
associated with SMA, a leading cause of infant
mortality (23), we used the computational model
to simulate the effects of more than 700 known
and novel mutations around exon 7 in SMN1/2.
We first examined the regulatory consequences
of four nucleotides that differ between SMN1
and SMN2, labeledC6T, G-44A, A100G, andA215G
in Fig. 5A, where “-44” indicates 44 nt upstream
of the 3′ splice site. These substitutions are known
to lead to decreased inclusion of exon 7 in SMN2
and loss of function.
Our method predicts that exon 7 skipping is

predominantly caused by C6T and to a much
lesser degree by G-44A, whereas A100G and
A215G are predicted not to have a significant
impact on splicing. The prediction for C6T is
consistent with previously published mutagen-
esis data (23). Mutagenesis data indicate that
A100G enhances skipping by 36% to 63% (24)
in the SMN2 context. Using a Z-score threshold
of 1, our computational model also predicts a
small but significant skipping effect of A100G

SCIENCE sciencemag.org 9 JANUARY 2015 • VOL 347 ISSUE 6218 1254806-3

Fig. 2. Accounting for RNA-binding proteins (RBPs). (A) Correlations between RNA-seq C and the
affinities of RBPs assayed in 98 in vitro experiments (14). (B)When code-predictedC values are subtracted
from RNA-seq–assessed values ofC, their correlations with the binding affinities mostly vanish.

Fig. 3. Genome-wide analysis of genetic variations. (A) To assess the effect of a single-nucleotide variation (SNV), the computational model is applied to the
reference sequence and the variant. Then, the maximum difference DC across tissues is computed, along with a “regulatory score” that also accounts for
prediction confidence (13). (B) The effect onC of 658,420 intronic and exonic SNVs. (C) Locations and predicted DC of 81,608 disease-annotated intronic SNVs
and synonymous or missense exonic SNVs. In different sequence regions, the scores of disease SNVs tend to be larger than those of SNPs (Ansari-Bradley tests
for equal dispersion; n includes both types).
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in the SMN2 context. We used minigene re-
porters to test our predictions and found that
in all cases they are supported by the experi-
mental data, including the negligible effect of
A100G mutation in the SMN1 context (Fig. 5B,
red). Further, our prediction for G-44A is con-
sistent with antisense oligonucleotide experi-
ments indicating that it overlaps with a splicing
suppressor (25).

To explore mutations that may result in gain
of SMN2 function, we simulated the regulatory
effects of all 420 possible point mutations in
140 nt of intronic sequence upstream of exon 7
(Fig. 5B). Minigene reporter data for the top
three predictions confirm that none of them
exhibit decreased inclusion and two of them
cause increased inclusion (Fig. 5, B and C, green).
Together, the predictions for SMN1 and SMN2

mutations (Fig. 5C) have a Spearman correla-
tion of 0.82 with the experimental data (P = 0.017,
n = 7, one-sided permutation test).
We generated a literature-curated compen-

dium of mutagenesis data for 85 variations
located in three exonic regulatory regions pre-
viously tested using in vivo selection, plus an
intronic region. When our model is used to pre-
dict DC for these cases (Fig. 5D), the direction
of regulation is correct in 85% of cases and the
Spearman correlation is 0.74 (P = 5.7 × 10–16,
one-sided permutation test). We additionally
used our method to simulate DC for 101 mu-
tants selected in vivo to increase C, with point
mutations in the first 6 nt in exon 7 and also in
the entire exon (23). Increases inC are correct-
ly predicted in 98.7% of the 78 high-confidence
cases (table S6).

Nonpolyposis colorectal cancer

Lynch syndrome, or hereditary nonpolyposis co-
lorectal cancer, accounts for ~3% of colorectal
cancer cases (26), and nearly 90% of reported
variations occur in the DNA mismatch repair
genesMLH1 andMSH2 (27). Numerous studies
have shown that misregulation of splicing ac-
counts for a major portion of cases (28) but also
that existing computational predictions for var-
iations that do not directly disrupt splice sites

1254806-4 9 JANUARY 2015 • VOL 347 ISSUE 6218 sciencemag.org SCIENCE

Fig. 4. Regulatory scores of GWAS SNPs. (A) Distributions of regulatory scores for GWAS-implicated
SNPs (n = 457), non–GWAS-implicated SNPs (n = 262,347), and disease SNVs (n = 18,291) in introns. (B)
Regulatory scores of disease-annotated intronic SNVs that are causal (n = 17,631), supported by in vitro
and in vivo data (n = 224), only associated (n= 324), or associated but have additional functional evidence
(n = 112). P values (t test) are indicated.

