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SUMMARY

Alternative splicing is a key process underlying the
evolution of increased proteomic and functional
complexity and is especially prevalent in the mam-
malian nervous system. However, the factors and
mechanisms governing nervous system-specific
alternative splicing are not well understood. Through
a genome-wide computational and expression pro-
filing strategy, we have identified a tissue- and verte-
brate-restricted Ser/Arg (SR) repeat splicing factor,
the neural-specific SR-related protein of 100 kDa
(nSR100). We show that nSR100 regulates an exten-
sive network of brain-specific alternative exons
enriched in genes that function in neural cell differen-
tiation. nSR100 acts by increasing the levels of the
neural/brain-enriched polypyrimidine tract binding
protein and by interacting with its target transcripts.
Disruption of nSR100 prevents neural cell differentia-
tion in cell culture and in the developing zebrafish.
Our results thus reveal a critical neural-specific alter-
native splicing regulator, the evolution of which has
contributed to increased complexity in the vertebrate
nervous system.

INTRODUCTION

Recent high-throughput sequencing studies indicate that at least

95% of human multiexon genes produce alternatively spliced

transcripts (Pan et al., 2008; Wang et al., 2008). Alternative

splicing (AS) has played a major role in the evolutionary expan-

sion of proteomic and functional complexity underlying many

cellular processes and is especially prevalent in the vertebrate

nervous system, with emerging key roles in synaptogenesis,

neurite outgrowth, axon guidance, ion channel activity, and

long-term potentiation (Li et al., 2007; Ule and Darnell, 2006).
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However, mechanisms that control neural-specific AS and that

underlie the evolution of increased nervous system complexity

are poorly understood.

Regulated AS requires the interplay of cis- and trans-acting

factors that repress or activate splice site selection (Blencowe,

2006; Wang and Burge, 2008). RNA binding domain (RBD)-con-

taining proteins belonging to the heterogeneous nuclear ribonu-

cleoprotein (hnRNP) family and a superfamily of alternating Arg/

Ser (RS) domain-containing proteins, referred to as ‘‘SR family’’

and ‘‘SR-related’’ proteins, act widely to control AS. Members of

these protein families can either repress or promote the forma-

tion of active splicing complexes (spliceosomes), often depend-

ing on the location of cognate binding sites within exon or intron

sequences (Lin and Fu, 2007; Martinez-Contreras et al., 2007).

SR family proteins contain one or two N-terminal RNA recog-

nition motifs and a C-terminal RS domain, whereas SR-related

proteins, which include factors that are pivotal in the control of

sex determination in Drosophila, contain RS domains but may

or may not contain RBDs (Lin and Fu, 2007). Phosphorylated

RS domains are thought to function in the formation of protein-

protein and protein-RNA interactions required for spliceosome

assembly (Shen et al., 2004; Wu and Maniatis, 1993). Approxi-

mately 40 mammalian RS domain proteins have been implicated

in splicing (Lin and Fu, 2007). Although ubiquitously expressed, it

has been proposed that variable levels of these proteins may

contribute to cell- and tissue-dependent AS patterns (Hanamura

et al., 1998; Zahler et al., 1993).

To date, only RBD proteins that lack RS domains have been

shown to possess tissue-restricted expression patterns and

several such proteins play important roles in cell- and tissue-

specific AS (Li et al., 2007). These include the neuronal-specific

Nova-1/2 and HuB proteins, the neuronal and muscle-expressed

Fox-1/2, CELF/CUGBP, and MBNL family proteins, and the

neural, myoblast, and testis-expressed nPTB protein (also

referred to as brPTB and PTBP2). nPTB is a paralog of the widely

expressed PTB (also hnRNPI/PTBP1) splicing repressor protein

(Ashiya and Grabowski, 1997; Markovtsov et al., 2000; Polydor-

ides et al., 2000). A switch from PTB to nPTB expression during

mailto:b.blencowe@utoronto.ca


neuronal differentiation has been implicated in regulating

neuronal AS (Boutz et al., 2007; Makeyev et al., 2007; Spellman

et al., 2007). Previous evidence has suggested that this switch

results in the formation of ‘‘less repressive’’ nPTB-bound splicing

complexes that are responsive to positive-acting factors in

neurons (Markovtsov et al., 2000). However, the mechanisms

controlling neuronal-specific exon inclusion patterns in conjunc-

tion with nPTB have remained unclear.

Several tissue-restricted AS factors are involved in controlling

subsets of exons that are enriched in functionally-related genes

(Boutz et al., 2007; Kalsotra et al., 2008; Ule et al., 2005; Yeo

et al., 2009; Zhang et al., 2008). For example, through binding

to clusters of YCAY motifs distributed within specific exon and

intron zones, Nova2 can positively or negatively regulate �7%

of neural-specific alternative exons in genes that function in

the synapse and in axon guidance (Licatalosi et al., 2008; Ule

et al., 2005). How AS specificity is established for the vast

majority of other neural-specific exons is not understood,

however. Moreover, the specific biological processes controlled

by the majority of neural-specific exons are also not well under-

stood.

We have identified a tissue- and vertebrate-restricted RS

domain protein, referred to as the neural-specific SR-related

protein of 100 kDa (nSR100). Knockdown of nSR100 disrupts

the inclusion of a large set of nervous system-specific alternative

exons that are significantly enriched in genes with critical func-

tions in neural cell differentiation. Consistent with this molecular

programming function, nSR100 is required for neural cell differ-

entiation in vivo. nSR100 forges neural specificity in AS by

activating nPTB expression and, in conjunction with nPTB, by

binding directly to its regulated target transcripts. nSR100 thus

acts in a multifaceted manner in the tissue-specific regulation

of a network of exons associated with neural cell differentiation

and the evolution of vertebrate nervous system complexity.

RESULTS

A Genome-wide Screen Identifies a Vertebrate
and Neural-Specific SR-Related Protein
To identify mammalian SR-related proteins with the potential to

function as cell type- and/or tissue-specific splicing regulators,

we used a computational procedure for the genome-wide sur-

veying of RS domain protein-encoding genes (Figure 1A; refer

to the Supplemental Experimental Procedures available online).

Applying this procedure to a set of nonredundant mouse cDNAs

resulted in the identification of 112 known or putative new RS

domain genes (see Table S1).

Manual annotation revealed that 36% (40/112) of the RS

domain genes have a function associated with splicing and

15% (17/112) have functions associated with RNA polymerase

II-dependent transcription and mRNA 30-end processing, which

are coupled to and can influence splicing (Figure 1A). Remark-

ably, 32% (36/112) of the identified genes have no annotated

function. Given that more than one third of the annotated genes

have known functions in splicing, many of the previously unchar-

acterized genes likely also participate in splicing. Moreover,

since 96% (108/112) of the predicted mouse proteins encoded

by these genes have a closely related human ortholog with
a computationally defined RS domain, the majority of these

proteins likely have conserved functions.

