The Complexity of Canadian Clusters Operating in Global Science

Cooper H. Langford, Jaime R. Wood Science Technology and Society Program and Jeremy K. Hall Haskayne School of Business University of Calgary

Introduction

- Purpose: Explore a complexity theory (Kauffman) as a conceptual and formal framework
 - Understanding the different structures produced by different historical circumstances (path dependence) that all seem to produce successful agglomerations with strong growth potential
- Consequences of such complexity analysis have significant policy implications:
 - The popular concept of "best practices" is fraught with subtle traps when exploited simplistically

The Western Canadian Cases

- Wireless telecommunication -Calgary
- Wireless telecommunication
 - -Vancouver
- Global Positioning Systems (GPS)
 Calgary
- Canola biotechnology
 - -Saskatoon

Framing the problem

- Herbert Simon's "bounded rationality"
 - In complex contexts, it is unrealistic to seek optimal solutions.
 - Limited time, resources, information because of
 - Uncertainty (known variables)
 - Ambiguity (unknown variables)
 - Best available goal is a satisfactory solution
 - "Satisficing" rather than optimizing

Objectives

- Identify the structural constraints in a satisficing search for success in a regional industrial system
 - How do structural constraints make desirable outcomes differ significantly?
- Counter to popular public policy belief, "best practices" are fraught with subtle traps when exploited simplistically
 - Perhaps this is a confounding factor in the implementation of best practice?
 - Failure to appreciate path dependence?
 - Differences matter (Nelson and Winter, RBV, etc)

A Formal Model

N,K theory (Kauffman,1993, "The origins of order", Rivkin, 2000, "Imitation of complex strategies")

	N=1 N=1	N=2 N=2	N=3 N =3
W1	Х		
W2		Х	
W3			Х

Complexity...

K not zero

	N1	N2	N3
W1	X	X	X
W2	X	X	X
W3	X	X	X

Partial decomposition...

	N1	N2	N3	N4	N5	N6	N7	N8	N9
W1	X	X	X						Х
W2	X	X	X						
W3		X	X						
W4				Χ		X		X	
W5				X	X	X			
W6		X		Χ	X	X			
W7							X	X	
W8								X	
W9				X			X		X

Preliminary Findings: Groups of features (modules)

- Initiating stimuli
- Recruiting practices
- Quality of life
- Costs and tax
- Educational and training
- Networking features
- Research institutions
- etc

	Frenken (2001)	Rivkin (2000)	Langford et al (2003)
Approach	Empirical case studies (PCs, aerospace, motorcycles)	Formal modeling	Application of formal model to clusters (wireless, GPS, biotech)
Decision-making	Centralized	Centralized	Decentralized
Constraints	Imperfect info.ComplexityPath dependent	Imperfect info.ComplexityPath dependent	 Imperfect info. Complexity (more stakeholders) Path dependent Greater stochastic influences
Problem focus	Technical/ Engineering	Strategic: Managing scarce resources, uncertainty	Policy: Economic and social development/ improvement

	Frenken (2001)	Rivkin (2000)	Langford et al (2003)
Species	Product range (e.g. Boeing 777, Airbus)	Industry	Innovation system (e.g. int. science-base, industry players, infrastructure, institutions, etc)
Organism (Unit of analysis)	Product (e.g. aircraft)	Firm	Cluster (e.g. Calgary wireless firms, local knowledge support and infrastructure)
Genes (features)	Selected component (e.g. wing)	Selected strategy	Selected policies (e.g. initiating stimuli; recruiting practices)
Alleles (options)	Component variations (e.g. swept versus straight)	Strategic options	Policy variations and options (e.g. gov.'t action, local demand, investment characteristics; local grads, experienced externals)

Barriers to imitation

- Incremental
 - K = N-1, the "elevations" of adjacent strategies are fully uncorrelated. Of 2^N possible strategies - 2^N/(N+1) local peaks
 - N = 20 system can have 50,000 local peaks
 - N = 12 and K = 3, 100 firms find approximately
 20 local maxima.
 - As K increases, the height of local optima fall toward the mean fitness of the space

Barriers to imitation 2

- Follow the leader
 - If a leap is to be a success, it must land in the "basin of attraction" lying below the benchmark peak and accessible by tweaking – improbable.
 - The problem of landing in the basin of attraction would not be so serious if peaks tended to cluster on the fitness landscape,

– BUT...

Implications

- Epistatic relationships must always be kept in mind.
- From both theoretical and policy perspectives, cluster analysis cannot simply create list of choices ('alleles')
 - Path dependence; unique interactions
 - "Best practice lists" are fraught with dangers from both analytic and policy perspectives
- The most readily transferable practices are embedded and relatively isolated in an identifiable subsystem
- Policy recommendations come down to no more than general guidelines articulated for managing complex adaptive systems