

Milieux Créateurs, their Differences, Determinants, and Policy Implications

By

Nabil Amara, Réjean Landry and Mathieu Ouimet Université Laval

Prepared for Presentation at the 4th National Conference of the Innovation System Research Network , Hotel Loews Le Concorde, Québec, 9-10 May, 2002

Outline

- Research question
- Approach to analysis of milieux créateurs
- Hypotheses
- Contribution to scholarly knowledge
- Data
- Statistical approach
- Findings
- Conclusion and policy implications

Acknowledgements

- Fred Gault, Statistics Canada
- Brian Nemes, Statistics Canada
- Frances Anderson, Statistics Canada
- Susan Schaan, Statistics Canada
- Guy Sabourin, Statistics Canada

Reseach Questions

- What are innovative milieux?
- What are the determinants of innovative milieux?
- Are there differences between industries and regions in matter of determinants of innovative milieux?
- What are the policy implications resulting from the findings on determinants of innovative milieux?

Approach to the Analysis of Innovative Milieux

- Major difference of the approach to innovative milieux by comparison to other approaches:
 - A different unit of analysis

What Is the Appropriate Unit of Analysis?

- Firms as isolated agents of innovation
- Production systems: environment in which firms operate

How Is the Environment of Firms Defined in the Literature?

- Industrial districts (Marshall, etc.)
- National systems of innovation (Lundvall, Niosi, Nelson, etc.)
- Regional systems of innovation (Wolfe, De la Mothe, Holbrook, etc.)
- Clusters (Porter, etc.)
- Milieux innovateurs (Aydalot, Maillat, etc.)

Common Characteristics of Production Systems

- 1) Interactions between firms and between firms and other actors: weak or strong cooperation generating networks of exchange of information and knowledge, and the construction of a ba, a collective space of exchange
- 2) Learning: weak or strong capacity to use information, knowledge and know how to develop or improve products or processes
- 3) Geography and sectors: regions, nations or indusries

Hypotheses of the Innovative Milieux Approach

- Hypothesis about interactions and learning:
 - The higher are the interactions and learning, the more appropriate the milieu is to foster innovation
- Hypothesis about geography and industry:
 - in high tech industries, interactions and learning are more likely to be organized around industries than geography
 - in traditional industries, interactions and learning are more likely to be organized around geography than industries

Contribution to Scholarly Knowledge

- Most studies on milieux créateurs are qualitative in nature and provide many untested hypotheses
- Studies on milieux créateurs are case studies
- This study is quantitative and comparative in nature
- This study attempts to test the basis hypotheses of the approach in using the Statistics Canada Innovation Survey, thus using data appropriate to see how milieux créateurs (interactions and learning) differ based on geography and industrial sectors

Data

A subset of industries of the Statistics Canada Innovation Survey of 1999

CHSRF/CIHR Chair on Dissemination and Uptake of Research NAICS Codes used in the Survey of Innovation that Correspond to the ISRN Cluster Definitions

ISRN Cluster	NAICS code and title	No. of Enterprises in database
Photonics/Wireless Telecom & Information Technologies	3341 – Computer and Peripheral Equipment Manufacturing 3342 – Communications Equipment Manufacturing 3343 – Audio and Video Equipment Manufacturing 3344 – Semiconductor and other Electronic Equipment Manufacturing 3345 – Navigational, Measuring, Medical and Control Instruments Manufacturing 3346 – Manufacturing and Reproducing Magnetic and Optical Equipment	Total: 298 3341 - 45 3342 - 66 3343 - 5 3344 - 49 3345 - 118 3346 -15
Wood products	3211 – Sawmills and Wood Preservation 3212 – Veneer, Plywood and Engineered Wood Product Manufacturing 3219 – Other Wood Product Manufacturing	Total: 688 3211 – 282 3212 – 114 3219 – 292
Food and Beverage (including wine)	311–Food Manufacturing 312 – Beverage and Tobacco Product Manufacturing	Total: 654 311 – 821 312 – 915
Auto	3361 – Motor Vehicle Manufacturing 3362 – Motor Vehicle Body and Trailer Manufacturing 3363 – Motor Vehicle Parts Manufacturing	Total: 308 3361 – 27 3362 – 98 3363 – 183

CIHR IRSC CHR IRSC

Approach to Data Analysis

 In order to see what are the determinants of the various milieux and to see in what ways the most favorable innovative milieux compare to the others, we have estimated 25 binomial logit models.