Using microarray profiling data we analyzed expression

patterns of the computationally-mined RS domain genes in 50

diverse mouse cell and tissue types (Figures 1B and S1). Many

of these genes appear to be widely but variably expressed,

which is consistent with previous observations (Hanamura

et al., 1998; Zahler et al., 1993). Interestingly, hierarchical clus-

tering analysis reveals that two prominent subsets of genes

display distinct spatiotemporal regulation. One subset displays

elevated expression in whole embryo and embryonic head

samples from days 9.5 to 14.5 and the other displays elevated

expression in adult nervous system tissues (Figure 1B, boxed

region; and Figure S1).

We focused our attention on an RS domain gene (NM_026886;

human NM_194286/KIAA1853) displaying increased expression

in the developing embryo and highly restricted expression in adult

nervous system and sensory organ tissues (Figure 1B). The

NM_026886 open reading frame (ORF) is predicted to encode

a 608 amino acid protein of 68 kDa that contains prominent

runs of alternating SR/RS repeats (Figure 1C). Although the

protein encoded by the NM_026886 gene has not been function-

ally characterized, it has been detected as a tumor antigen in

pediatric patients with medulloblastomas (Behrends et al., 2003).

In addition to its neural-restricted expression pattern, a feature

of the NM_026886 ORF that distinguishes it from previously

characterized RS domain proteins is that it is highly conserved

only in vertebrate species (Figure S2 and data not shown). The

NM_026886 ORF and its orthologs lack a canonical RBD. The

only region of significant similarity with other protein sequences

is a sequence spanning amino acids 490 to 521 that is identical

to amino acids 573 to 604 in the human SRm300 splicing coac-

tivator subunit-like gene (SRm300-like/SRRM2L). These results,

together with additional experiments described below, indicate

that the NM_026886 gene encodes the neural-specific SR-

related protein of 100 kDa, which we refer to below as nSR100.

Distribution of nSR100
RT-PCR assays confirmed that nSR100 mRNA is strikingly

enriched in multiple brain regions and sensory organ tissues

(Figure 1D). A rabbit polyclonal antibody raised against a GST

fusion protein containing amino acids 1 to 82 of human

nSR100 recognizes a band that migrates at �100 kDa in

neuronal-derived cell lines (mouse Neuro2a and human Weri-

RB1), but which is not expressed in nonneural mouse or human

cell lines (C2C12, NIH 3T3, HEK293-T, and HeLa) (Figure 1E).

The higher than expected mobility of nSR100 is typical of SR

proteins because RS domains are generally highly phosphory-

lated. Confirming the phosphorylation status of nSR100, myc

epitope-tagged nSR100 protein expressed in Neuro2a cells

was detected using the monoclonal antibody mAb104, which

specifically recognizes a phosphoepitope shared among SR

proteins (data not shown; Zahler et al., 1992).

To establish whether nSR100 is expressed in specific neural

cell types, adult mouse neural progenitor cells were differenti-

ated in vitro into neurons and glia, the latter comprising astrocyte

and oligodendrocyte populations. These neural cell populations

were coimmunostained with anti-nSR100 antibody and anti-bIII
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tubulin (neuronal marker) or anti-glial fibrillary acidic protein (glial

marker) antibodies. nSR100 is highly enriched in the nuclei of the

neuronal but not glial cell populations because prominent

nSR100 nuclear staining (marked by coincident Hoechst stain-

ing) is detected only in the anti-bIII tubulin-positive cells (Fig-

ure 2A). Together, these experiments indicate that after neural

progenitor cells differentiate, nSR100 primarily functions in the

nuclei of neurons.

nSR100 Is Required for Neural Cell Differentiation
We next asked whether nSR100 functions in the differentiation of

cultured Neuro2a cells, murine embryonic stem cells (ESCs), and

adult neural stem cells. Neuro2a cells produce long extensions

Figure 1. Identification and Expression

Characteristics of nSR100

(A) (Left) Computational strategy for the genome-

wide survey of mouse RS domain protein genes.

(Right) Functional associations of computationally

defined mouse RS domain protein genes (refer to

Table S1 for a full list and description).

(B) Clustergram showing relative mRNA expres-

sion levels of RS domain protein genes (y axis)

across 50 mouse cell and tissue types (x axis).

Color scale indicates fold expression relative to

the median value across the data set. The

enlarged portion of the clustergram shows RS

domain protein genes with elevated expression

in neural tissues with NM_026886/Riken cDNA

1500001A10 (nSR100) indicated. Refer to

Figure S1 for an enlarged view of the entire cluster-

gram with all gene names indicated.

(C) Translated sequence of mouse nSR100 (from

NM_026886), with RS/SR dipeptides highlighted.

The underlined region indicates amino acids

(1–82) used to generate an anti-nSR100 polyclonal

antibody. The boxed region is identical to a se-

quence in the SRm300 splicing coactivator

subunit-like protein (SRRM2L).

(D) RT-PCR analysis of mouse nSR100 mRNA

expression across 20 diverse tissues and several

brain subregions, relative to Gapdh mRNA expres-

sion in the same samples.

(E) Western blot of nonneuronal and neuronal-

derived cell line lysates probed with an anti-

nSR100 antibody. Arrowheads indicate detection

of nSR100 (see also Figures 2 and 5) and the

asterisk indicates a cross-reacting species.

known as neurites in the presence of ret-

inoic acid (RA). ESCs can be differenti-

ated to produce neural stem and progen-

itor cells (Tropepe et al., 2001), and neural

stem cells isolated from adult mouse

brains can be differentiated into all major

cell types of the nervous system in culture

(Morshead et al., 1994). These three

systems allowed us to investigate the

role of nSR100 during different aspects

of neural differentiation in vitro.

In Neuro2a cells, nSR100 is expressed prior to induced differ-

entiation and does not significantly increase at 48 hr after induc-

tion (data not shown). To test whether nSR100 is required for

neurite extension, lentivirus-delivered short hairpin RNAs

(shRNAs) were used to generate undifferentiated Neuro2a cells

with constitutively reduced (by 70%–75%) levels of nSR100,

relative to undifferentiated cells expressing a control shRNA tar-

geted to GFP (Figure 2B). The reduced levels of nSR100 had no

significant impact on cell viability (Figure S3 and data not shown),

but dramatically impaired neurite extension (Figures 2C and S4).

