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Abstract

We argue that an explanation of relevance realization is a pervasive
problem within cognitive science, and that it is becoming the criterion
of the cognitive in terms of which a new framework for doing cognitive
science is emerging. We articulate that framework and then make use
of it to provide the beginnings of a theory of relevance realization that
incorporates many existing insights implicit within the contributing
disciplines of cognitive science. We also introduce some theoretical
and potentially technical innovations motivated by the articulation of
those insights. Finally, we show how the explication of the framework
and development of the theory help to clear up some important incom-
pleteness and confusions within both Montague’s work and Sperber
and Wilson’s theory of relevance.
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Introduction

There is a family of seemingly intractable problems in cognitive science. In

each individual case, it is unclear how it might be resolved, but the problems

are central and so cannot be ignored or marginalized. A well known example

is the problem of combinatorial explosion which faced the general problem

solving (GPS) framework of Newell and Simon [33]. We demonstrate here

that this problem, and others, have remained intractable because of a theo-

retical circularity caused by the centrality of relevance to cognitive function.

Attempts to deal with this circularity appear to have been hampered by what

we think is a confusion about what it is we can scientifically explain. We

will argue that one cannot have a theory of relevance itself because there is

no stable, homogeneous class of entities which correspond to the term “rel-

evance”. However, we believe a theory of the mechanisms of how relevance

can be realized is tractable. We will call this a theory of relevance realiza-

tion. Our argument is analogous to the idea that one cannot have a theory

of biological fitness, but one can have a theory of the mechanisms of natural

selection that realize it. To draw this all together, we argue that perhaps the

only way cognitive science can hope to circumvent this family of problems is

to develop a non-circular theory of relevance realization.

In this essay, we begin by describing how these intractable problems in

cognitive science lead to circular theories due to the issue of relevance. We

then discuss an important methodological move: the attempt to circumvent
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these problems through what Dennett calls “reverse engineering”. But fol-

lowing an argument from Green, reverse engineering will require a criterion

of the cognitive which does not rely upon folk-psychological intuitions about

the nature of cognition; they themselves presuppose relevance realization and

so will simply return us back to the intractable problems. We argue that the

best way to avoid this threat is to make relevance realization the criterion of

the cognitive.

If this is the case, we need some plausible account of what the mechanisms

of relevance realization would look like. Of course, a complete specification

of these mechanisms will require significant empirical work. The best that

we can hope to provide here is a plausible account of the required structural

principles for these mechanisms. To this end, we describe three important

lower order constraints and a fourth higher order constraint used by cognitive

agents which, when considered as dynamic, opponent processes, could help

to produce a non-circular structural theory of relevance realization. Finally,

we use our theory of relevance realization to critique previous theories of

relevance (e.g. Sperber and Wilson’s [47]) which we believe fall prey to a

recursive regress.

Much of the machinery on which our theory runs has been borrowed

directly from modern practice in the sub-disciplines of cognitive science (e.g.

linguistics, machine learning, neuroscience, psychology). In this paper we

attempt to draw connections between these various pieces of work, and in

so doing, our aim is to contribute to what we view as the already emerging
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framework in cognitive science.

The centrality of relevance realization to cognitive science.

The origins of cognitive science as a discipline are rooted in the research

programs of the 20th century that sought to explain cognition in terms of

computation and language, thus bringing together the disparate disciplines of

cognitive psychology, artificial intelligence, and linguistics. Historically, some

of the most central areas of research within this interdisciplinary framework

have been problem solving, causal interaction with the world, categorization,

induction, and communication [15, 44]. In each of these areas significant

problems arose that prevented any single theory from gaining widespread

acceptance. We will argue that these problems were related via relevance

realization.

Relevance realization and problem solving.

The foundational framework for understanding problem solving for both cog-

nitive psychology and AI is the general problem solving (GPS) framework

of Newell and Simon [33]. One of the successes of this framework was to re-

veal an aspect of problem solving which initially was counter-intuitive, viz.,

combinatorial explosion [26, 32]. In order to understand combinatorial ex-

plosion, one needs to understand how problems were represented in the GPS

framework. In this framework, a problem is represented by four elements: a

representation of the initial state, a representation of the goal state, a rep-
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resentation of all of the operators an agent can use to turn one state into

another, and finally path constraints which disallow certain types of solutions

[26, 32]. Taken together, these elements generate a problem space or search

space which consists of all the possible sequences of states that the agent

could take. A solution consists in finding the sequence of operations which

will take the agent from the initial state to the goal state while obeying path

constraints.

The GPS model was useful because it made apparent that for most prob-

lems which humans solve, the associated search spaces are vast and complex.

For example, consider a typical chess game. On average, for each turn there

are ≈ 30 legal operations you can perform, and there are typically 60 turns

in a game. So the number of alternative sequences you would have to search

in order to find a path from the initial state to the goal is FD, where F is the

number of operators and D is the number of turns. So in our chess example

the number of pathways you would have to search would be 3060 which is a

very large number. This number of paths is far too large for any conceivable

computer to search exhaustively (consider for comparison that the number

of electrons in the entire universe is estimated at ≈ 1079).

Nevertheless, humans successfully wend their way from initial states to

goal states all the time (while respecting path constraints). How do they

do it? How do they do a search through that space in a way that is non-

exhaustive, but still intelligent? In practice, people make use of heuristic

search in which large regions of the search space are not considered [33,
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p. 96]. But typically models of such heuristics are hand crafted by AI

practitioners for the problem of interest, and there are no general theoretical

accounts of how to mechanistically generate heuristics powerful enough to

produce human level competence.

A major failure of the GPS framework was that it relied on the assump-

tion that problems form a well defined class and that most problems could

easily be turned into well defined or formal problems [21]. It became clear

that for many real world problems (e.g taking good notes during a lecture),

the initial state, goal states, path constraints, and operators are either incom-

plete, vague, or missing. Such problems are known as ‘ill defined problems’.

Human being’s ability to avoid combinatorial explosion stems from the way

they can convert ill-defined problems into well-defined problems [26]. Certain

actions are immediately ruled out via non-inclusion in the problem space dur-

ing problem formulation, thereby making the search space far more tractable

(e.g. no one even considers including the ambient temperature of the room

while taking notes in a lecture). The key is our ability to zero in on the rel-

evant information and the relevant structure of the information to perform

the actions needed for good problem formulation.

However, to determine what is relevant to a problem also involves deter-

mining what is irrelevant! As such, the smaller search space which problem

formulation affords us is only achievable if we initially consider the larger

search space and segregate the relevant from the irrelevant. This leads us

back into the problem of combinatorial explosion. We are caught in a nasty

5



circle here in which we need good problem formulation in order to deal with

combinatorial explosion, and yet good problem formulation seems to be a

combinatorially explosive problem. Only an account of how people realize

what is relevant while avoiding combinatorial explosion can break through

this theoretical circle.