Fig. 5. The mutational landscape of spinal muscular atrophy. (A) Spinal mus-
cular atrophy arises when there is homozygous loss of SMN1 function, but func-
tional protein can be produced by modifying the regulation of SMN2, which differs
from SMN1 in four nucleotides (red lightning bolts) and exhibits decreased inclusion
of exon 7. (B) Three mutations that the splicing code predicts will increase exon 7
inclusion in SMN2 (green lighting bolts) were selected from predictions for all
possible single-nucleotide substitutions 150 nt into the intron. (C) These were
validated using RT-PCR, along with the predicted differences in SMN1 and SMN2
regulation due to three individual substitutions and all four substitutions, respec-
tively. Predictions and RT-PCRdata have a Spearman correlation of 0.82 (P = 0.017,

one-sided permutation test). (D) Predicted DC values for 85 individual mutations located in four regions are plotted against RT-PCR–assessed values; the
Spearman correlation is 0.74 (P = 5.7 × 10–16, one-sided permutation test).
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are not correlated with experimental data (28, 29).
It has been suggested that this is because existing
tools do not take interactions between regulatory
features into account (29).
We evaluated 977 SNVs, 156 of which are non-

sense, inMLH1 andMSH2 (27) using our compu-
tational model and found that high levels of
misregulation are predicted (Fig. 6A and tables
S7 and S8) (13): 32.3% of SNVs exhibited a DC
that was larger than that of 95% of common
SNVs (P = 4.2 × 10–135, one-sided binomial test).
To avoid bias, we excluded MLH1, MSH2, and
their variants during model training. Addition-
ally, the majority of predictions are concordant
with published RT-PCR data (tables S9 and S10).
When predictedDCwas used to classify increased
skipping versus no change for SNVs where RT-
PCR data were available, AUCs of 92.4% and
93.8% (Fig. 6B) were achieved for 134MLH1 and
73 MSH2 variants [P = 2.8 × 10–24 and P = 8.7 ×
10–15, one-sided permutation tests (13)].
To further test the specificity of our method,

we mapped 80 common SNPs to MLH1 and
MSH2 and compared their regulatory scores to
those of the SNVs found in patients. Common
SNPs had significantly lower scores (P= 8.1 × 10–11,
KS test, 40.0%, n = 1058), indicating that our
method successfully detects causal variants (13).
Our method sheds light on unresolved hy-

potheses for the mechanisms of specific muta-

tions. Threemissense substitutions in the second
nucleotide of codon 659 in exon 17 of MLH1 are
observed in Lynch syndrome patients: c.1976G>T,
c.1976G>C, and c.1976G>A. Evidence indicates
that c.1976G>A likely does not change protein
function, which suggests that the mechanism
is splicing misregulation (30–32). Indeed, RT-
PCR data indicate that c.1976G>T and c.1976G>C
induce increased exon skipping (30). However,
previous computational analyses either fail to
predict misregulation (31) or, because the mu-
tations increase the strength of an exonic splic-
ing enhancer, erroneously predict increased exon
inclusion (13, 33). We applied our computational
model and found that it confidently and cor-
rectly predicts increased skipping in all three
cases (table S10) and also correctly predicts that
c.1976G>C has a stronger effect than c.1976G>T.
We can thus hypothesize that c.1976G>A induces
aberrant splicing and renders the translated pro-
tein dysfunctional.

Autism spectrum disorder (ASD)

ASD is a neurodevelopmental condition charac-
terized by language deficiency, restricted and
repetitive interests, and challenges in social
skills. It is highly heritable, but its substantial
clinical and genetic heterogeneity has compli-
cated the identification of all etiologic genetic
variants (34). Through the study of rare genetic

variants, ~100 genes have now been implicated
in ASD (35), and these are estimated to account
for ~20% of the etiologic cause in different co-
horts examined (36, 37). More recent studies
using whole-genome sequencing revealed higher
yields of contributingmutations, but these studies
have focused only on exonic regions (38). Com-
mon genetic variants may also have an effect in
ASD, but few studies replicate the same loci
(39). Splicing misregulation as a cause of ASD
is evidenced by examples of genes involved in
ASD, such as neurexins and neuroligins, that
are extensively alternatively spliced (40), as well
as by recent transcriptomic analyses showing
consistent deviations in alternative splicing pat-
terns in the cortical regions of ASD cases (41).
To identify genes with SNVs that potentially