Within 24 hr after induction with RA, >35% of control shRNA-

treated cells extended long neurites, whereas only �5% of

the nSR100 shRNA-expressing cells extended processes of
900 Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc.



comparable length (Figures 2C and S4). In contrast, knockdown

of a widely expressed SR-related splicing factor, SRm160, re-

sulted in reduced viability of undifferentiated Neuro2A cells (Fig-

ure S3). These findings suggest that nSR100 is required for

specific steps during neural differentiation, rather than for

a more general role associated with cell viability.

nSR100 mRNA levels increase when ESCs are induced to

differentiate to form neural progenitor cells (Figure 2D). Cultured

ESCs were induced to proliferate and aggregate into spherical

cell populations known as ‘‘neurospheres,’’ which contain neural

progenitor cells. When stably expressing control or nSR100-tar-

geting shRNAs prior to induced differentiation, no discernable

differences in morphology or proliferation were observed (data

not shown). However, when induced, nSR100 knockdown ESCs

formed 90% fewer neurospheres than did the control shRNA-

treated cells (Figure 2E). Similar results were observed upon

knockdown of nSR100 in induced adult-derived neural stem cells

(Figure 2E). Two independent shRNAs targeting nSR100 led to

similar results, indicating that the effects are specific and not

due to off-target effects (data not shown; see also below and

Figure 3D). These results therefore indicate that nSR100 plays

a critical role in neural stem and progenitor cell formation and/or

proliferation, in addition to a role in neurite extension.

Figure 2. nSR100 Is Required for Neural Cell Differen-

tiation

(A) Confocal microscopy images of differentiated neural

progenitor cells coimmunostained with anti-b-III tubulin (red,

top panels), anti-glial fibrillary acidic protein (anti-GFAP; red,

bottom panels), and anti-nSR100 (green, top and bottom

panels) antibodies. Nuclei are stained using Hoechst dye

(blue, top and bottom panels). All b-III tubulin-positive neurons

show nSR100 staining. Scale bar represents 25 mm.

(B) Western blot probed with anti-nSR100 antibody showing

lysates from Neuro2a cells stably expressing control shRNA

(lane 1) or nSR100-targeting shRNA (lane 2). a-tubulin levels

were used as a loading control.

(C) Quantification of percentage of shRNA-expressing

Neuro2a cells extending long neurites (measured as greater

than three cell body lengths) under normal culture conditions

and differentiation conditions. Values represent averages

from three independent experiments ± one standard devia-

tion. Figure S3 shows representative brightfield images of

Neuro2a cells from each treatment.

(D) RT-PCR analysis of nSR100 mRNA levels in ES, neural

progenitor (NP), and differentiated neurons and glia (lanes 1,

2, and 3, respectively). Gapdh mRNA levels are shown for

comparison.

(E) Quantification of relative percentage of primary neuro-

spheres formed by differentiating ESCs expressing control

or nSR100-targeting shRNAs or secondary neurospheres

from adult neural stem cells expressing control or nSR100-tar-

geting shRNAs. Values represent the averages from four inde-

pendent experiments ± one standard deviation.

nSR100 Regulates a Network
of Brain-Specific Alternative Exons
We next investigated whether the effects of

nSR100 knockdown on neural cell differentiation

are associated with the deregulation of specific

AS events. PolyA+ RNA from control and nSR100

shRNA-expressing, undifferentiated Neuro2a cells was profiled

using an AS microarray (Figure 3A; refer to the Supplemental

Experimental Procedures). AS patterns in adult mouse whole

brain and five nonneural tissues were profiled in parallel

(Figure 3B). Confidence-ranked percent exon exclusion esti-

mates (%ex; the percentage of transcripts skipping a profiled

alternative exon) were determined (Pan et al., 2004). In order to

enrich for physiologically relevant events, we focused our anal-

ysis on exons displaying both nSR100-dependent regulation in

Neuro2a cells and differential splicing between brain and non-

neural tissues (Figure 3B and data not shown).

One hundred and fifteen high-confidence AS events met the

above criterion and displayed %ex differences of at least 15%

upon nSR100 knockdown (Table S2). Seventy percent (81/115)

displayed increased exon skipping upon knockdown of nSR100,

and RT-PCR experiments validated 81% (21/26) of these events

(Figures 3C and S5; data not shown). Only one of seven tested

events displaying increased exon inclusion upon nSR100 knock-

down was validated, although the change in %ex was relatively

modest (data not shown). Moreover, only 6% (3/52) of predicted

non-nSR100 targets were found to change upon nSR100 knock-

down, indicating a low false-negative detection rate (data not

shown). The reduced levels of exon inclusion observed upon
Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc. 901



knockdown of nSR100 persisted following RA-induced differen-

tiation in all of five analyzed cases (Figure S6). These results indi-

cate that nSR100 acts predominantly to promote alternative

exon inclusion prior to the formation of neurites in Neuro2a cells.

To address whether the altered exon inclusion levels in the

knockdown experiments were specifically caused by the

shRNA-reduced expression of nSR100, an RNAi-resistant form

of nSR100 mRNA was stably expressed in the nSR100 shRNA

knockdown line and splicing levels of several alternative exons

were monitored by RT-PCR assays. Expression of nSR100 in

the knockdown line, which was confirmed by western blotting

(Figure 3D, top panel, lanes 5 and 6), fully restored the inclusion

of the tested alternative exons (Figure 3D, lower three panels,

compare lanes 5 and 6 with 1–4). In contrast, stable expression

of another SR protein, SF2/ASF, did not function in this manner

Figure 3. nSR100 Regulates a Network of

Neural-Specific Alternative Splicing Events

(A) Strategy used for the global analysis of nSR100-

regulated AS. Black lines represent exon body and

exon junction probes used to monitor AS levels on

a custom microarray.

(B) Heatmap displaying microarray %ex values for

a subset of nSR100-regulated alternative exons.

Columns show microarray %ex predictions from

profiled adult mouse tissues and Neuro2a cells

expressing control or nSR100-targeting shRNAs,

and rows represent %ex predictions for individual

nSR100-regulated exons undergoing increased

skipping upon nSR100 knockdown. The AS

events are sorted in descending order according

to the magnitude of the %ex values in the control

shRNA-expressing Neuro2a cells. All AS events

displayed have detectable expression in whole

brain and at least two other tissues; white indi-

cates expression was below the threshold level

used to derive %ex estimates.

(C) RT-PCR assays using primers specific to the

constitutive exons flanking nSR100-regulated

alternative exons in Daam1, Clasp2, Dock4, and

Elmo2 transcripts. Bands corresponding in size

to exon-included and exon-skipped isoforms are

indicated.