Dependent Variable: Four Innovative Milieux

	INTER	ACTIONS
_	Weak	Strong
VVEAN	Exchange of information	Exchange of knowledge : ability to use information to develop or improve products and processes
Surving	Know how (competence) learned in developing or improving products and manufacturing processes	Creative milieux: Synergic combinations of information, knowledge and know how

CHSRF FCRSS LEARNING

Operational Definitions of the Four Milieux: Milieux are build by using two indices (1)

LEARNING	The	sum of the nu	mber of	the d	ifferent a	activities	which	are
	linke	d to offering n	ew or s	ignific	antly im	proved p	roducts	s or
	to	introducing	new	or	signifi	cantly	impro	ved
	prod	uction/manufac	cturing p	oroces	ses.			

- Research and development (R&D) linked to new or significantly improved products or production/manufacturing processes;
- Acquisition of machinery, equipment or other technology linked to new or significantly improved products or production/manufacturing processes;
- Industrial engineering and industrial design linked to new or significantly improved products or production/manufacturing processes;
- Tooling up and production start-up linked to new or significantly improved products or production/manufacturing processes;
- Training linked to the introduction of new or significantly improved products or production/manufacturing processes.

Median	4.0	
Mean	3.79	
Std	1.41	
	http://rqsi.ulaval.ca	

CHSRF

Operational Definitions of the Four Milieux: Milieux are build by using two indices (2)

INTERACTIONS	The sum of the number of the different sources of information used to develop new products and new manufacturing processes.			
	 Research and development (R&D) staff; Marketing staff; Production staff; Management staff; Related firms in your corporate group; Suppliers of equipment, material and components; 			
	Clients; Competitore:			
	Concultancy firms:			
	Consultancy infins, Trade fairs and exhibitions:			
	 Internet or computer based information networks; Professional conferences, meetings and publications; Universities and colleges; Federal government agencies and research laboratories; Provincial agencies and research laboratories. 			
Median	6.0			
Mean	6.46			
Std	2.87			
http://rgsi.ulaval.ca				

http://kuuc.chair.ulaval.ca

CHSRF

Operational Definitions of the Four Milieux: <u>Median of the two indices were used</u> to identify the Milieux

CHSRE

Independent Variables (1)

Competitive environment index	Level of agreement with the following statements (1 = Strongly disagree to 5 = Strongly agree).
	 My client's demands are easy to predict; My clients can easily substitute my products for the products of my competitors; My competitor's actions are easy to predict; The arrival of new competitors is a constant threat; The arrival of competing products (goods or
	services) is a constant threat;
	 My firm can easily replace its current suppliers; It is difficult to hire qualified staff and workers; It is difficult to retain qualified staff and workers; My products (goods and services) quickly become obsolete; Production technologies change rapidly; Office technologies change rapidly.
Size	Total number of the establishment's employees.
R&D activities	Binary variable coded 1 if, between 1997 and 1999, the firm undertook R&D activities and 0 otherwise.
	http://rgsi.ulaval.ca

Independent Variables (2)

Variety of barriers to innovation	The sum of the different obstacles met by the firms to access information regarding the development or improvement of products and processes.
	 High cost of developing new or significantly improved products or processes; Inability to devote staff to projects to develop new or significantly improved products or processes on an on-going basis because of production requirements; Inability to qualify for government assistance programs or R&D tax credits; Lack of skilled personnel to develop or introduce new or significantly improved products or processes; Lack of financing for the development or introduction of new or significantly improved
	 products or processes; Lack of marketing capability to market new or significantly improved products; Lack of information on technology relevant to the device sector of the sector sector.
	 development or introduction of new or significantly improved products or processes; Lack of external technical support services required to develop or introduce new or significantly improved products or processes; Lack of access to expertise in universities that
	 could assist in developing or introducing new or significantly improved products or processes; Lack of access to expertise in government laboratories that could assist in developing or introducing new or significantly improved products.
	 Introducing new or significantly improved products or processes; Lack of cooperation with other firms.

CHSRF FCRSS

Independent Variables (3)

Collaborative arrangements Binary variable coded 1 if, between 1997 and 1999, the firms were involved in cooperative and collaborative arrangements with other firms or organizations to develop new or significantly improved products and 0 otherwise.