Relevance realization and interaction with the environment.

The necessity of breaking this circle is especially apparent when we consider

how agents take action in the environment while intelligently dealing with

unintended side effects. This is best illustrated with an example from Dennett

[8] about a robot trying to acquire its food in a very basic manner. Suppose

we have a robot designed to retrieve batteries as its food source and then

transport those batteries to a location where they can be consumed. Also,

suppose our robot comes upon a wagon upon which there is the battery, but

unfortunately there is also a bomb on the wagon. The robot correctly deduces

that if it pulls the wagon then the battery will come along as an intended

effect. However, an unintended side effect is that the bomb comes along and

destroys the robot. As its designers we attempt to remedy this situation by

having the robot deduce not only the intended effects of its actions but also

potential side effects. When we test our improved robot in a repeat of the

original situation we find it stopped and endlessly calculating for the simple

reason that the number of potential side effects it can consider is indefinitely

large. We seek to remedy this by having the robot form a list of potentially
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relevant side effects. This part of our thought experiment requires that we

have some theory of the properties of information that renders it relevant.

However difficult this assumption is let us grant it for the sake of continuing

the thought experiment in order to further see what it reveals. Once again we

find our robot stopped endlessly calculating. This is because it is creating two

lists. One of potentially relevant side effects and one of irrelevant potential

side effects, and because each list is again indefinitely large, the calculation

cannot be completed.

As Dennett’s example illustrates, for an agent to to take action in even

relatively simple circumstances it must somehow intelligently ignore a great

deal of information, but this seems paradoxical. This requires zeroing in on

the relevant information while not even considering most of the irrelevant

information. It requires putting a frame around one’s cognition. This is

therefore a generalized version of the frame problem [36], indicating that we

have on our hands an essential problem that extends well beyond this case.

Relevance realization and categorization.

The same dilemmas plague another another central component of research in

cognitive science, namely categorization. The importance researchers have

placed on categorization has been in part motivated by the acceptance that

there are deep connections between what is required for problem formulation

and what is required for categorization of novel information [21]. Catego-

rization is the process by which we create classes which support powerful
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inductive generalizations that are relative to the features held in common by

the members. In other words, the members of a category are only identical

in so far as they contribute to the inductive generalizations. Yet, as Good-

man famously noted, any two objects can be infinitely similar or dissimilar

[16], which presents any formal theory of categorization with a seemingly

insurmountable computational task similar to the combinatorial explosion

faced by problem solvers. Thus, the immediate issue is how we zero in on

the relevantly shared properties which will be useful for inductive general-

izations. We think that this issue is encountered by schema [38], script [39],

and stereotype or prototype theories [21], as well as more recent theories

which deal with context sensitivity in categorization [14]. Each one of these

families of theories involves an implicit theory of relevance realization that is

presumed to solve this computational nightmare, wherein relevance is usually

specified in terms of one static property of information such as frequency, or

invariance, or prototypicality, etc. However, it quickly became apparent that

the attempt to capture relevance in this manner fails. For example, Medin,

in an influential review article noted the following about prototype theory

[29]:

“Prototype theories imply constraints that are not observed in human cat-

egorization, predict insensitivity to information that people readily use, and

fail to reflect the context sensitivity that is evident in human categorization.

Rather than getting at the character of human conceptual representation,

prototypes appear to be more of a caricature of it.” (p. 1472)
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Medin’s point is that prototypicality does not capture the relevance real-

ization needed for categorization, and it is therefore failing in a deep way. A

much more complex and dynamic account of relevance realization is needed.

(see [30] for a more recent review that argues that the dynamic complexity

of the information integration within concept formation and use may require

a “psychometaphysics” in which concepts are embedded in theoretical and

explanatory projects. These are projects that would clearly require sophisti-

cated relevance realization.)

Despite the empirical merit possessed by these implicit theories of rele-

vance realization they have been inadequate in generating good models of

categorization [29, 30]. We suggest that this is because relevant information

cannot simply be always identical to frequent, or invariant, or prototypical

information, because relevance is context sensitive. Dissenting voices such

as Barsalou [2] have presented similar arguments, and argued for making

the context sensitive application of information central to what it is to be

a concept. Indeed, he claimed that “a concept can be viewed as an agent-

dependent instruction manual that delivers specialized packages of inferences

to guide an agent’s interactions with particular category members in specific

situations” [2, p. 626]. The circle that looms here, of course, is that at

any given time a context could contain an infinite number of variables or

predicates regarding the environment. A much more sophisticated account

of relevance realization is needed, which breaks through this threatening cir-

cle by dynamically integrating features such as frequency, invariance, etc.,
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rather than following a strict, context insensitive rule.

It is interesting to note that as it became apparent that script, schema,

and stereotype theories suffered from “tunnel vision” [21, 56, 51], researchers

tried to understand intelligence in terms of how we are embodied and em-

bedded in the world, i.e. how we operate in the environment [59], in order to

get at the missing contextual sensitivity. On this view, if we can understand

how agents utilize the world around them that would provide foundations

for how categorization and problem solving take place. Before an agent can

generate facts or formulate problems, information needs to be processed in

terms of how it is relevant for successful action in the environment. Thus,

at the core of any embodiment thesis is the idea that we are acting in the

world. Of course, intelligent agents need to be able to successfully couple

their actions to future effects in the world. However, once you try to have

a reliable tracking between cause and effect you face a deep problem, viz.,

the problem of dealing with side effects as discussed above. We are unaware

of any research program within the embodied cognition movement that can

solve this problem.

Relevance realization and rationality.

There is a tempting philosophical strategy in the face of such problems within

psychology and artificial intelligence. Most theories within these disciplines

presuppose a background normativity, specifically, that cognitive processes

should be rational in nature. Perhaps one could alleviate the problems of

10



circularity that we have highlighted if we explicate the normativity of ra-

tionality presupposed in much of cognitive science. Many philosophers have

undertaken this project [4, 20, 49, 43]. We will examine two whose work we

consider representative in nature and whose work highlights the centrality of

relevance realization to rational induction.