(D) Neuro2a cell lines stably expressing control

(lanes 1, 3, and 5) or nSR100 targeting (lanes 2,

4, and 6) shRNAs and pWZL-hygro empty vector

(lanes 1 and 2), T7 epitope-tagged SF2/ASF (lanes

3 and 4), or nSR100 cDNA (lanes 5 and 6). Top

three panels show western blots monitoring the

expression of nSR100 (top panel), T7-tagged

SF2/ASF (middle panel), and a-tubulin (bottom

panel). Bottom three panels show RT-PCR assays

using primers to specifically monitor AS in the

Daam1, Zdhhc20, and Asph transcripts.

(Figure 3D, all panels, lanes 3 and 4).

These results support the conclusion

that nSR100 functions specifically to pro-

mote exon inclusion. The nSR100-regu-

lated exons were estimated to represent

�11% of AS events identified as being

differentially regulated in nervous system

tissues by microarray profiling (see the Supplemental Experi-

mental Procedures).

A Gene Ontology annotation enrichment analysis revealed that

genes containing nSR100-regulated exons are significantly en-

riched in functions associated with membrane dynamics and

cytoskeleton remodeling (Table S3), processes that are critical

for the differentiation of neurons and neurite extension. Also sup-

porting functional significance, nSR100-regulated alternative

exons are significantly more often frame preserving (66.7%

versus 45.4%; p < 0.005, Fisher’s exact test) and conserved in

human transcripts (62.8% versus 24.5%; p < 10�9, Fisher’s exact

test) than are the other profiled exons (Table S2). These results

thus reveal that nSR100 regulates a network of mostly con-

served AS events in functionally related genes that play impor-

tant roles in the formation and function of the nervous system.
902 Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc.



An nSR100 Regulatory Code
To gain insight into the mechanism by which nSR100 regulates

neural-specific AS, we identified motifs of 5–10 nucleotides in

length that are significantly enriched in the regulated alternative

and adjacent constitutive exons and in the 500 nucleotides of

intron sequence that flank these exons (Figure 4A; refer to the

Supplemental Experimental Procedures). The most enriched

and prevalent motifs are C/U rich and are specifically located

within the upstream and/or downstream intronic regions flanking

nSR100-regulated exons (Figure 4A, FDR-corrected p value

<0.01). Additional high scoring motifs were identified using the

same procedure (Figure S7; see the Discussion).

As a parallel approach to defining cis-regulatory elements, we

generated an AS minigene reporter (Daam1 FL) consisting of a

2.8 kb genomic fragment encompassing nSR100-regulated

Daam1 exon 16 (Figure 4B). Daam1 is required for neurite forma-

tion and outgrowth during development (Matusek et al., 2008),

and skipping of exon 16 in nonneuronal cells is predicted to

disrupt a formin homology-like domain that likely mediates

Figure 4. Elements of an nSR100 Regulatory Code

(A) Pyrimidine-rich motifs identified as significantly enriched in

the 500 nucleotides of upstream and/or downstream intron

sequence flanking nSR100-regulated alternative exons. Motifs

with FDR-corrected hypergeometric p value scores <0.01 are

shown.

(B) (Left) RT-PCR assays monitoring AS levels of Daam1 exon

16 minigene reporters transfected in NIH 3T3 cells and in

Neuro2a cells expressing control or nSR100-targeting

shRNAs. The lengths of upstream and downstream intron

sequence included in each minigene reporter are indicated

above the gel. (Right) The diagram indicates the length of

Daam1 genomic DNA sequence included in each minigene

reporter (green bars) and the degree of AS repressor activity

associated with these regions (indicated by pluses).

(C) RT-PCR assays monitoring the AS levels of transcripts

derived from additional Daam1 minigene reporters in Neuro2a

cells expressing control shRNA or nSR100-targeting shRNAs.

Gels on the left display AS patterns observed with reporters

containing either 271 or 250 nucleotides of upstream intron

sequence and 50 nucleotides of downstream intronic

sequence. Gels on the right display AS patterns from reporters

containing 483 and 146 nucleotides of upstream and down-

stream sequence, respectively, when region �271 to �250

and additional upstream pyrimidine nucleotides (up to posi-

tion �280; see Figure S8) are unchanged (�483 to 146) or

substituted (�483 to 146 mut) with an unrelated sequence

of equal length. Percent exon inclusion levels (%inc) are

shown below gel images in (B) and (C).

important interactions with signaling partners and

components of the cytoskeleton.

The Daam1 FL minigene reporter recapitulated

the AS pattern of endogenous Daam1 transcripts,

with the alternative exon displaying more inclusion

in Neuro2a cells expressing control shRNAs rela-

tive to cells expressing shRNAs targeting nSR100

(Figure 4B). Moreover, the inclusion of Daam1

exon 16 appears to be neural specific because

reporter transcripts expressed in NIH 3T3 and

myoblast C2C12 cell lines undergo complete

exon skipping (Figure 4B and data not shown). These results

indicate that cis elements required for nSR100-dependent regu-

lation of Daam1 exon 16 are contained within the 2.8 kb Daam1

FL reporter genomic fragment.

Deletion of the Daam1 reporter intron sequences followed by

refined mutagenesis revealed a region 250 to 271 nucleotides

upstream of the alternative exon that significantly affected

nSR100-dependent exon inclusion (Figures 4B and 4C). Deletion

of this region resulted in increased exon inclusion. This effect was

most pronounced in the nSR100 knockdown cell line (Figure 4C,

compare lanes 1 and 2). Similar effects were observed when this

region and neighboring nucleotides were substituted with unre-

lated sequence (Figure 4C, compare lanes 3 and 4). These results

indicate that this 21 nucleotide region contains a strong repressor

element that results in the skipping of Daam1 exon 16 in the

absence of nSR100. nSR100 thus appears to play a critical role

in overcoming the repressive effects exerted by this element.

In agreement with our computational analysis, the �271 to

�250 AS repressor region and its neighboring nucleotides are
Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc. 903



highly enriched in pyrimidine nucleotides (Figure S8) and two of

the computationally identified motifs overlap this region. There-

fore, both approaches to defining cis-regulatory elements

strongly implicate pyrimidine-rich motifs in nSR100-dependent

splicing regulation.

nSR100 Promotes nPTB Protein Expression
Pyrimidine-rich motifs have previously been implicated in neural-

specific regulation of AS involving PTB (also hnRNPI/PTBP1),

a widely acting splicing repressor, and its neural-enriched

paralog nPTB (also brPTB/PTBP2) (see the Introduction and

below). The switch from PTB to nPTB during neuronal differenti-

ation is regulated in part by a neuronal miRNA miR-124 (Makeyev

et al., 2007). In nonneuronal cells, expression of PTB results in

skipping of exon 10 in nPTB pre-mRNA and this leads to the

introduction of a premature termination codon that elicits

nonsense-mediated mRNA decay of nPTB transcripts (Boutz

et al., 2007; Makeyev et al., 2007; Spellman et al., 2007). In

neuronal cells, miR-124 repression of PTB facilitates nPTB

exon 10 inclusion and productive nPTB expression.