Independent Variables (4)

Variety of
government
support programs
usedThe sum of the number of the different federal and provincial
government programs used by the firms between 1997 and 1999.

- Research and development tax credits;
- Government research and development grants;
- Government venture capital support;
- Government technology support and assistance programs;
- Government information or internet services;
- Government support for training.

Findings (1)

Duncan' Test by Industrial Sector

Means of the indices of Learning by industrial sector

(Duncan's test)

Learning index					
	Subset for α =0.05				
Industries	Number of observations	1	2	3	
Wood products Food and beverage Photonics et al ^a Auto	506 734 276 242	3.71 3.87	3.87 4.01	4.01 4.15	
Significance ^b		.123	.173	.158	

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Means of the indices of internal sources of information

by industrial sector (Duncan's test)

Internal sources index					
	Subset for $\alpha = 0$				
Industries	Number of observations	1	2	3	
Wood products	506	2.26			
Auto	242		2.64		
Photonics et al ^a	276			2.83	
Food and beverage	734			2.85	
Oim if a sub a b		1 000	4 000	004	
Significance		1.000	1.000	.891	

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Means of the indices of market sources of information

by industrial sector (Duncan's test)

Market sources index					
Subset for α					
Industries	Number of observations	_ 1	2		
Wood products	506	1.98			
Food and beverage	734		2.18		
Photonics et al ^a	276		2.34		
Auto	242		2.35		
Significance ^b		1.000	.074		

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Means of the indices of research sources of

information by industrial sector (Duncan's test)

Research sources index					
		Subset for α =0.05			
Industries	Number of observations	1	2		
Auto	242	.23			
Wood products	506	.27	.27		
Food and beverage	734	.31	.31		
Photonics et al ^a	276		.36		
Significance ^b		.102	.066		

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

CHSRF FCRSS

Means of the indices of generally available sources of

information by industrial sector (Duncan's test)

Generally available sources of information index					
		Subset for α =0.05			
Industries	Number of observations	1	2	3	
Wood products	506	1.31			
Food and beverage	734		1.48		
Auto	242		1.56		
Photonics et al ^a	276			1.98	
			K		
Significance ^b		1.000	.270	1.000	

^a Photonics, Wireless Telecom and Information technologies.
 ^b Duncan's test compares means for groups in homogenous subsets.
 When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Findings (2)

Estimated Logit Models of Factors Affecting the Milieux

Estimated Logit models of factors affecting the milieux for firms in Photonics, Wireless Telecom and Information technologies

(Statistics Canada: Survey of innovation 1999)

	Weak Interaction		Weak Interaction		Weak Interaction		Weak Interaction		Strong Interaction	
Dependant variables	Weak L	earning/	Weak Learning/		Weak Learning/		Strong Learning/		Weak Learning/	
	Weak Interaction		Strong In	Strong Interaction		teraction	Strong Interaction		Strong Interaction	
	Strong I	earning	Weak L	earning	Strong I	earning	Strong Learning		Strong Learning	
Independent variables	Coeff. β	$Exp(\beta)^a$	Coeff. β	Exp (β)	Coeff. β	Exp (β)	Coeff. β	$Exp(\beta)$	Coeff. β	Exp (β)
Constant	-5.643	.004	-6.301	.0001	-25.392	.000	-14.171	.000	-14.875	.000
Competitive pressures (COMPET)	.034	1.035	.119***	1.126	.202***	1.224	.163***	1.177	.079***	1.082
Barriers to knowledge exchange (OBSTACLE)	.132	1.142	.297***	1.346	.100	1.105	178	.837	121**	.886
Use of government support (GVTSUPP)	071	.932	055	.947	197	.821	.187*	1.206	.014	1.014
Number of employees (TOTEMPL)	.005**	1.005	.001	1.001	.015***	1.015	.002**	1.002	.004***	1.004
Collaborative arrangements (USECOLL)	1.710***	5.529	1.426***	4.163	.985**	2.677	.383	1.466	398	.671
<i>R&D activities (BINR&D)</i>	2.385***	10.858	.659*	1.933	1.606	4.982	.902	2.464	1.187	3.277
Quebec (BINQUE) ^b	1.285**	3.615	$.807^{*}$	2.241	1.639**	5.152	649	.522	.471	1.601
Rest of Canada (BINROC)	752	.471	.222	1.249	1.162**	3.197	.764	2.147	.201	1.222
N	57/	33	57/	84	57/1	102	33/1	102	84/1	102
Chi-square (d.f.)	25.7	4 (8)	32.2	3 (8)	102.82 (8)		33.06 (8)		56.62 (8)	
Nagelkerke R^2 (Pseudo R square)	.3	57	.287		.685		.343		.30	57
Percentage of correct predictions	73.0) %	72.4	1%	87.1 %		81.9 %		69.2	2 %

