

ISRN Annual Meeting Quebec City, 9-10 May 2002

The Saskatoon Biotechnology Cluster: A modern research entrepot

Peter W.B. Phillips

NSERC/SSHRC Chair in Managing Knowledge-based Agri-food Development University of Saskatchewan, Canada

Biotech Clusters

- More than 22 biotechnology-based clusters operating in OECD countries
 - Most integrate bio-med and ag-bio research
 - All linked to specific ag-bio product(s)
 - All depend on international mobility of knowledge and skilled labour
- Saskatoon represents innovative community model with possible international application

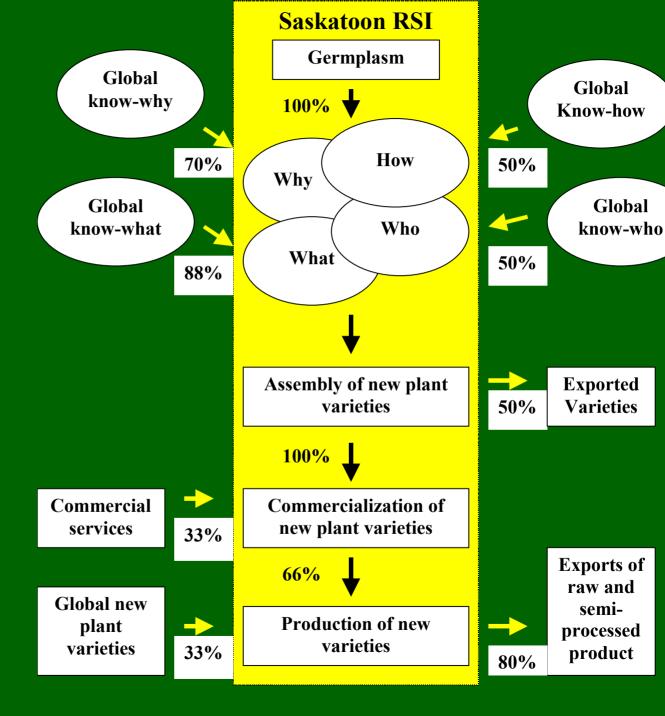
Outline

- Are clusters self-contained or are they entrepots?
- The structure of the Saskatoon cluster
- Lessons
- A cluster in transition

Innovation characteristics

- Changed significantly from old R&D based linear models
- Now demand driven, knowledge-based chain-link process involving different types of knowledge (4: why, what, how and who)
- Increasing focus on non-rival innovations
- Rapid creative destruction

An innovation entrepot

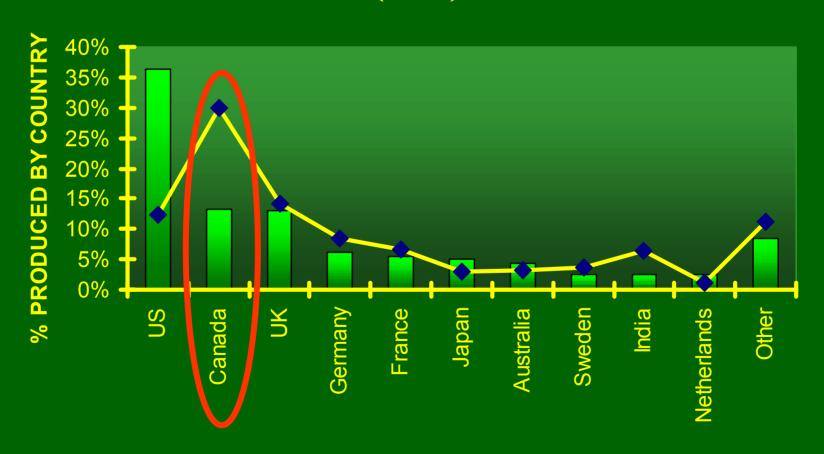

- Using the chain-link, 4-knows model of innovation suggests innovative communities may operate like a classical trade entrepot
 - most inputs are imported tax free
 - value is added locally
 - semi-finished outputs are exported for further processing and distribution to final consumers
 - local community linked to rest of world

Saskatoon's R&D entrepot

- Centre of a globally competitive canola oilseeds complex
 - imports inputs (e.g. basic knowledge and patentable technologies)
 - adds value (e.g. breed, commercialise, produce, market new varieties)
 - exports output (more than 80% of output goes to ROC and ROW; superior good)

Research phase:

- Result of globally based, locally accessed research materials:
 - Saskatoon has significant but not overwhelming role in generating know-why important base
 - Little local proprietary know-what in Saskatoon
 - Significant know-how and know-who in community
- Different communities for different elements



Canola research communities

- Peer review creates global communities
 - 28,800 authors in 3,816 organisations in 107 countries produced inputs
 - approximately 6,900 authors in approximately 1,500 organisations in 79 countries worked on canola
 - only 69 scientists in 40 institutions in 9
 countries produced 31% of the work; for specific elements, only 1-2 scientists key