To address whether PTB and/or nPTB are involved in the regu-

lation of nSR100-dependent AS events, we knocked down these

factors individually or together using siRNAs (Figure 5A). As ex-

pected, knockdown of PTB led to increased inclusion of exon 10

in nPTB pre-mRNA. RT-PCR assays were then used to monitor

the AS levels of Daam1 exon 16 and nine randomly selected,

RT-PCR-validated nSR100-regulated exons (Figures 5A and S9).

In contrast to the effect of nSR100 knockdown, Daam1 exon

16 and eight of the nine other exons displayed increased levels

of inclusion when PTB levels were reduced and to a lesser extent

when nPTB was reduced. Simultaneous depletion of nPTB and

PTB resulted in levels of exon inclusion that were at least as

high and in some cases higher than the levels observed when

PTB was knocked down alone. These findings establish a wide-

spread role for PTB/nPTB in the repression of nSR100-depen-

dent AS events. More specifically, these proteins promote

skipping of the same exons that require nSR100 for neural-

specific inclusion. Consistent with a previous proposal (Markovt-

sov et al., 2000), the less repressive activity of nPTB relative to

PTB suggests that it might facilitate neural-specific AS by estab-

lishing complexes that are more permissive to positive acting

factors.

To further explore the functional relationship between nSR100

and PTB/nPTB proteins, we next asked, (1) does nSR100

promote neural-specific AS by regulating the relative levels of

nPTB and PTB proteins, (2) do PTB/nPTB bind directly to C/U-

rich sequences involved in mediating nSR100-dependent regu-

lation, and (3) does nSR100 act in a dominant-positive manner

to counteract the repressive activity of nPTB?

Our microarray profiling experiments (Figure 3) in fact pre-

dicted increased skipping of nPTB exon 10 in Neuro2a cells

depleted of nSR100 (Table S2). Confirming this prediction,

knockdown of nSR100, while not altering PTB mRNA or protein

levels, resulted in decreased inclusion of nPTB exon 10 and,

consequently, reduced levels of nPTB mRNA and protein

(Figure 5B). Consistent with the repressive effects of PTB and

nPTB on nSR100-regulated exons, both proteins bind directly

and specifically to C/U-rich intron regions upstream of Daam1
904 Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc.
exon 16 (Figures S8 and S10). However, essentially no binding

to these regions was observed when comparable levels of puri-

fied nSR100 (Figure S10A) were added alone or in combination

with PTB or nPTB (Figure S11A). At much higher amounts of

nSR100, a low level of binding was observed although this ap-

peared to be relatively less specific (Figure S11A).

Further supporting a critical role for nSR100 in promoting

neural-specific exon inclusion of PTB/nPTB repressed exons,

when nPTB is overexpressed in Neuro2a cells, increased skip-

ping of Daam1 exon 16 is observed (Figure S11B). However,

simultaneous overexpression of nSR100 and nPTB effectively

alleviates the repressive activity of nPTB and results in �100%

inclusion of Daam1 exon 16 (Figure S11B). This confirms that

nSR100 is required to promote the inclusion of neural-specific

exons in cells that also express nPTB.

nSR100 Promotes Neural-Specific Exon Inclusion
In Vitro
nSR100 appears to act together with nPTB and possibly other

factors to promote neural-specific exon inclusion. We next

asked whether nSR100 functions in this manner in vitro.

Splicing-competent extracts were prepared from neuronal

Weri-Rb1 cells and efficiently (>90%) immunodepleted of

nSR100 using affinity-purified anti-nSR100 antibody (Figure 1E)

or mock-depleted using rabbit anti-mouse antibody (Figure 5C,

compare lanes 1 and 2 with lanes 3 and 4). A T7-transcribed,

three-exon pre-mRNA consisting of Daam1 exon 16 with 280

nucleotides of upstream and 145 nucleotides of downstream in-

tronic sequence, inserted between strong constitutive exons

derived from an adenovirus pre-mRNA substrate (MINX), was

assayed for splicing activity in these extracts.

This substrate splices efficiently in the mock-depleted Weri

extract, producing exon 16 included and skipped transcripts

(Figure 5D, lane 2). When nSR100 is immunodepleted, in-

creased exon 16 skipping is detected (Figure 5D, lane 3),

whereas addition of increasing amounts of purified nSR100

protein results in �100% inclusion of exon 16 (Figure 5D, lanes

4–8). This activity is specific because addition of comparable

levels of the SR family protein SF2/ASF (Figure S10A) does

not result in a substantial increase in exon 16 inclusion (Fig-

ure 5D, compare lanes 4–8 with 9–13). Moreover, addition of

purified nSR100 protein to a HeLa splicing extract does not

promote the inclusion of Daam1 exon 16 (Figure 5E, compare

lanes 2–5 with 6–9). These results demonstrate that nSR100

functions to promote the inclusion of Daam1 exon 16 in a neural

cell extract. However, consistent with the results demonstrating

that nSR100 functions in part by promoting the expression of

nPTB, it is not sufficient to promote a neural-specific splicing

pattern in a nonneural extract.

We next performed in vitro and in vivo UV crosslinking followed

by immunoprecipitation (CLIP; Supplemental Experimental

Procedures) to establish whether, in the context of other cellular

factors, nSR100 interacts directly and specifically with its regu-

lated target pre-mRNAs. Anti-nSR100 antibody specifically en-

riched a radiolabeled protein approximately the size of nSR100

from Weri extract incubated and crosslinked in the presence of

a 32P-UTP-labeled Daam1 RNA consisting of the upstream in-

tronic regulatory sequences (Figure 5F, compare lanes 2 and 4).



Figure 5. nSR100 Functions by Promoting

nPTB Expression and by Binding to its

Regulated Target Transcripts

(A) (Left) RT-PCR assays monitoring steady-state

mRNA expression levels and AS patterns of

nSR100, PTB, nPTB, and Daam1 transcripts in

Neuro2a cells transfected with control siRNAs

(lane1) or siRNAs targeting PTB, nPTB, or both of

these factors. Expression levels of Gapdh tran-

scripts were monitored to control for recovery

and loading.

(B) RT-PCR assays monitoring the expression

levels and/or AS patterns of nSR100, PTB, nPTB,

and Gapdh transcripts in Neuro2a cells expressing

control or nSR100-targeting shRNAs (top four

panels). Western blotting (bottom three panels)

was performed using lysates from the cells as-

sayed in (A) and antibodies capable of detecting

PTB paralogs (a-pan-PTB) and nPTB specifically

(a-nPTB) (refer to Supplementary Data for addi-

tional details). Tubulin levels were monitored to

control for sample recovery and loading.