* Exp(β) is the factor of change in the odds of the dependant variable, due to a one unit increase in the specific independent variable.

^b Ontario is the reference category.

Figures between parentheses indicate p-value. *, ** and *** indicate that variable is significant at 10 %, 5 % and 1 % level respectively.

Estimated Logit models of factors affecting the milieux for firms in Wood products

(Statistics Canada: Survey of innovation 1999)

	Weak Interaction		Weak Interaction		Weak Interaction		Weak Interaction		Strong Interaction	
Dependant variables	Weak L	earning/	Weak Learning/		Weak L	earning/	Strong L	learning/	Weak L	earning/
	Weak Interaction		Strong Interaction		Strong Interaction		Strong Interaction		Strong Interaction	
	Strong 1	Learning	Weak Learning		Strong I	Learning	Strong Learning		Strong Learning	
Independent variables	Coeff. β	$Exp\left(\beta\right)^{a}$	Coeff. β	$Exp(\beta)$	Coeff. β	Exp (β)	Coeff. β	$Exp(\beta)$	Coeff. β	Exp (β)
Constant	-2.833	.059	-3.168	.042	-4.576	.010	-1.975	.139	-2.269	.103
Competitive pressures (COMPET)	.049*	1.050	.034	1.034	.043*	1.044	.008	1.008	.027	1.027
Barriers to knowledge exchange (OBSTACLE)	132	.877	.313***	1.368	.296***	1.345	.322***	1.379	021	.979
Use of government support (GVTSUPP)	.285***	1.329	.189*	1.208	.252**	1.286	081	.922	.075	1.077
Number of employees (TOTEMPL)	001	.999	.002***	1.002	.001*	1.001	.003***	1.003	002**	.989
Collaborative arrangements (USECOLL)	.440	1.552	.361	1.435	.633*	1.883	.371	1.449	.824**	2.280
R&D activities (BINR&D)	1.932***	6.903	.052	1.054	2.525***	12.491	.896**	2.449	2.603***	13.501
Quebec (BINQUE) ^b	418	.658	046	.955	170	.844	.018	1.018	.017	1.017
British Columbia (BINBC)	693	.500	149	.862	769*	.463	972**	.378	590	.554
Rest of Canada (BINROC)	955*	.385	126	.882	933**	.370	.007	1.007	742	.467
Ν	201	/89	201	/92	201/	125	89 /2	125	92/1	125
Chi-square (d.f.)	60.3	9 (9)	31.6	8 (9)	118.58 (9)		29.48 (9)		63.64	4 (9)
Nagelkerke R^2 (Pseudo R square)	.3	33	.1	80	.512		.198		.37	79
Percentage of correct predictions	75.1%		68.	0%	80.0%		67.0%		75.2%	

^a $Exp(\beta)$ is the factor of change in the odds of the dependant variable, due to a one unit increase in the specific independent variable.

^b Ontario is the reference category.

Figures between parentheses indicate p-value. *, ** and *** indicate that variable is significant at 10 %, 5 % and 1 % level respectively.

Estimated Logit models of factors affecting the milieux for firms in Food and beverages (including

wine)

(Statistics Canada: Survey of innovation 1999)