cause splicing misregulation in ASD cases, we
used our regulatory model to analyze the ge-
nomes of five idiopathic ASD cases, which do
not have ASD-associated cytogenetic markers
such as chromosome 15q duplication (13). We
sequenced these genomes using brain samples
from the Autism Tissue Program (42) and se-
lected the genomes of 12 controls consisting of
three subgroups of four controls each. As a con-
trol, we clustered the ASD and control genomes
using genome-wide genetic similarity and veri-
fied that they cluster by ethnic group but not
by disease condition or other covariates; this
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Fig. 6.Themutational landscape of nonpolyposis colorectal cancer. (A) Predicted DC for mutations inMLH1 andMSH2 arising in patients with nonpolyposis
colorectal cancer, or Lynch syndrome. Coding sequence (CDS) numbering is based on GenBank NM_000249.3 and NM_000251.2 and starts at A of the ATG
translation initiation codon. (B) Validation using 134MLH1 variations tested by RT-PCR (AUC = 92.4%, P = 2.8 × 10–24, one-sided permutation test) and 73MSH2
variations (AUC = 93.8%, P = 8.7 × 10–15, one-sided permutation test).
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result indicates that the ASD and control SNVs
are not grossly biased by nondisease effects (13)
(fig. S27).

The genomes of cases and controls were
scanned for SNVs (13) and, to focus our analysis
on rare variants, we retained only high-quality

homozygous and heterozygous reference SNVs
(in which one allele matches the reference al-
lele) that did not correspond to common SNPs.
This resulted in a median of ~42,000 SNVs per
subject.
We examined genes with high expression in

brain tissues, which are more frequently impli-
cated in ASD, and did not find an enrichment of
SNVs in ASD cases versus controls [P = 0.24,
Fisher’s exact test (13)]. Aiming to separate cau-
sal SNVs fromnoncausal ones, we identified SNVs
that our technique predicts will cause splicing
misregulation (Fig. 7A). All variants were mapped
onto the splicing code within canonical Ensembl
transcripts, resulting in 15,739 SNVs, whose code-
predicted DCs were then computed (table S13).
We identified genes with misregulated splicing in
cases and also in controls by applying a threshold
to DC equal to the 2nd and also the 3rd percent-
ile of DC for common SNPs (Fig. 7B) (13), and
genes misregulated in both cases and controls
were removed from further analysis.
Among genes that our technique predicts are

misregulated in ASD cases (n = 171), 27% have
high expression in brain, whereas for controls
(n = 249), only 13% have high expression in
brain (P = 3.8 × 10–4, Fisher’s exact test). When
we examined genes with low or no expression
in brain tissues, we did not observe significant
differences (13). Further, when we made the
threshold used to identify misregulated genes
more stringent, we found that enrichment of
ASD-related functions was amplified (Fig. 7C).
These results open the door to discovering new
genetic determinants of ASD and also suggest
that more generally, our splicing model can be
used to sift through variants to support precision
medicine and whole-genome variant studies.
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Fig. 7. Splicingmisregulation in individuals with autism. (A) Genes containing at least one SNV that the computational model predicts will cause decreased
exon inclusion were identified in five autism spectrum disorder (ASD) cases and 12 controls by thresholding DC using either the 2nd or 3rd percentile of DC for
SNPs. (B) Genes that our method predicts are misregulated in ASD cases more frequently have high expression in brain tissues than in control cases. (C) The
effect of varying the threshold on DC, and thus the number of case and control genes, on the odds ratio for the enrichment of central nervous system
development genes (GO:0007417); in all cases, P < 0.05.