(C) Immunodepletion of nSR100 from splicing

competent Weri whole cell extracts. Western blot-

ting on extracts immunodepleted of nSR100

(DnSR100) using anti-nSR100 antiserum (lane 4)

and mock-immunodepleted (mock) using rabbit

anti-mouse antibody (lane 3). Two different

amounts of total extract, corresponding to 100%

and 10% of the amounts of extract loaded in lanes

3 and 4, are shown in lanes 1 and 2, respectively.

(D) Purified recombinant nSR100 protein specifi-

cally promotes the inclusion of Daam1 exon 16

in vitro. A T7 pre-mRNA transcript (see diagram)

consisting of strong constitutively spliced 50 and

30 exons (MINX) and Daam1 alternative exon 16,

flanked by its native upstream and downstream

intron sequence, was incubated in the Weri

extracts (C) supplemented with and without re-

combinant proteins (Figure S10A) and splicing

activity was monitored by RT-PCR assays and

primers specific for the MINX exons. The

DnSR100 extract was supplemented with 10, 25,

50, 100, and 200 ng of purified nSR100 protein

(lanes 4–8, respectively) or with 5, 12.5, 25, 50,

and 100 ng of SF2/ASF protein (lanes 9–13).

Splicing of the Daam1 pre-mRNA in the mock

and DnSR100 Weri extracts without added

proteins is shown in lanes 2 and 3, respectively.

Lane 1 shows input pre-mRNA.

(E) Recombinant nSR100 protein is not sufficient to promote Daam1 exon 16 inclusion in a nonneural origin (HeLa) cell extract. Weri and HeLa cell extracts were

incubated without (lanes 2 and 6) or with 10, 25, and 50 ng nSR100 protein, and splicing activity was monitored as described in (D). Input pre-mRNA is shown in

lane 1.

(F) Anti-nSR100 antiserum enriches a protein of the approximate size of nSR100 that is UV crosslinked to Daam1 intronic regulatory sequences. A radiolabeled T7

transcript consisting of the upstream intronic regulatory region (nucleotides �280 to �1) of Daam1 exon 16 was incubated under splicing conditions in Weri cell

extracts, without (lane 1) or with (lane 2) UV exposure, prior to extensive treatment of the extracts with RNase. Proteins in these extracts were immunoprecipitated

with anti-nSR100 (lane 4) or control (lane 3; rabbit anti-mouse antibodies). Total extract and immunoprecipitated proteins were separated on an SDS-PAGE gel,

which was dried and exposed to film. The asterisk denotes the crosslinked protein species migrating at approximately the same location as nSR100.

(G) CLIP reveals that nSR100 interacts directly with endogenous pre-mRNA transcript regions overlapping nSR100 regulated exons. Neuro2a cells were exposed

(lanes 1–5) or not exposed (lanes 6–10) to UV light. Immunoprecipitation was performed from lysates prepared from the cells using anti-nSR100 antibody (lanes 3,

5, 8, and 10) or a control (rabbit anti-mouse) antibody (lanes 2, 4, 7, and 9). Detection of immunoprecipitated pre-mRNA regions was performed using primer pairs

designed to amplify exon-intron regions within the nSR100 target genes Daam1, Asph, Elmo2, and Dock 4 and as controls to the nontarget genes Myo5a (false

positive from microarray predictions) and Pbrm1. RT was omitted from the PCR reactions in lanes 2, 3, 7, and 8 to control for possible genomic DNA contam-

ination.
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Using in vivo CLIP, anti-nSR100 immunoprecipitates were

analyzed by RT-PCR assays to detect intron-exon regions over-

lapping five validated, nSR100-regulated AS events. In all cases,

immunoprecipitation of these regions was observed (Figure 5G;

representative examples are shown) and was UV and anti-

nSR100 antibody dependent (Figure 5G, compare lanes 4 and

5 with 9 and 10). Moreover, little to no anti-nSR100 immunopre-

cipitation was detected for three regions overlapping profiled AS

events that are not regulated by nSR100 (Figure 5G, lower two

panels, and data not shown).

The results described above provide evidence that nSR100

establishes neural-specific AS patterns by forming direct inter-

actions with its regulated target transcripts, as well as by

promoting increased expression of nPTB.

Figure 6. nSR100 Regulates Vertebrate

Nervous System and Sensory Organ Devel-

opment

(A–C) RNA in situ hybridization assays monitoring

ZnSR100 expression in the developing zebrafish

embryo.

(A and A0 ) expression at 24 hpf, lateral and frontal

views, respectively.

(B and B0) nSR100 expression at 36 hpf, lateral and

dorsal views, respectively.

(C and C0) nSR100 expression at 48 hpf, lateral and

dorsal views, respectively.

(D) p53 morpholino antisense oligonucleotide

(MO) control-injected embryo at 50 hpf.

(E) p53 + ZnSR100 MOspl-injected embryo at

50 hpf.

(F) p53 + ZnSR100 MOspl-injected embryo at

50 hpf, rescued through coinjection of ZnSR100

mRNA.

(G–I) RNA in situ hybridization assays monitoring

islet-1 expression in 50 hpf embryos. p53-MO-in-

jected control (G), nSR100spl morphant embryo

(H), and nSR100spl morphant embryo rescued

through coinjection of 20 pg ZnSR100 mRNA (I)

are shown.

(J–M) Confocal projections of trigeminal ganglion

in Tg(sensory:GFP) transgenic embryos. Control

embryo at 30 hpf (J), representative nSR100spl

morphant embryo at 30 hpf (K), control embryo

at 36 hpf (L), and representative nSR100spl mor-

phant embryo at 36 hpf (M) are shown.

(N) nSR100-regulated alternative exons conserved

between zebrafish and mouse display altered

splicing patterns in nSR100spl morphant embryos,

relative to control embryos. Total RNA was isolated

from the heads of wild-type and nSR100spl mor-

phant embryos at 50 hpf, and semiquantitative

RT-PCR was performed to analyze AS patterns.

Percent exon inclusion values are shown below

each lane.

A Role for nSR100 in Nervous
System Development
The high degree of homology (Figure S2)

between mammalian and zebrafish

nSR100 (ZnSR100) indicates that its

function is likely conserved throughout

the vertebrate lineage. Accordingly, we next examined the distri-

bution and function of ZnSR100 in developing zebrafish

embryos.