Know-why knowledge (articles) Sources (bar) and uses (line)

Global Sources of knowwhat technology (patents)

	Tech	nology	Pro	Total		
	Public	Private	Public Private		patents	
Total	66	220	37 311		634	
Residence						
Canada	32	18	13	12	75	
Other	34	202	24	299	559	
Source: Canad						

Location of know-how (field trials 1988-95)

Australia	
Canada	267
Total EU	180
- France	69
- UK	48
US	49
Total	497

Location of know-who (canola research jobs, 1998)

Canada	50%					
- of which Saskatchewan	31%					
EU	30%					
US	10%					
Australia	3%					
Rest of world	7%					

Research magnets

	Stars	Near Stars		
Canada	13	25		
- of which Saskatoon	3	8		
Australia	0	1		
Europe	13	9		
Japan	3	1		
US	0	4		
total	29	40		

All have global reach and collaborations

Commercialization phase

Rapid uptake of product result of local communities:

- Pro-supply national regulatory system
- Extensive regional farm supply chain (coops, commodity groups
- Sophisticated farmers in region
- Accepting marketing channels nationally

Search for causes of cluster

- ISI analysis (1996-7)
- Surveyed canola research firms worldwide (1997-8)
- Surveyed Saskatoon biotech employees (1998)
- Census runs (1998)
- ScienceMapTM (2000)
- AAFC contract to do survey (2002-4)

Public institutions key

- Public provides much of the soft infrastructure for communities:
 - Governments provide standards, IPRs, regulations, infrastructure, grants, etc.
 - University provides trained workers
 - NRC and AAFC provide know-how and knowwho for processes and breeding
 - NRC hub (platform) for technology adaptation and adoption; local base for spinoffs

Centripetal forces in the canola industry

	N=28	0/0
Proximity to competitors/ partners	14	50%
Access to labs, etc	4	14%
Access to skilled labour	7	25%
Location of key scientists	5	18%
Access to market	6	21%
Role of government	5	18%

Local training

The Saskatoon-based canola labour market							
	Diploma	BSc	MSc	Phd			
total #	88	235	67	73			
Sask as %	82%	66%	43%	27%			
Can as %	98%	91%	84%	64%			
US	1%	2%	6%	10%			
Europe	0%	4%	7%	18%			

Labour market thickness

Relative importance of job and community features as they affect mobile employees

1 = key; $5 = least$	PHD (n=25)				Masters (n=45)					
	1	2	3	4	5	1	2	3	4	5
Other employers	22			1	2	39	2	1	2	1
Type of work	17	2				13	12	1	1	1
Salary and benefits		9	4	2	1	5	9	11	2	
Taxes			2		1			1	2	3
Cost of housing			1	2				3	3	

Local market structure

- Industry accepted collaboration as base
- Farmers adopted technology
- Wholesale trade partnered
- Co-ordinated industry response (e.g. CCC, SCGA...)

Measures of success

- World firsts:
 - NRC Agrobacterium t. gene-splicing technique (1980s); now main system
 - New promoters developed (1990s)
 - Almost all new trait canolas introduced in Canada first (4 HT, novel oils) and HT Flax (1999) (1995-2001)
 - Faster adoption in Canada than ROW
- C\$1B gross benefit--\$300M in Canada

Local rewards

- Production and exports concentrating around innovation communities
 - Saskatoon captures 31% of research jobs globally; Canada 50%
 - Saskatchewan accounts for 10% of global production; Canada accounts for 20% of global output and 60% of exports
 - Fewer competitive countries
- First mover premiums

Policy lessons

- **Know why:** nurture two-way international flows of knowledge
- Know what: need IPRs; encourage MNEs
- Know how/who: nurture thick labour markets; acquire/sustain critical mass of research; develop and maintain open-platform institutions and networks to facilitate collaborations; partner with existing supply chain

Whither Saskatoon?

- Success based on strong private investment:
 - by Monsanto, AgrEvo, Limagrain, SWP
 - but all reorganized and have at least partly divested canola research
 - Dow only remaining major player
 - no net gain or loss in Saskatoon
- Base for cluster shifting from input trait canola to broader set of traits/products

Next wave

- Infrastructure:
 - CLS/Synchrotron (\$150M) in 2004
 - NRC \$15M condo facility
- Gemomics projects:
 - -2 canola projects (abiotic stress, VEC) = \$25M
 - -2 VIDO projects (animal, human) = \$30M
 - AAFC project (plants) = \$10M
- So far, all supply push from public sector

What is going right?

- Projects all open platform (esp at knowwhy stage)
- Have IPR plans (will they work with collaborative structure?); role for MNEs
- Accelerated labour market development (VCB)
- Unclear how will link to existing supply chains

Conclusions

- Entrepot model provides insights into innovation communities
- Public role vital but not simply as a provider of funds
- Policies must not support self-sufficiency otherwise will be self-defeating
- Transition/evolution of cluster base uncertain