Fig. 8. Misregulated genes and functional categories enriched in individuals with autism. Gene
Ontology and pathway categories that are enriched (P ≤ 0.01, Fisher’s exact test) in misregulated genes
fromASDcases relative to controlswere identified (n= 18), alongwith the corresponding set of genes from
ASD cases. Each gene set is shown as a red or pink dot, depending on whether the 2nd- or 3rd-percentile
threshold was used for detection (Fig. 7A), and size is proportional to the number of genes in the set. Edge
thickness indicates the fraction of genes shared between two sets.Groups of functionally related gene sets
are highlighted by blond discs.The names of novel genes that are not already implicated in ASD and have
neural-related phenotypes are shown in black, the names of genes already implicated in ASD are in red,
and other gene names are in pale blue. If a gene is inmultiple categories, the numberof categories is shown
in superscript; genes in which a stop codon is introduced by the SNVare labeled “s.”
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We tested Gene Ontology annotation and
pathway-based gene sets for enrichment in mis-
regulated genes; to account for biases such as
gene length, we tested the gene enrichment in
ASD genomes relative to control genomes. In-
terestingly, we found categories related to syn-
aptic transmission and to neuron projection
and growth (Fig. 8). Gene permutation analysis
shows that enrichment in neurodevelopmental
gene sets is significant (empirical false discovery
rate < 4%). In addition, repeating the analysis for
a subset of control genomes versus another sub-
set of control genomes did not produce any sig-
nificant results, and top-ranking gene sets were
not neurodevelopmental.
We found 39 genes with predicted splicing

alterations that are associated with at least one
enriched function, and we additionally priori-
tized 19 of these genes as more compelling ASD
disease candidates because they are known to
have neurological, neurobehavioral, or neuro-
developmental phenotypes in human [Human
Phenotype Ontology (HPO) and Online Mende-
lian Inheritance in Man (OMIM)] or mouse
[Mouse Genomics Informatics/Mammalian Phe-
notype Ontology (MGI/MPO)] (table S16). The
analysis reveals interesting candidates, and only
CTNND2 and PTEN have been previously im-
plicated or suggested to play a role in ASD
(35, 43). Our study suggests new candidate ASD
genes, including ALDH5A1,GLI2,GRIN1,KCNH3,
LAMA2, and NISCH, in addition to other pos-
sibilities. Our results are robust to choices made
in the analysis (13) and can be combined with
other approaches [e.g., (44)] to develop diagnos-
tic techniques.

Discussion

Our results from profiling the genome-wide
effects of more than 650,000 SNVs shed light
on how genetic variation affects splicing. Fur-
ther, our in-depth results from the analysis of
thousands of variations in diverse disorders, in-
cluding spinal muscular atrophy, nonpolyposis
colorectal cancer, and autism, exemplify thewide
range of applicability of our technique and pro-
vide insights into the genetic determinants of
these diseases.
In the context of precision medicine, the im-

portance of providing causal evidence for puta-
tive variants with the goal of avoiding the effects
of confounding factors, such as population strat-
ification, has recently been underscored (45, 46).
Theability of our computational technique [SPANR
(splicing-based analysis of variants); see (13)
and http://tools.genes.toronto.edu] to provide
regulatory evidence for a variant’s disruptiveness
is supported by accurate predictions for test se-
quences that were not used during training, dis-
crimination of disease variants even though the
model was not trained using disease labels, and
strong correlation between code-predicted changes
in splicing induced by mutations and experi-
mental data using minigene reporters.
Our approach contrasts with techniques that

use functional annotations of the genome (2, 8, 47),
tools that are trained using existing disease

annotations and thus suffer from overfitting
to known mutations or severe selection bias
(7–9, 48, 49); GWAS (50, 51); and expression-
based quantitative trait loci (QTL) (16, 52). To
compare our method with using functional ge-
nome annotations, we removed missense exonic
SNVs that may affect phenotype without chang-
ing splicing regulation, yielding 26,403 SNVs
that map to canonical Ensembl transcripts. At a
false positive rate of 0.1%, we found that scoring
SNVs by their overlap with functional annota-
tions detects 1.4% of disease variants, whereas our
method is 25 times as sensitive and detects 35.9%
of disease variants (13).
Relative to state-of-the-art methods that ex-

amine perturbations of motifs and genome an-
notations but do not account for changes in
gene regulation (48, 49), our method is nearly
10 times as sensitive in each of several sequence
regions (fig. S18). Our technique does not direct-
ly detect variants associated with a phenotype
of interest. However, when it is combined with
phenotype-matched genotype data such as those
generated by whole-genome sequencing, it can
detect variants relevant to phenotype, as dem-
onstrated by our autism analysis.
In contrast to GWAS (50), splicing QTL anal-