	Weak Ir	iteraction	Weak Interaction		Weak Interaction		Weak Interaction		Strong Interaction		
Dependant variables	Weak I	.earning/	Weak L	Weak Learning/		earning/	Strong L	earning/	Weak L	earning/	
	Weak Interaction St		Strong In	Strong Interaction		Strong Interaction		Strong Interaction		teraction	
	Strong	Learning	Weak L	Weak Learning		earning	Strong Learning		Strong Learning		
Independent variables	Coeff. β	$Exp(\beta)^a$	Coeff. β	Exp (β)	Coeff. β	Exp (β)	Coeff. β	$Exp(\beta)$	Coeff. β	Exp (β)	
Constant	-3.929	.020	-2.327	.098	-2.751	.064	.157	1.169	-1.225	.294	
Competitive pressures (COMPET)	.062**	1.064	.007	1.007	008	.992	041**	.960	012	.988	
Barriers to knowledge exchange (OBSTACLE)	024	.976	.074	1.077	.126**	1.134	.115**	1.122	.074*	1.077	
Use of government support (GVTSUPP)	.098	1.102	.194**	1.214	.315***	1.370	.215***	1.240	.154**	1.167	
Number of employees (TOTEMPL)	.000	1.000	.001**	1.001	.002***	1.002	.002***	1.002	.001***	1.001	
Collaborative arrangements (USECOLL)	.651**	1.917	1.100***	3.006	1.017***	2.765	.581**	1.788	.453**	1.573	
<i>R&D activities (BINR&D)</i>	2.027***	7.592	1.217***	3.376	2.316***	10.136	.432	1.540	1.425***	4.156	
Quebec (BINQUE) ^b	371	.690	035	.966	176	.838	.125	1.133	010	.990	
British Columbia (BINBC)	.073	1.076	.607	1.835	423	.655	291	.747	807**	.446	
Rest of Canada (BINROC)	-1.425***	.240	.119	1.127	052	.949	1.302***	3.677	015	.985	
N	212	212/120		155	212/248		120/248		155/	248	
Chi-square (d.f.)	75.3	2 (9)	60.22	2 (9)	180.95 (9)		57.87 (9)		47.75 (9)		
Nagelkerke R^2 (Pseudo R square)	.3	15	.22	28	.474		.219		.16	52	
Percentage of correct predictions	70.	7%	67.8	67.8%		77.9%		73.3 %		68.0%	

^a Exp(β) is the factor of change in the odds of the dependant variable, due to a one unit increase in the specific independent variable. ^b Ontario is the reference category. Figures between parentheses indicate p-value. *, ** and *** indicate that variable is significant at 10 %, 5 % and 1 % level respectively.

Estimated Logit models of factors affecting the milieux for firms in Auto industry

(Statistics Canada: Survey of innovation 1999)

	Weak Interaction		Weak Interaction		Weak Interaction		Weak Interaction		Strong Interaction	
Dependant variables	Weak L	earning/	Weak Learning/		Weak Learning/		Strong Learning/		Weak Learning/	
1	Weak Interaction		Strong Interaction		Strong Interaction		Strong Interaction		Strong Interaction	
	Strong	Learning	Weak Le	earning	Strong L	earning	Strong	Strong Learning		earning
Independent variables	Coeff. β	$Exp (\beta)^a$	Coeff. β	$Exp(\beta)$	Coeff. β	Exp (β)	Coeff. β	Exp (β)	Coeff. β	<i>Exp (β</i>)
Constant	1.898	6.675	1.566	4.787	-3.370	.034	-5.470	.004	-4.478	.011
Competitive pressures (COMPET)	063	.939	062*	.940	.074**	1.077	.133***	1.143	.121***	1.129
Barriers to knowledge exchange (OBSTACLE)	282**	.754	123	.885	113	.893	.012	1.012	.010	1.010
Use of government support (GVTSUPP)	.553**	1.739	.356**	1.428	.328***	1.389	.082	1.085	.035	1.035
Number of employees (TOTEMPL)	001	.999	.000	1.000	.000**	1.000	.001**	1.001	.000	1.000
Collaborative arrangements (USECOLL)	-1.123*	.325	.120	1.127	003	.997	.849**	2.338	.526**	1.692
<i>R&D activities (BINR&D)</i>	1.615***	5.028	1.087**	2.965	2.768***	15.923	1.029**	2.799	1.189**	3.285
Quebec (BINQUE) ^b	670	.512	-1.041*	.353	269	.764	.290	1.337	.095	1.099
Rest of Canada (BINROC)	522	.593	080	.923	1.571**	.208	133	.876	-1.153**	.316
Ν	55/43 55/		18	55/9	96	43/96		48/	96	
Chi-square (d.f.)	22.72 (8) 14.62 (8)		(8)	52.45 (8)		21.68 (8)		19.29 (8)		
Nagelkerke R^2 (Pseudo R square)	.3	12	.19	7	.42	8	.214		.181	
Percentage of correct predictions	74.	9%	66.8	%	82.7% 74.7%		7%	76.0%		

^a $Exp(\beta)$ is the factor of change in the odds of the dependant variable, due to a one unit increase in the specific independent variable.