Cherniak [4] has influentially argued that you cannot say that to be ra-

tional is to simply be logical because many algorithms couched in logic lead

to combinatorial explosion. He argues instead that to say that we are ra-

tional means that we’ve zeroed in on some of the relevant subset of logical

inferences for the task at hand. He therefore calls attention to the fact that

relevance realization is central to the issue of rationality in general. Cherniak

attempts to explain relevance realization in terms of memory compartmen-

talization. Cherniak’s idea is that a system can avoid a combinatorially

explosive search through memory for relevant information by dividing mem-

ory into compartments. The system only searches one compartment at a

time. If the compartments are labelled in some fashion, i.e., if they are con-

tent addressable, then the search goes right to the relevant compartment and

the search is thereby constrained to just that compartment. However, Chi-

appe & Vervaeke [5] have argued that this account presupposes in a vicious

way the very thing it is an attempt to explain because the formation and

use of such compartments requires the ability to determine how things are

relevant to each other. We will go a step further and suggest that any expla-

nation of relevance realization in terms of pre-existing memory organization
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will presuppose the very thing it is attempting to explain. This is because

any content addressable information organization scheme requires successful

categorization of the information, and as we have outlined above, categoriza-

tion itself requires relevance realization! Naturally, memory organization can

play a role within an account of relevance realization, but it cannot be the

foundational role assigned to it by Cherniak, or to theories like his.

In a fashion similar to Cherniak, Putnam [34] argues that inductive in-

ferences cannot rely on an invariant syntactic formalization. This is because

the success of any particular inductive logic is relative to the environment in

which it is operational. For example, one could have an environment which

is noisy, and so requires cautious induction, but if the environment contains

little noise, it is beneficial to act less cautiously. Putnam’s idea is that in-

ductive logics can vary in a context dependant fashion, e.g. by changing a

caution parameter or the mechanism for generating inferences, but still ar-

rive at similarly rational results. To extend the example: one person can

use a specific inductive logic in some environment and inductively conclude

some particular belief while another person could be using a different in-

ductive logic in a different epistemic environment, and produce the same

inductively justified belief, though the underlying computational processing

/ states would be different. Of course, to implement this sort of environmen-

tally dependent inference a system must be able to determine the context of

the inductive inference, and as we have already noted, such an ability presup-

poses relevance realization. Thus, Putnam’s refinement of the normativity of

12



rationality returns to the problem of relevance realization, just as Cherniak’s

did. We would also like to note that Putnam’s argument highlights a point

we will develop later, viz., that the attempt to solve such problems through

an invariant syntax of inference seems to be seriously misplaced.

Relevance realization and communication.

Similar problems are faced by research into language and communication.

Although a great deal of the modern generative linguistics program is focused

on purely syntactic questions [7], it is undeniable that an important aspect

of our linguistic cognition is the pragmatic aspect. Any attempt to explain

the nature of language must account for the relationship between language

and communication, and any theory which fails to do this is a failed theory

of language. Indeed, a central insight from seminal philosophers like Austin

and Grice about language is that we are often doing more than just making

statements [1, 19]. For Austin, we are often performing actions instead of

stating things, and for Grice we are often conveying more information than

we are stating.

Grice developed this theory of conveyance in his theory of conversational

implicature. What comes out of this work is that you cannot fold conver-

sational implicature into semantics because you would overload the lexicon.

Instead of folding implicature into a lexicon, it must be something that is

continually worked out between individuals. Grice’s insight is that ‘work-

ing out’ is rational cooperation, and is thus constrained by four maxims: 1.
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quantity, 2. quality, 3. manner, and 4. relevance. Thus, Grice’s work gives

relevance a central role in communication.

It is possible to take this even further, though. Sperber and Wilson [47]

argue that the first three of these maxims all collapse into the fourth maxim

of being relevant. They argue along the following lines, the maxim of quantity

is just ‘provide the relevant amount of information’, the maxim of manner

just ends up being ‘use the relevant format’. The maxim of quality is a little

less clear because it requires truthfulness, and truthfulness is not as easily

seen to boil down to relevance. But, the maxim of quality cannot be the

rule ‘convey all that is possibly true about what you are thinking,’ as we

have already seen in our discussion of Cherniak. So complete truth cannot

be the normative standard that people imply. Therefore, what people must

be sharing are the relevant truths. We are now presented with the same

computational dilemma we encountered before: there are an infinite number

of truths, and prima facie it would be impossible to segregate the relevant

from the irrelevant in a computationally tractable manner.

Thus, theories of pragmatics suffer the same problems with relevance

realization that theories of problem solving, categorization, and action do.

This time though, Sperber and Wilson explicitly identify this problem and

attempt to generate a theory of relevance. We think that is not a sufficient

account, but their account will play an important role in the framework we

lay out later in this paper.

To summarize, we have demonstrated that fundamental research streams
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in cognitive science have encountered essential problems related to compu-

tational intractability that have frustrated any attempts at formal theories

of problem solving, categorization, action, induction, and communication.

We have also shown that these problems form a family of interdependence,

with the problems from one area leading to difficulties in others. Thus, we’ve

not only shown the pervasiveness of relevance realization but also that it’s

theoretical appearance is systematic.

Reverse engineering and the emerging criterion of the cognitive.

In the face of these daunting problems, one may attempt to get around

these thorny conceptual/theoretical issues concerning relevance realization

via ‘reverse engineering’ [8]. Under this methodology, attempts to directly

understand cognition are abandoned, and research is instead focused onto

designing an intelligent machine. The hope is that if this research program is

successful we will understand various cognitive phenomena in virtue of having

designed a machine that exhibits the phenomena. Such principles therefore

become one’s theoretical account of the cognitive processes that generate the

intelligent behaviour. Hence, artificial intelligence would allow us to work

backwards into theories of things like categorization, communication, etc.,

while avoiding the theoretical circularities we have encountered in the other

direction.

However, we are assuming here that we will know when a machine is

in fact intelligent. The obvious methodological question is how to establish
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this identity. Turing famously proposed just such a test [53]. As Fodor

[11] points out, the Turing test has an important methodological principle at

work; namely that the test screens off certain factors of comparison. However,

this principle tacitly makes use of our assumptions about what constitutes

intelligence. These assumptions will of course be shaped by our current folk

psychology and/or our explicit scientific psychology.

In 1994, Green [17], pointed out that unless we have some agreement

about how to pick out cognitive phenomena (i.e. a criterion of the cogni-

tive), we will never be able to determine the correct factors for comparison.

Green reviews some of the common criteria. None of these are are widely

agreed upon, i.e. they cannot be used to powerfully pick out examples of

cognitive processes. For example, the view that seemed to be achieving suc-

cess in the mid 1980s was that cognitive processes are inferential processes

operating on syntactic representations [35]. But this fell under heavy criti-

cism from the connectionists [37, 18, 46, 45]. The original formulation of the

Turing test biases one towards paying attention to inferential and language-

like features of cognition. A connectionist would be very unhappy with any

version of a test for the cognitive which only pays attention to these factors.

Without a powerfully applicable criterion of the cognitive, the interpretation

of simulations, and hence the whole A.I. project, will remain seriously in

question.

We propose that the systematic importance of relevance realization to

cognitive processes makes it the obvious choice for a criterion of the cog-
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nitive. Put succinctly: any attempt to engineer an intelligent system must

ultimately focus on the development of a system that can realize relevance.