ysis (52), and other methods that use allele fre-
quencies within populations to score variants
(47), our technique does not directly depend on
allele frequencies. As demonstrated above, our
method can reliably detect rare and even spon-
taneous disease variants. To provide evidence
that our method is not dependent on allele
frequency, we separately analyzed rare variants
(0.1% < MAF < 1%), moderately common var-
iants (1% < MAF < 5%), and disease variants
[annotated in the Human Gene Mutation Data-
base (HGMD), mostly rare]. We found that the
disease variants have regulatory scores signifi-
cantly different from those of the rare and com-
mon variants, but the distribution of regulatory
scores is indistinguishable for rare and com-
mon variants (13). Furthermore, when we exam-
ined 15,386 disease variants and 1519 common
SNPs within intronic regions with moderate to
high conservation across vertebrates (PhastCons
score > 0.5), we found that our method more
accurately detects disease variants (P < 1 × 10–320,
KS test, 60.1%) than scoring them using conser-
vation (P = 2.2 × 10–166, KS test, 38.2%).
Our approach can be combined with population-

based methods so as to amplify their specificity
and identify causal variants in the context of
specific diseases, either by providing more re-
fined scores or by scoring variants in the same
linkage disequilibrium block as a GWAS- or
QTL-identified noncausal SNP. When we eval-
uated 453 splicing QTLs that were identified
using blood samples and the genotypes of 922
individuals (52), we found that a subset of
splicing QTLs had high regulatory scores, as
computed using our method, relative to those
of common SNPs in general (P = 4.2 × 10–10, KS
test, 15.4%).
Potential sources of prediction error include

unaccounted-for RNA features, inaccuracies in

computed features, imperfect modeling of splicing
levels, and limitations due to a focus on cassette
splicing. Even so, the method described here
performs well, as assessed both by validation
of splicing prediction using several diverse
sources of data and by its ability to detect disease
mutations.
We anticipate that it will be important to seek

regulatory models that encompass other major
steps in gene regulation, including chromatin
dynamics, transcription, polyadenylation,mRNA
turnover, protein synthesis, and protein stabi-
lization. These processes influence transcript
levels in a highly integrated manner within the
cell, so modeling them jointly should lead to
more accurate predictions. Moreover, evidence
suggests that DNA elements previously thought
to be pertinent to only one regulatory process
may in fact span several steps in the regulatory
chain. Examples include nucleosome position-
ing, epigenetic modifications, and chromatin in-
teractions (53).

Materials and methods

Details of all data sets, learning algorithms,
statistical analyses, experimental validation, and
Web tool implementation are provided in the
supplementary materials. In brief, the human
splicing code was assembled using 1393 care-
fully designed sequence features extracted from
each of the 10,689 alternatively spliced exons
and their correspondingC values profiled in 16
normal tissues from human BodyMap 2.0 (NCBI
GSE30611) RNA-seq data. The features of an exon
were extracted from its proximal genomic se-
quences, including exon and intron lengths, splice
site signals, counts of splicing factor motifs, tri-
nucleotide frequencies, retrovirus repeats, nu-
cleosome positioning, RNA secondary structures,
etc. The computational model was learned using
a Bayesian deep learning algorithm, with extreme
care exercised to prevent overfitting. Because the
model was built using the reference genome only,
its performance was first validated using held-out
data, including additional RNA-seq (54), RT-PCR,
RBP binding (14), and MBNL knockdown (15)
data sets. Themodel was further evaluated using
genome-wide SNVs, including common SNPs in
dbSNP135 (17), point mutations in HGMD (18),
and rare variants from ANNOVAR (55). Finally,
the splicing model was applied in three disease
studies: SMA, hereditary nonpolyposis colorectal
cancer, and ASD. A large amount of literature-
curated data from splicing assays was used to
validate our predictions for SMA and nonpoly-
posis colorectal cancer mutations, with additional
mutagenesis experiments carried out for SMA.When
applying our computational model to ASD, we per-
formedwhole-genome sequencing on fiveASD and
four control subjects (deposited at the European
Genome-Phenome Archive, www.ebi.ac.uk/ega,
with accession number EGAS00001000928). Our
SPANRWeb tool (http://tools.genes.toronto.edu)
is programmed in Python under the Flask Web
framework (http://flask.pocoo.org) andmakes use of
MongoDB (www.mongodb.org) and the Celery dis-
tributed task queue (http://celery.readthedocs.org).
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