^b Ontario is the reference category.

FCRSS

<u>CHSRF</u>

Figures between parentheses indicate p-value. *, ** and *** indicate that variable is significant at 10 %, 5 % and 1 % level respectively

Estimated logit models of factors affecting the milieux for firms in Photonics, Wireless Telecom and Information technologies

CHSRF/CIHR Chair on Dissemination and Uptake of Research Estimated logit models of factors affecting the milieux for firms in Wood products

CHS<u>RF</u>

CHSRF/CIHR Chair on Dissemination and Uptake of Research Estimated logit models of factors affecting the milieux for firms in Food and Beverages (including wine)

CHSRF

Weal

CHSRF/CIHR Chair on Dissemination and Uptake of Research Estimated logit models of factors affecting the milieux for firms in Auto industry

CHS<u>RF</u>

Weal

Conclusion and Policy Implications

- Findings suggest that milieux in which firms operate differ according to the extent of interactions and learning
- The existence of creative milieux is influenced by many factors:
 - industries
 - Regions
 - Competitive pressures
 - Government support
 - **R&D**
 - Barriers to innovation
 - Collaborative arrangements

Conclusion and Policy Implications (2)

- Different factors explain the probability of moving from less to more creative innovation milieux
- Policy implications:
 - Universal policies would not be efficient
 - Customized policies are required to take into account the diversity of situations and needs, and milieux in which operate

Merci pour votre attention

http://kuuc.chair.ulaval.ca

Means of the firms' size by industrial sector

(Duncan's test)

Size (Total of employees)										
Subset for α =0.05										
Industries	Number of observations	1	2							
Food and beverage Wood products Photonics et al ^a Auto	506 734 275 242	144.85 207.50 216.02	554.76							
Significance ^b		.145	1.000							

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Means of the indices of use of Government support

programs by industrial sector (Duncan's test)

Government support index										
		Subset for α =0.05								
Industries	Number of observations	1	2	3						
Wood products Food and beverage Auto Photonics et al ^a	506 734 242 276	1.17 1.41	1.41 1.63	2.25						
Significance ^b		.059	.086	1.000						

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Estimated Logit models of factors affecting the milieux for manufacturing firms

(Statistics Canada: Survey of innovation 1999)

Den en dant variables	Weak In Weak I	Weak Interaction Weak Learning/ Weak Interaction		Weak Interaction Weak Learning/ Strong Interaction		Weak Interaction Weak Learning/ Strong Interaction		teraction	Strong Interaction Weak Learning/ Strong Interaction	
Dependum variables	Weak In							iteraction		
	Strong 1	Learning	Weak L	earning	Strong I	Learning	Strong I	Learning	Strong I	Learning
Independent variables	Coeff. β	$Exp\left(\beta\right)^{a}$	Coeff. β	$Exp(\beta)$	Coeff. β	$Exp(\beta)$	Coeff. β	<i>Exp</i> (β)	Coeff. β	$Exp(\beta)$
Constant	-2.686	.068	-1.705	.182	-4.080	.017	-1.991	.137	-2.491	.083
Competitive pressures (COMPET)	.015**	1.015	.009	1.009	.041***	1.042	.040***	1.041	.037***	1.038
Barriers to knowledge exchange (OBSTACLE)	.058***	1.060	.137***	1.147	.107***	1.113	.055***	1.056	012	.988
Use of government support (GVTSUPP)	.116***	1.123	.173***	1.189	.267***	1.306	.164***	1.179	.125***	1.133
Number of employees (TOTEMPL)	.000**	1.000	.000	1.000	.001***	1.001	.000**	1.000	.000***	1.000
Collaborative arrangements (USECOLL)	.509***	1.663	.660***	1.935	.975***	2.652	.516***	1.676	.253***	1.287
<i>R&D activities (BINR&D)</i>	1.248***	3.484	.536***	1.708	1.923***	6.840	.718***	2.049	1.357***	3.886
High technology sector (BINHIGH)	.453**	1.572	.501***	1.650	.000	1.000	405**	.667	392**	.676
Medium technology sector (BINMED)	.106	1.112	.230	1.259	.199***	1.221	.112*	1.118	.332***	1.394
Quebec (BINQUE) ^b	.222**	1.248	265***	.767	145**	.865	321***	.725	.144**	1.155
British Columbia (BINBC)	.071	1.074	.117	1.124	412***	.663	456***	.634	562***	.570
East of Canada (BINEAST) ^c	402**	.669	.133	1.142	.107	1.113	.559***	1.749	032	.969
West of Canada (BINWEST) ^d	062	.940	400***	.670	338***	.713	272**	.762	027	.073
N	2450	/1140	2450/	/1437	2450/2130		1140/2130		1437/2130	
Chi-square (d.f.)	393.6	8 (12)	341.10 (12)		1450.59 (12)		257.57 (12)		429.08 (12)	
Nagelkerke K^2 (Pseudo K square)	.1	65		5U	.399		.113		.10	5
Percentage of correct preatchons	69.6 % 67.3 %		75.3%		67.	5 70	69.3 %			