In fact, we believe that a great deal of current work in machine learning and

theoretical neuroscience should be viewed in these terms. Examples include

current work in categorization [24, 25, 55], optimal control [52, 40, 28], and

reinforcement learning [50, 10, 9]. In each of these cases a significant focus

of the research program is the development of systems that can cope with

the computational intractability rooted in the need for relevance realization.

Indeed, the goal of such research could be said to be the development of sys-

tems that can determine relevant features, controls, or actions for problems

encountered in the real world. Thus, we put forward that such a criterion of

the cognitive is already emerging [59]. Unlike in the past where generally the

criterion was intuitively generated from our folk psychology, current work

focuses on methods to solve the problems that were encountered in the past

when applying such intuitive criteria. Therefore, the methodological move is

to base one’s criterion of the cognitive on whatever facilitates solving these

difficult technical problems. As such, an explicitly developed theory of rele-

vance realization will help the development and application of new techniques

and theories, and ultimately, our understanding of cognition1.

1It may be helpful to contrast what we believe to be the central framing metaphor for
the criterion which held prominence until the mid 1980s with the new emerging metaphor.
The classical metaphor is that cognition is essentially computation and that the brain
is essentially a computer. The idea is that information is organized around inferential,
and syntactic relations which are isomorphic with a linear causal order. This program
is implemented on a static hardware, and because the hardware is static it is almost
completely irrelevant to the software. The development of the hardware is also irrelevant
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Towards a theory of relevance realization.

Before we begin to articulate even a cursory theory of relevance realization

we feel it is important to identify a framework that will avoid circularities.

This is because theoretical work on relevance will lead to regress both due

to its privileged position within cognition, as we have shown above, and

due to its position within the practice of science itself. In this section we

describe how this leads to circularities and we identify three guidelines for

theorists that will help avoid them. The first guideline is that a theory of

relevance is impossible, and instead a theory of self-organizing mechanisms

for relevance realization is what’s required. The second is that a theory

of the mechanisms of relevance realization must not be representational or

syntactic, but economic. The third is that a theory of relevance realization

cannot rely on a completely general purpose learning algorithm, but must

involve competition between multiple competing learning strategies.

except insofar as it is a process for producing the mature hardware that can run the
software. The computer is a stable logic machine.

In contrast, we might call the new metaphor the Logos (capturing both the sense of
logistics and the Greek sense of the term as: making information belong together) Multi-
Machine (LMM). Here, information is organized in terms of economic properties (which
we will discuss in greater detail later) and relevance relation, viz., how information can be
economically integrated together to support successful interaction with the world. This
is isomorphic not with a linear causal order, but with a circular causal order of a self-
organizing dynamic system. This system is instantiated in a plastic neural network. The
brain is a Multi-Machine: a machine which can make itself into new kinds of machine such
that it not only learns but increases its capacity for learning. In this new model there is
no clear line between the ’hardware’ and ’software’ since both influence each other as they
run. Thus the developmental history of the hardware is always relevant to the explanation
of cognition. Note also that one of the things that an LMM can develop is a computer,
i.e., one of the machines within the multi-machine of the brain can be a computer.
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The importance of a theory of a self-organizing relevance realiza-

tion mechanism

If relevance realization is to be the criterion of the cognitive, a naive assump-

tion might be that you have to come up with an account of relevance with

which you can pick out all relevant things in order to find generalizations

over the class. In this sense, you may try to come up with a theory of what

relevance is. This is the tactic that has been employed by other researchers

to date (cite Sperber & Wilson, etc.). However, we believe that this is a

fundamental mistake.

To begin with, consider by analogy the role played by ‘fitness’ in the the-

ory of evolution. A common confusion regarding fitness is that what makes

a creature fit is the possession of one or more of the defining features of

fitness. Thus, people sometimes misconceive of evolution as the designing

of particular features like speed, intelligence, acute vision, etc. Of course,

in reality the class of all possible organisms which are fit is completely het-

erogeneous, unstable, and dependent on context. As such, we can make no

systematic inductive generalizations about the class of fit organisms. What

evolutionary theory provides is not an account of the biological features that

define fitness, but a mechanism by which fitness is realized in a contextually

sensitive manner. Therefore, by strong analogy with the centrality of natural

selection in biology, we do not really want a theory of relevance. We want

instead a theory that articulates a mechanism for how relevance is realized

in a contextually sensitive manner. We assert that the need for approaching
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relevance in this way is a direct result of circularities inherent in attempting

to build a theory of a phenomenon which underpins all the other phenomena

within the discipline. This is especially the case for relevance due to the fact

that the practice of science itself relies on these cognitive phenomena which

are dependant on it. This has previously been highlighted by Chiappe &

Vervaeke [5]. We briefly review the issue here.

Any scientific statement has to be protected by provisos which keep it

from being trivially falsified. For example, we say that “sugar is soluble”,

even though someone might for instance freeze the water just as the sugar

was added, etc. The list of such “falsifications” is obviously long and het-

erogeneous but they are considered irrelevant to the scientific statement. It

looks like we have run into a circularity here: the very articulation of a the-

ory of relevance would require an implicit identification of what is and isn’t

relevant regarding the application of the statement. This runs us into a kind

of chicken and egg problem for cognition.

In a similar fashion, any scientific statement is going to rely upon prag-

matic conveyance for its interpretation and understanding. But attempts to

render pragmatic conveyances into semantic statements meets the problem

that a stipulation of these conveyances relies upon implicatures. Normally,

we rely upon people’s ability to realize relevant implications and implicatures

in order to make communication practicable (see Grice / Sperber and Wil-

son above). But, if our goal is to design a theory of relevance itself it should

not include an assumption of the relevant implications for a cognitive agent.
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Whatever else a scientific statement needs to be, it needs to be communica-

ble since science is essentially a community enterprise, so this difficulty with

conveyance cannot be ignored.

Finally, any scientific explanatory statement(s) involves inference to the

best explanation which requires reference to the contrast class (the set of

explanations it is better than). Of course, given the under-determination of

a theory by its data, the number of alternative yet acceptable explanations

is infinite. Typically the abductive selection that allows scientists to ignore

these alternatives is usually explained in terms of concepts such as simplicity

and similarity. Yet, this relies heavily upon relevance since it will depend on

the relevant features of the explanations for determining simplicity and sim-

ilarity. So a theoretical explanatory statement about the nature of relevance

would rely again upon the very thing we are attempting to explain.