ZnSR100 expression was examined by whole-mount RNA

in situ hybridization and no expression was detected prior to

gastrulation stages (data not shown). At 24 hr postfertilization

(hpf), significant expression was observed in the developing

brain, including the tectum (tec) and telencephalon (tel) (Figures

6A and 6A0). Expression was also observed around the trigeminal

ganglion (tg), at the mid-hindbrain boundary, and throughout the

hindbrain (hb). At 36 hpf, additional ZnSR100 expression was

observed in the cerebellum (cb) and within the retina (r) (Figures

6B and 6B0). At 48 hpf, stronger and more widespread ZnSR100

expression was detected throughout the developing eyes and
906 Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc.



brain (Figures 6C and 6C0). These results are highly consistent

with the expression and immunostaining data for mammalian

nSR100 (Figures 1 and 2).

To knock down ZnSR100 function we injected single cell-

staged embryos with an antisense morpholino oligonucleotide

(MOspl) targeted against the 50 splice site of exon 5 of

ZnSR100 pre-mRNA. Severe neural degeneration was observed

throughout the brain and spinal cord of 24 hpf embryos (data not

shown). This phenotype resembles a common off-target effect of

MO injection caused by induction of the p53-dependent cell

death pathway and can be circumvented by knockdown of

p53 activity (Robu et al., 2007). We therefore coinjected MOspl

together with p53-MO. RT-PCR assays confirmed that the

MOspl oligonucleotide caused nearly complete disruption of

splicing of ZnSR100 exon 5 to exon 6 (Figure S12). We therefore

expected efficient knockdown of ZnSR100 function.

At 50 hpf, control embryos injected with relatively high levels of

p53-MO alone appeared phenotypically normal (Figure 6D and

data not shown). In contrast, over 90% of MOspl-injected ‘‘mor-

phant’’ embryos exhibited consistent developmental abnormal-

ities that included a curved body axis and expanded brain ventri-

cles (n = 200; Figures 6E and S13). To examine neuronal

differentiation in nSR100 morphant embryos, we performed

RNA in situ hybridization for islet-1, a LIM homeodomain-

containing transcription factor that is an early marker for the

differentiation of diverse neuronal populations. At 24 hpf, islet-1

expression in ZnSR100 morphants appeared identical to p53-

MO-injected controls (Figure S14). Strikingly, islet-1 expression

in 50 hpf nSR100 morphant embryos was markedly reduced,

consistent with a severe disruption to neuronal differentiation

(Figures 6G and 6H; compare to Figure S14). These effects

were not due to significant developmental delay, as general

embryonic morphogenesis and patterning appeared normal in

nSR100 morphant embryos (Figure S13).

Similar phenotypes as observed in MOspl morphants were

observed after injection of a translation-blocking morpholino

targeted to the start codon of ZnSR100 (MOatg; data not

shown). Moreover, the morphological and neuronal differentia-

tion defects observed in ZnSR100 MOspl-injected embryos

could be rescued by coinjecting in vitro transcribed, capped

ZnSR100 mRNA (n = 42/52; Figures 6F and 6I). These results

further indicate that the observed phenotypes are not due to

off-target effects of MO injection, but rather are the specific

result of reduced ZnSR100 expression.

We next examined the consequence of knocking down

ZnSR100 function on the axonal extension and branching (arbor-

ization) of trigeminal sensory neurons. Trigeminal neurons are

among the first neurons to develop in vertebrates and begin to

display marked arborization at �16 hpf in zebrafish embryos.

To visualize axon arbors in vivo, we utilized Tg(sensory:GFP)

transgenic animals that drive GFP expression in Rohon-Beard

and trigeminal sensory neurons (Sagasti et al., 2005). Confocal

projections of trigeminal ganglia in control embryos at 30 hpf

(n = 7) and 36 hpf (n = 6) revealed multiple axonal projections

and an elaborate array of peripheral sensory arbors (Figures 6J

and 6L). In contrast, visualization of trigeminal sensory neurons

in ZnSR100 morphant embryos at 30 hpf (n = 7) and 36 hpf

(n = 6) revealed obvious defects in the formation of peripheral
sensory arbors (Figures 6K and 6M). As before, these defects

could be rescued by coinjection of ZnSR100 mRNA (Figure S15).

Together, the results described above indicate a critical role for

nSR100 in neuronal differentiation in a whole animal context.

Finally, we analyzed the effects of MOspl disruption of

ZnSR100 on the AS levels of exons that are conserved between

zebrafish and mouse. Reduced inclusion levels were observed

for 6/7 exons that require nSR100 for inclusion in Neuro2A cells,

whereas two conserved alternative exons that are not regulated

by nSR100 in Neuro2a cells were not affected (Figure 6N and

data not shown). These results, which additionally support the

specificity of the effects of MOspl-targeting of ZnSR100 func-

tion, lead us to conclude that nSR100 regulates a program of

AS events that is highly conserved between zebrafish and

mammals.

DISCUSSION

A Neural- and Vertebrate-Specific Activator
of Alternative Splicing
The discovery and characterization of nSR100 reveals how a

large set of brain-specific exons are positively regulated in genes

that play numerous critical roles in vertebrate nervous system

development. While the evolutionary origin of nSR100 is unclear,

its short region of perfect identity with an SRm300 splicing

factor-like protein and extensive SR/RS repeat regions (Figure 1)

suggests that a duplication event involving an ancestral

SRm300-related gene may have led to the emergence of

nSR100. Subsequently, nSR100 may have been coadopted

with nPTB and other factors to afford the evolution of increased

neural AS complexity. Consistent with the evolution of extensive

codependent functions, nPTB also appears to have evolved

around the time of emergence of the vertebrate lineage (Bar-

bosa-Morais et al., 2006), and both proteins are highly enriched

in postmitotic neurons relative to glial cells (Figure 2) (Boutz et al.,

2007). These observations support the conclusion that the emer-

gence of nSR100 played a critical role in the evolution of the

expanded proteomic and functional complexity of the vertebrate

nervous system.

Global and Local Roles for nSR100
in Neural-Specific Alternative Splicing
The global regulatory properties of nSR100 and its remarkably

tight neural-restricted expression pattern indicate that it serves

as the specificity factor for �11% of mammalian nervous

system-specific AS events (refer to the Supplemental Experi-

mental Procedures). While functioning in conjunction with

nPTB, it is possible that nSR100 also functions with other

neural-enriched AS regulators such as members of the Fox,

CUGBP/CELF, and MBNL families of proteins. In fact, our motif

analyses in the present study reveal putative binding sites for

several of these factors in the intronic sequences flanking

nSR100-regulated exons (Figure S7). Moreover, coimmunopre-

cipitation experiments reveal that nSR100 associates with

specific SR proteins recognized by the pan-SR-specific mono-

clonal antibody mAb104 (J.A.C, D.O, B.R., and B.J.B, unpub-

lished data).
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Together, these findings support a model (Figure 7) in which

nSR100 binds to target transcripts and functions with nPTB

and possibly other factors to overcome the repressive forces

of PTB during neural differentiation. This model is consistent

with emerging evidence for complex regulatory codes involving

combinations of different cis-regulatory elements bound by cor-

responding trans-acting factors in the regulation of neural-

specific AS events (Li et al., 2007). It is also consistent with the

established properties of SR family and SR-related proteins,

which interact with one another in different contexts to form posi-

tive-acting regulatory complexes on pre-mRNA (Lin and Fu,

2007). Indeed, the relatively large size of nSR100 and its exten-

sive RS domains suggests that it could form important interac-

tions with many splicing factors to promote exon inclusion in

neural cells.