 a Exp(β) is the factor of change in the odds of the dependant variable, due to a one unit increase in the specific independent

variable.

FCRSS

CHSRF

^b Ontario is the reference category.

East of Canada : Nova Scotia, New Brunswick, Prince Edourd Island and New FoundLand.

^d West of Canada: Alberta, Manitoba and Saskatoon.

Figures between parentheses indicate p-value. *, ** and *** indicate that variable is significant at 10 %, 5 % and 1 % level respectively.

Means of the indices of barriers to innovation by

industrial sector (Duncan's test)

Barriers index										
	Subset for α =0.05									
Industries	Number of observations	1	2							
Wood products Auto Food and beverage Photonics et al ^a	242 734 506 276	34.39	35.76 35.98 36.38							
Significance ^b		1.000	.164							

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

Means of the indices of use of Innovation radicalness

by industrial sector (Duncan's test)

Radicalness index										
		Subset for α =0.05								
Industries	Number of observations	1	2	3						
Food and beverage Wood products Auto Photonics et al ^a	644 453 216 248	17.02	19.89 21.28	21.28 22.96						
Significance ^b		1.000	.261	.174						

^a Photonics, Wireless Telecom and Information technologies.

^b Duncan's test compares means for groups in homogenous subsets. When the significance test is above the threshold = 0.05, the null hypothesis (non differences of means) cannot be rejected.

CHSRF/CIHR Chair on Dissemination and Uptake of Research Estimated Logit models of factors affecting the milieux for manufacturing firms

CHSRF

FCRSS

Competition (+) / Barriers (+) / R&D (+) Collaboration (+) / Government support (+) / High Tech sector (+) / Quebec (+) / East Canada (-)

Barriers (+) / R&D (+) / Collaboration (+) / Government support (+) / High Tech sector (+) / Med Tech sector (-) / Québec (-) / West Canada (-)

Competition (+) / Barriers (+) / R&D (+) / Collaboration (+) / Government support (+) / Med Tech sector (+) / Quebec (-) / British Columbia (-) / West of Canada (-)

Competition (+) / Barriers (+) / R&D (+) / Collaboration (+) / Government support (+) / High Tech sector (-) / Med Tech sector (+) / Quebec (-) / British Columbia (-) / East of Canada (+) / West of Canada (-)

Competition (+) / R&D (+) / Collaboration (+) / Government support (+) / High Tech sector (-) / Med Tech sector (+) / Quebec (+) / British Columbia (-)

CIHR |

http://rqsi.ulaval.ca http://kuuc.chair.ulaval.ca

SS

- Technology intensivenessBinary variables indicating the degree of technology intensiveness of the firms (Appendix 1 shows the classification used by Industry Canada to categorize the different industries by level of technology intensiveness)*High*: Binary variable coded 1 if the firm operates in a high technology sector and 0 otherwise;*Medium*: Binary variable coded 1 if the firm operates in a medium technology sector and 0 otherwise;*Low*: Binary variable coded 1 if the firm operates in a low technology sector and 0 otherwise.
- Collaborative arrangementsBinary variable coded 1 if, between 1997 and 1999, the firms were involved in cooperative and collaborative arrangements with other firms or organizations to develop new or significantly improved products and 0 otherwise.