For all of these examples we end up with a seemingly vicious infinite

regress. Importantly though, there is an implicit foundationalism in this

discussion; that is, that the only way to stop this infinite regress is to find

some ‘urrelevance’ around which the chain of explanation is designed. How-

ever, there is a ready alternative to such foundationalism - an evolutionary

coherentism in which relevance realization is a dynamic, self designing, self-

organizing process that is not equated with an immutable identity. In the

same fashion that evolutionary theory dissolves the chicken and egg problem,

we believe that a non-definitional theory that proposes self-organizing mech-

anisms for relevance realization will be able to dissolve the threat of vacuous
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or cyclic explanations in cognitive science. We need to radically give up an

“intelligent design” framework for understanding the generation of relevance

realization by cognitive systems.

The requirement for an economic model of relevance realization

Even if we resolve the theoretical regress by moving to a self-organizing, non-

definitional model, there is a further difficulty remaining which was described

by Vervaeke [57]. It seems prima facie that relevance realization is going to

be relative to the interests and goals of an organism, and interests and goals

are about future states of affairs. To direct behaviour towards some future

state of affairs requires some representation of that state of affairs. However,

representations are aspectual by nature since one does not represent all of the

aspects or features of a thing. This means that one needs relevance realization

to generate good representations because one has to pick which aspects are

relevant to represent. This is a patently vicious explanatory circle. Note

that this is a problem in our attempts to explain the brain’s behaviour; it is

obviously not a problem with the brain’s functioning.

So, the somewhat unintuitive move is to consider that theories of rele-

vance realization should be pitched at a sub-representational level to avoid

this theoretical conundrum. What this means is that the theory can only

initially make use of completely immanent properties and relations of the

information available to the brain. The prototypical response to this issue

in cognitive science has been to drop to the logical/syntactic level of ex-
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planation since the formal properties are completely self-contained and only

become representation when they have been assigned content. This is the

theoretical framework behind the many variants of computation functional-

ism.

One of the founding figures of computational functionalism, Jerry Fodor

[12], has recently made an argument that one cannot capture relevance in

the syntactic structure of tokens within a formal system. Fodor’s argument

is that notions like relevance or centrality or importance are all aspects of

cognitive commitment, i.e., how much a system cares about something and

devotes its resources to it. Cognitive commitment is an economic issue, and

as such it is both globally defined and contextually sensitive. This means

that it cannot be captured in the syntax of a token since the syntax by its

very logical nature does not consider economic issues, must be locally defined,

and operates in a contextually invariant manner. As Fodor puts it, syntax

is locally defined but relevance is globally defined and therefore cannot run

off of syntax alone. Fodor rightly regards this as a devastating problem for

computational functionalism because very many important processes cannot

be captured by syntax. This means that any viable theory of relevance re-

alization is going to have to make use of sub-syntactic (e.g. using vectoral

representations) properties of information whose operations are locally de-

fined but have global effects. This tact is becoming relatively widespread in

cognitive science, with examples surfacing in the work of Hinton [24], and

Gärdenfors [14].
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One possible way to meet this demand is to turn to the economic prop-

erties of information and action. We notice that in economies, decisions are

made locally (e.g. you buy milk at the grocery store), but these local decisions

contribute to the global organization, and of course, the global organization

constrains future local processing. This is all done without centralized con-

trol, i.e, it is self-governing. This is exactly the sort of mechanism which

Fodor was looking for.

The economic approach uses internal measures of cost (e.g. metabolic),

and reward (e.g. dopaminergic). The reader may worry that we are invok-

ing a pre-established harmony between the internal running of the cognitive

economy and successful behaviour in the world. The worry of course is that

pre-established harmonies often presuppose a god-like designer. However, we

have no such worry since we can confidently presume that, to the extent that

it exists, evolution has worked out this pre-established harmony.

Obviously, the fact that the cognitive economy is internal, does not mean

it’s causally isolated. Like all economies the cognitive economy has imports

and exports. It imports sensory data, and exports motor commands to the

world. The exports have effects in the world which to some degree constrain

the future imports. Just as we can intelligently talk about the American econ-

omy as a distinct entity that is nevertheless causally interwoven with other

economies we can talk about the internal cognitive economy even though it is

causally interwoven with the world. The important relation to discover then,

the pre-established harmony, is the balance of internal economic variables
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whose processing results in successful interaction with the world.

The impossibility of a general learning algorithm solution

Relevance realization must be a set of pervasive constraints on processing

rather than a specific machine for realizing relevance. The reason for this is

that if relevance realization took place within a specialized mechanism, the

mechanism itself would merely confront the frame problem. The problems of

how to decide what to ship there, and how it might avoid the combinatorial

explosion of doing so, would immediately and continually arise. This sort of a

move only shifts the problem. It does nothing to solve it. Thus, there cannot

be a relevance realization mechanism in any straightforward sense. As we’ve

said we need to give up any intelligent design framework for understanding

relevance realization.

One area where this point can be brought to bear is in the field of meta-

learning. This is an exciting new field of research that exemplifies many of the

features of the emerging framework we are explicating. In meta-learning sys-

tems one has basic learners that apply specific learning algorithms/strategies

to current problems. In addition to this one has a higher order meta-learner

whose job it is to assess the applicability (an important concept as we shall

see) of various different learning strategies across time so as to improve the

selection and operation of the base learning strategies. This makes the sys-

tem a self-adaptive learner. However, one conceptual problem which seems

to confront this approach is explained well in a recent review by Vilata and
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Drissi [58]. They point out that the advantage of meta-learning over standard

learning is that the bias (the set of assumptions in the algorithm that restricts

and structures the problem space) in the base level learning algorithm is no

longer fixed a priori but is dynamically modified by the meta-learner. This

addresses one of the central issues of relevance realization in problem solving.

However, the meta-learner itself must have a learning algorithm with such an

a priori fixed bias. One can address this by having a meta-meta-learner, but

an obvious infinite regress now ensues. This conceptual problem seems to

involve an imposition of an intelligent design framework in which there must

be a specific machine that ultimately decides how relevance is assigned. We

argue that the solution to such problems is to make the meta-learning self-

organizing and immanent to the learning. We outline below how we think

this might be done.

It is important to note though that a meta-learner cannot simply be a

general purpose, higher-order learning algorithm. There were hopes in the

early machine learning literature that a sort of general learning algorithm

could be found that would do well on all problems [3, 60, 54]. But, just as

the GPS framework met insurmountable problems, the hopes of a general

purpose learning algorithm were eventually dashed as well:

Although the human brain is sometimes cited as an existence

proof of a general-purpose learning algorithm, appearances can be

deceiving: the so-called no-free-lunch theorems [Wolpert, 1996],

as well as Vapnik’s necessary and sufficient conditions for consis-
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tency [Vapnik, 1998, see], clearly show that there is no such thing

as a completely general learning algorithm. All practical learning

algorithms are associated with some sort of explicit or implicit

prior or bias that favours some functions over others. Since a

quest for a completely general learning method is doomed to fail-

ure, one is reduced to searching for learning models that are well

suited for a particular type of task.