Functions of an nSR100-Regulated Neural
Exon Network
Many nSR100-regulated exons are found in genes required for re-

modeling of the cytoskeleton, including several with neuronal

GTPase activity. Rho family small GTPases are key regulators of

the actin cytoskeleton during neuronal morphogenesis and

require guanine nucleotide exchange factors for activation

(Govek et al., 2005). Besides Daam1, which is required for the

activation of the GTPase RhoA (Habas et al., 2001), other

Figure 7. Model for nSR100-Dependent Regu-

lation of Neural-Specific Alternative Splicing

nSR100 activates the inclusion of neural-specific alter-

native exons in a regulatory circuit that involves the

switch between PTB and nPTB proteins. In one part

of this circuit, nSR100 promotes the inclusion of

exon 10 in nPTB pre-mRNA (green solid arrows),

leading to the increased expression of nPTB relative

to PTB, which facilitates but is not sufficient for

neuronal-specific alternative exon inclusion. In the

presence of nPTB and other factors, such as SR family

and/or SR-related proteins, nSR100 forges positive-

acting interactions by binding to its regulated target

transcripts.

nSR100-regulated exons are located in

Dock4 (a guanine nucleotide exchange

factor) and its binding partner Elmo2 (see

Figure 3). A complex of Dock4, Elmo2, and

adaptor protein CrkII promotes dendritic

growth and branching in hippocampal

neurons through the activation of another

small GTPase, Rac. These observations are

consistent with our finding that GTP-based

signaling represents one of the most highly

enriched functions associated with genes

that display nervous system-specific AS

(Fagnani et al., 2007). Detailed annotation of

the genes with nSR100-regulated exons that

have the potential to alter coding sequences

reveals that approximately half of the corre-

sponding proteins can be assembled into

a network, based on prior published evidence

for protein-protein interactions (J. Ellis, J.A.C, and B.J.B, unpub-

lished data). More than half of the regulated exons in this model for

an nSR100-regulated network are conserved between human

and mouse. It is therefore tempting to speculate that nSR100

target exons function in an elaborate protein-protein interaction

network that is critical for remodeling of the cytoskeleton during

neuronal differentiation. Future studies will be directed at eluci-

dating the functions of nSR100-regulated AS events.

EXPERIMENTAL PROCEDURES

Identification of RS Domain Protein Genes

Mammalian RS domain genes with tissue-restricted expression patterns were

identified using a two-step computational procedure (Figure 1A) coupled to an

analysis of mouse mRNA expression profiling data from 50 different cell and

tissue types. Refer to Table S1 for a complete annotated list of identified RS

domain genes.

Microarray Hybridization, Data Extraction, and Analysis

AS microarray profiling was performed using a new 244 K feature custom

oligonucleotide microarray (Agilent Technologies Inc.) representing �6700

cassette AS events from �5500 mouse genes. Mining of the AS events and

design of the microarray probe sets was performed essentially as described

in Pan et al. (2004).

RT-PCR Assays

Nonradioactive RT-PCR assays were performed using the OneStep kit

(QIAGEN), and radioactive RT-PCR assays were performed essentially as
908 Cell 138, 898–910, September 4, 2009 ª2009 Elsevier Inc.



described previously (Calarco et al., 2007). Primer sequences are available

upon request.

siRNA and Minigene Reporter Transfections

Neuro2a cells were transfected with SMART-pool siRNAs (Dharmacon) using

Dharmafect (Dharmacon), as recommended by the manufacturer. Daam1

minigene reporters and expression plasmids were transfected using Lipofect-

amine 2000 (Invitrogen), as recommended by the manufacturer. Total RNA

was collected 48 hr after transfection and isolated using RNeasy kits

(QIAGEN).

Recombinant Proteins and RNA Gel Mobility Shift Assays

Purified recombinant proteins were incubated with in vitro-transcribed, radio-

labeled transcripts and separated by nondenaturing PAGE. Gels were dried

and exposed to X-ray film (Kodak).

In Vitro Splicing Assays

In vitro splicing assays performed in 20 ml contained 1.5 mM ATP, 5 mM crea-

tine phosphate, 5 mM DTT, 3 mM MgCl2, 2.6% PVA, RiboLock RNase inhibitor

(Fermentas), 10 ng of splicing substrate, 40–60 mg of Weri or HeLa splicing

extract, and up to 12 mL buffer E. Reactions were incubated at 30�C for 1 hr

prior to RNA isolation. Spliced products were amplified by RT-PCR assays

using primers specific for MINX exons. RT-PCR products were resolved on

a 2% ethidium bromide-stained agarose gel stained and visualized using the

Gel Doc imaging system (Bio-Rad).

In Vitro Crosslinking and Immunoprecipitation

Weri cell extract was preincubated under splicing conditions in the presence

of 60 ng/mL tRNA for 8 min at 30�C. Radiolabeled RNA substrate was added

followed by incubation for 15 min at 30�C. Samples were irradiated with UV

light for 10 min on ice in a UV Stratalinker 1800 (Stratagene) at a distance of

1.5 cm from the light source, followed by digestion with 0.1 mg of RNaseA

for 15 min at 37�C. Samples were separated by SDS-PAGE and analyzed by

autoradiography.

Zebrafish Embryo In Situ Hybridization

and Oligonucleotide Injections

RNA in situ hybridizations were performed using nitroblue-tetrazolium chloride

and 5-bromo-4-chloro-indolyl-phosphate detection (Roche). Embryo staging

and analyses were performed using the TLxAB background. One cell stage

embryos were injected with 6 ng of antisense morpholino oligonucleotide

and 25 pg of capped ZnSR100 mRNA synthesized using the mMESSAGE

system (Ambion) as per the manufacturer’s recommendation.

ACCESSION NUMBERS

Preprocessed probe intensity scores for all AS microarray data is available

from the GEO database under accession number GSE16187.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, three

tables, and 15 figures can be found with this article online at http://www.cell.

com/supplemental/S0092-8674(09)00711-9.
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