Given the no-free-lunch theorems - which demonstrates that all learning

algorithms are inherently tuned to some subset of problems - one important

tact a cognitive system can use is to adopt strategies that are complementary

in that they have goals that are in a trade-off relationship. The system can

then use opponent processing in order to continually redesign the learning

strategy it is using. Opponent processing is a powerful way to have self-

organization implement a heuristic solution to the no-free-lunch restriction

by having a continual competitive trade-off between two or more complemen-

tary strategies. In biology there is evidence at many levels of analysis that

evolution has centred upon this as a solution (e.g. the control and mainte-

nance of homeostasis in the body by the autonomic nervous system which

plays the sympathetic and parasympathetic systems against one another). In

this way nature creates mechanisms that can strategy shift in a completely

self-organizing manner and also immanent to the processing. This means

that we need an account of how processing is constrained to operate in this

manner. The meta-learners speciality is thus the problem of balancing a se-
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ries of constraints. In the remainder of this paper we speculate about the

nature of some of these constraints.

In the next three sections, we identify three important interactional prob-

lems that cognitive agents face and attempt to specify three corresponding

internal economic processes that involve competition between opposing goals

(see Table 1). We believe that the mechanism behind relevance realization

is ultimately the process that enables the brain to balance these competing

goals. Thus, we argue that relevance is never explicitly calculated by the brain

at all, but the high-level phenomena of relevance realization emerges from

the brain’s attempt to dynamically balance its economic requirements. The

following characterization of these economic processes is still in its infancy,

but we hope that this initial sketch will inspire other researchers, and possi-

bly lay the foundation for a much more detailed account of the mechanisms
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underlying this core component of cognition.

Table #1:

Internal Economic Properties: External Interactional Properties:

Cognitive Scope Applicability

Compression ↔ Particularization General Purpose ↔ Special Purpose

∆wij = −η ∂J(·)
∂wij
− αwij

Cognitive Tempering Projectability

TD Learning ↔ Inhibition of Return Exploiting ↔ Exploring

V (st)← V (st) + α [rt+1γV (st+1)− V (st)]

Cognitive Prioratization Flexible Gambling

Cost function #1 ↔ Cost function #2 Focusing ↔ Diversifying

J1,2(β, α) = 1
β
J1(α, ·) + J2(α, ·)

The applicability problem: Cognitive Scope.

Let’s say that you are trying to engineer processes to control your cognitive

economy in order to maximize some sort of future-discounted reward. One

of the engineering problems which confront you at the interactional level is

whether to go for general purpose or special purpose machinery. The question

is what internal economic processing can you use to optimize your applica-

bility as a machine in the world. The point - stemming from optimal control

and the no-free-lunch theorems - seems to be that hard commitment to either

of these strategies (general purpose or specific) is undesirable. The engineer-
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ing trick is to make use of opponent processing so that one is continuously

dynamically designing and re-designing the right kind of tool for the task at

hand (i.e. the sort of tool which will allow you to maximize reward signals

for the task). How though does one get internal economic processing to trade

off between these interactional styles of processing (general purpose versus

special purpose)?

One formal example is typified by an engineering solution for training

neural networks. When updating the weights in a neural network, one typ-

ically follows the negative of the gradient (or estimate of the gradient) of

some performance metric, J(·) with respect to the weights, e.g.:

∆wij = −η∂J(·)
∂wij

(1)

where, η, is a learning rate and, wij is a synaptic weight in the network

which connects neuron i with neuron j. If the weight update term consists

solely of this negative gradient term, networks will tend to over-fit the data

that it trains on. A common solution to this problem is to introduce a ‘weight

decay’, or regularization term into the weight update so that,

∆wij = −η∂J(·)
∂wij

− αwij (2)

where, α, is the magnitude of weight decay applied. Such a term penalizes

large weights and pushes them towards zero [22]. This has the effect of

simplifying the network which in turn makes it better at generalizing from
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its training experience. The ratio of the gradient and weight decay terms

will determine the extent to which a network focuses on generalization at the

expense of performance on data it has trained with.

A network which is making use of weight decay is opponent processing

compression against particularization (i.e. explaining the data well). This

opponent processing we refer to as cognitive scope - trying to capture both

the spatial analogy of general versus specific and the perceptual analogy of

effectiveness of perception as in “microscope” and “telescope”. Our claim is

that a brain constrained to internally processing cognitive scope tracks the

opponent processing between general purpose and special purpose machines

and thereby optimizes it’s applicability of information for action within the

world.

Here we are broadening Turing’s insight, that you can track rationality

in the world by having a device that just internally pays attention to the

logical syntax of the information. However, given what we’ve said about

rationality, we think that Turing’s conception of rationality as just the logical

management of inference is insufficient. A lot of rationality has to do with

the realization of relevance [13]. Our point is that we can track this aspect

of behavioural relevance realization by internally processing cognitive scope.

This extension makes use of Hinton’s insight, which we term internalization

(in contrast to representation), and which is typified in such methods as

the wake/sleep learning algorithm [23]. In such learning algorithms the way

one gets neural networks to engage in unsupervised learning, i.e. learning
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where the target value in the world is not known, is by having the network

relate to itself in a completely internal fashion. It relates to itself in an

internal fashion such that it treats itself as a micro-environment2 in which the

procedural abilities to track environmental variables can be trained. These

procedural abilities are then turned on the world in an attempt obtain the

actual information from the world which can then be used to improve the

micro-environment so that the whole system bootstraps itself up into effective

interaction with the world. This internalized training of cognitive scope is

what we mean by saying that the internal processing of economic variables,

such as cognitive scope, track the interactional properties such as determining

applicability.

So, part of what constitutes relevance realization is when cognitive scope

tracks applicability so that the cognitive organism is continually re-designing

itself as some trade-off between a general purpose and a special purpose ma-

chine. Note also, how we have specified a general constraint on information

processing that is completely immanent to such processing.

2The original internal environment is nothing more than statistical patterns in the
data stored within a neural network. However, such networks are very good at picking
up very complex statistical patterns that pick up correlational and causal patterns. These
complex structures within the data can serve as a virtual world upon which to train
procedural abilities. It is important to remember that at first the structures of this internal
“world” need not be an accurate representation of the world. Internalization only needs a
demanding informational environment in which to train the skills for picking up complex
information from complex environments. Of course, as an internal environment the target
value is known to the system and can be used in correction. The rate of practice can be
adjusted, and variation can also be introduced, all to improve the procedural learning.

32



The projectability problem: Cognitive Tempering.

Another engineering problem that faces individuals in the world is whether

to go for exploitative machinery or exploratory machinery (see Table 1). An

exploitative machine is one that tends to stick with it’s currently known

actions and to simply select from those actions the one that it thinks will

have the highest payoff now. In contrast, the exploratory machine will forgo

immediately available payoffs to look for the possibility of contexts/actions

which will produce higher payoffs later on.

Neither one of these strategies pursued exclusively is a good overall prob-

lem solving strategy. The problem with being exclusively exploitative is that

there is a good chance that there are much higher payoffs elsewhere and this

therefore constitutes a significant opportunity cost for the explorer. You do

not want to have a machine that only looks for information which facilitates

exploitation in the immediate future since other information may help build

towards larger future payoffs.

On the other hand, a machine which spends almost all of its time exploring

for opportunity runs the risk of losing available payoff as it searches for better

payoff. In a similar fashion to the opponent processing mentioned for general-

purpose versus special purpose, we would want a machine that is dynamically

moving between these strategies. We want a system that is optimizing for

the interactional property that we call projectability, which is the dynamic

balance between exploiting the here-and-now and exploring the there-and-
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then. The system has to setup a projective relationship between the actual

here-and-now with the possible there-and-thens. How then do we construct a

machine which is able to optimize for projectability solely in terms of internal

economic properties?

One promising way of doing this is to couple powerful reinforcement al-

gorithms such eligibility trace temporal-difference (TD) learning [50] with

an temporally decaying inhibition of return trace. In TD learning (Table

1 shows the value function update equation for the most basic form of TD

learning as discussed by Sutton & Barto (1998)), a memory trace (e.g. an

eligibility trace) of recent actions performed by a machine may kept. When

reward (or punishment) is encountered, the actions in the trace are credited

with having brought about the reward (or punishment), and so are reinforced

(or weakened). Those actions which were performed most recently are re-

inforced most strongly, while those which happened long ago are reinforced

only a little. This technique of apportioning reward to actions backward in

time allows an agent to learn to perform actions for payoffs in the distant

future.

TD learning reinforces action patterns (i.e. reinforcement of return) which

tend to have you return to states/actions temporally associated with high

reward (this is the element which pushes you to be exploitative). On the

other hand, to explore in an intelligent fashion, the machine can lay down

an inhibition of return trace a temporally decaying memory trace which

indicates to the machine not to return (in a soft way) to states/actions it
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has recently seen and thereby promotes exploration [27]. This trace would

be traded off against the reinforced action patterns to find an intelligent way

to trade off exploitation with exploration.

This internal processing of the opposition between inhibition of return

and reinforcement of return we call cognitive tempering. We call it cognitive

tempering because we are trying to capture the metallurgic sense of neither

being too flexible nor too inflexible, and also the root word “temp” - having

to do with time. What we are proposing is that cognitive tempering can be

trained to track projectability. A system which is constrained for working

out cognitive tempering will find good projectability in the world.

The problem of flexibly gambling: Cognitive Prioritization.

A third interactional problem faced by cognitive agents is how to gamble flex-

ibly in the face of ambiguous information (see Table 1). Ambiguity, whether

caused by the introduction of noise (e.g. perceptual) or in overlap of the enti-

ties in the environment which can generate the same information, means that

one is always gambling with the commitment of one’s cognitive resources.

Then the interactional issue is how one is to wager one’s cognitive resources

in the world. Betting should be flexible because, for instance, the scarcity

of one’s internal reserves ought to cause a trade between focusing and di-

versifying as betting strategies. For example, if an agent is very thirsty it

will tend to gamble all of it’s efforts on getting water, i.e. it will focus it’s

wagers on this project. As soon as thirst is satiated though, the agent will
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begin to pursue a diversity of problems. As we will discuss in the following

section, Montague points out that agents ought to “care” differentially about

the environment because they run on batteries [31].

What are the internal economic constraints that can track these interac-

tional trade offs? In contrast to the other two economic constraints, this one

is much more conjectural in nature. What we intend to do here is to provide

an argument for the plausibility of being able to produce a mathematical

formalization of this constraint. Whereas the internal economic constraints

we call cognitive scope and cognitive tempering had to do with how cost

functions might be heuristically optimized, cognitive prioritization has to do

with the structure and prioritization of cost functions. In short, one of the

things which allows agents to be truly successful in the world is adapt not

only their behaviour to suite a given task, but also to adapt the sorts of tasks

they are interested in optimizing.

In order to make clear what we mean, consider the following example:

an animal has two basic operational goals in its life; one is to find food to

sustain its energy stores, and the second is to avoid being food for another

larger animal. All other projects are asymmetrically dependent on these

ongoing projects3. Both of these external goals are tracked internally by two

cost functions, J1(·) and J2(·) respectively. One of these cost functions, J1,

3In a personal communication, Zachary Irving pointed out that didactically it may help
to think that, instead of just having two cost functions - food and predator avoidance -
you had ten (e.g. mate seeking, water seeking, sleep, young rearing etc.). If this was the
case, then when beta gets very low, the a learning system looks very specifically at food
seeking, at the cost of all those other activities that are potentially relevant.
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is an internal metric which tracks how well your doing at maintaining your

energy reserves. The second, J2, is an internal metric which tracks how well

you are doing at predator avoidance. Suppose that J1 is multiplied by a

leaky integrator function which tracks the level of satiation for the animal

(it integrates acquisition of resources and leaks as they are depleted).

Now, suppose that the animal is therefore interested in what we will call

a joint cost function, J1,2:

J1,2(β, α) =
1

β
J1(α, ·) + J2(α, ·) (3)

where, β, is the leaky integrator which indicates the level of satiation,

and α is a vector containing the animal’s adjustable parameters governing

action, J2 is a relatively constant cost function which resolves ambiguity

in this manner: it emphasizes misses over mistakes; that is, it is much more

important to not miss the predators approach than it is to mistake something

for a predator that is not one. On the other hand J1 will tend to resolve

ambiguity by emphasizing mistakes over misses: that is, it is initially more

important not to mistake poisonous or inedible material for food than to

miss food. But, as energy resources deplete, the system gives more and

more emphasis to not missing food opportunities than to mistakenly eating

poison or inedibles. When satiation, β, is low (e.g. 1
β

is large), J1 becomes

dominant and can put pressure on J1,2 to focus resource investment into the

food acquisition project.
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Of course, we are not at all committed to there only being two cost

functions - there are likely many which are flexibly trade off against each

other. The example presented above is merely illustrative of how cognitive

prioritization may operate as a constraint within relevance realization. Also,

the approach we have taken here easily permits the addition and balance of

other cost functions.

Interaction between the three constrains.

We think that the three internal economic constraints, cognitive scope (CS),

cognitive tempering (CT), and cognitive prioritization (CP), are all mutually

constraining within an internal economic arena. In addition, we think that

there are higher order constraints on this process of running the internal

cognitive economy. We think there is a selective constraint to be as efficient

as possible in this economy. But there is an opponent constraint to be resilient

in your processing. The main problem is if you just push for efficiency, you

can lose a lot of latent preadaptive functions which may turn out to have

long term value to you. So, you do not want to downsize too much and

become brittle in your ability to handle environmental perturbations - you
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want some overlap, redundancy, and variation in your processing.

Table #2:

Efficiency (Selection)

Compression-Generalization TD Learning-Exploiting -Focusing

l l l

Particularization-Specialization Inhibition of Return-Exploring -Diversifying

Resiliency (Variation)

Resiliency introduces variation into the economy and efficiency introduces

selection - they are opponent to one another and so the whole system will

tend to evolve. This is very similar to Siegler’s idea that cognitive develop-

ment shows significant parallels to the process of evolution [42]. Thus, rel-

evance realization is continually evolving. It is continuously self-adaptively

self-designing. This is cashed out neurologically in the developmental com-

plexification [41] (a dialectic of integration for efficiency and diversification

for resilience) of the brain’s functionality. Putting these ideas together im-

plies that cognition is inherently developmental in nature, rather than de-

velopment just being the peripheral issue of how cognition emerges. Thus,

we may speculate that developmental psychology ought be seen as central to

cognitive psychology.

The constraint of efficiency is specifically discussed by Montague [31] as

being important to getting cognitive systems to “care” about information,

i.e., find information relevant. According to Montague, such caring will make
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it possible for cognitive systems to choose what information to pay attention

to and which actions to perform. His basic argument is that because organ-

isms run on energy reserves, what he calls “batteries,” all of the cognitive

processing of real world organisms is constrained to be as efficient as possible.

Although he does discuss some interesting ideas about internal communica-

tion and modelling, he does not explicate how in general the constraint for

efficiency is implemented in all processing.

In contrast, Sperber and Wilson [47] much more explicitly develop such

an account. According to Sperber and Wilson information is relevant to the

degree to which it trades off between the maximization of cognitive effect and

the minimization of cognitive effort. Relevance is a kind of cognitive profit,

and information is more relevant if it is more efficiently obtained, i.e. more

effect for less effort. We think that there are very important insights in this

approach. There is an emphasis on economic properties that are internally

specified, and there is use (at least implicitly) of self-organization through

opponent processing.

However, we do think that there are important problems with the attempt

to equate relevance with efficiency. First is that since relevance is defined as

efficiency it is not possible according to Sperber and Wilson to be inefficient

in processing and realize relevance. Since it is plausible that the brain also

pursues resiliency it may often processing information in a manner that is

currently inefficient so that it does not loss the ability to repair, re-learn,

or re-design itself in the future. We suggest rather than efficiency defining
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relevance it should be thought of as a higher order constraint operating in

an opponent fashion with the higher order constraint of resiliency. This

opponent processing instantiates the goal of making cognition continually

evolve. Naturally saying that relevance realization is cognitive evolution is

irredeemably vague. In our proposal the evolution is specified in terms of the

interaction of higher order constraints which are further specified in terms

of the interaction of lower order constraints which are further specified in

terms of opponent processing in and between cost functions operating in an

economic manner. Though of course, there is still an enormous amount of

work to do, both theoretically and experimentally, to build on the sketch we

have given here.

The second problem for Sperber and Wilson’s theory is the problem of

how the efficiency is specified in terms of economic properties. Although there

is great insight on Sperber and Wilson’s part about the role of economic prop-

erties, there is nevertheless confusion in the formalization of these properties.

Sperber and Wilson confuse the economic level with both the syntactic and

semantic levels of processing. For example, they discuss relevance processing

in terms of logical inferential relations which are clearly at the syntactic level,

and they discuss cognitive effect in terms of belief revision which is clearly

pitched at the semantic/representational level. This intrusion of the syntac-

tic and semantic levels subjects their theory to the kinds of circularities we

noted earlier. This conclusion was clearly pointed out by Chiappe and Kukla

[6]. They note that for Sperber and Wilson the calculation of cognitive profit
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is constrained by the information that is active in the current context. We

would argue that this is a dim recognition of the importance of interactional

properties like the applicability of processing that need to be further speci-

fied and incorporated significantly into the theory. In any case, Chiappe and

Kukla point out that Sperber and Wilson need to explicate how the initial

context is updated and developed. Sperber and Wilson do this in terms other

potential contexts from memory which the organism can select. According

to the theory the organism needs to select a context that maximizes rele-

vance (understood as cognitive profit.) This is, of course, circular in that

determining which context from all potential contexts will do this is the kind

of problem for which relevance realization is needed. Sperber and Wilson at-

tempt to address this by arguing that contexts (in memory) have accessibility

relations to each other by means of which the benefits and costs of moving

between contexts can be calculated according to cognitive profit. Note that

there is an insight here into relevance realization constraints operating at

different levels of analysis. However, please also note that the explore versus

exploit problem has been transferred inside in that as the cognitive system

moves between candidate contexts in memory it must decide if it should stop

at any currently valuable context and exploit it or keep exploring for a po-

tentially more valuable context. While this is problematic for Sperber and

Wilson’s explanation it does suggest a way in which memory organization

could serve as an internal environment for the further internalization and

training, i.e., bootstrapping, of cognitive tempering.
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Yet such memory organization cannot be foundational as Chiappe and

Kukla point out. As we noted earlier, memory organization itself presupposes

relevance realization and so presupposes the very process it is being used

to explain. Chiappe and Kukla point out that Sperber and Wilson have

no account of memory organization and so the whole account is circular in

nature. Sperber and Wilson [48] inadequately address this by arguing that

these foundational problems are probably addressed by some combination

of modularity (special purpose machinery) and something like a blind hill-

climbing algorithm (general purpose machinery). There is a lot of confusion

in this answer between interactional properties and economic properties, and

about how these interactional properties are organized in processing, and how

this processing is realized in a completely internal economic fashion. There is

no clear discussion of how relevance realization could develop and bootstrap

itself up into sophisticated relevance realization. All of these things need to

be carefully teased apart and the relations between them worked out if the

charge of circularity is going to be dissolved. We believe our current theory

begins to do just this, although much more work needs to be done.

Conclusion

We have argued that relevance realization is a pervasive problem within cog-

nitive science and a new framework for doing cognitive science is emerging

in which relevance realization is the criterion of the cognitive. As such, we

believe that the explication and explanation of cognition will ultimately be
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in terms of processes of relevance realization. Further, we have argued that

this framework is beginning to discover and grapple with the theoretical and

technical tools required to address questions concerning the mechanisms of

relevance realization in the brain. We have sketched what we believe are the

crucial points in such an explanation of relevance realization. Although we

are no doubt wrong in detail, we believe that we have shown that it is very

plausible that the correct answer will be turn out to be relevantly similar to

the one we have presented here.
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