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ABSTRACT
Oncogenic KRAS engages multiple effector pathways including the MAPK cascade to promote
proliferation and survival of pancreatic cancer cells. KRAS-transformed cancer cells exhibit
oncogene addiction to sustained activity of RAS for maintenance of malignant phenotypes.
Previously, we have shown an essential role for the RHO guanine exchange factor ARHGEF2 for
growth and survival of RAS-transformed pancreatic tumors. Here, we have determined that
pancreatic cancer cells demonstrating KRAS addiction are significantly dependent on expression of
ARHGEF2. Furthermore, enforced expression of ARHGEF2 desensitizes cells to pharmacological MEK
inhibition and initiates a positive feedback loop which activates ERK phosphorylation and the
downstream ARHGEF2 promoter. Therefore, targeting ARHGEF2 expression may increase the efficacy
of MAPK inhibitors for treatment of RAS-dependent pancreatic cancers.
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Introduction

The dependency on sustained flux through pro-prolifer-
ative signaling pathways leads to cellular vulnerabilities
that present opportunity for therapeutic intervention.
Constitutive activation of oncogenes such as RAS, can
lead to cellular addiction to continued expression of the
oncogene and its downstream activity.47 Therefore,
oncogenic signaling pathways are drug targets that can
be exploited to halt mechanisms required for cancer cell
growth and survival.

Small GTPases are molecular switches that cycle
between active GTP-bound and inactive-GDP bound
forms that regulate a variety of cellular signaling events
including growth, cellular differentiation, cell motility and
survival.12,23 Arguably the most common of the small
GTPases, the Ras superfamily, include 5main familymem-
bers Ras, Rho, Ran, Rab, and Arf. These families can be fur-
ther divided into subfamilies that share the common core
G domain providing essential GTPase and nucleotide
exchange activity to regulate discrete cellular processes.14,48

RAS is the prototypical member of the Ras family and
is encoded by 3 proto-oncogenes, KRAS, HRAS and
NRAS, which are frequently found mutated in human
cancers.13 Of these, KRAS mutations are most frequent,

and are present in 33% of all tumors, including 95% of
pancreas, 61% of colon and 17% of lung cancers. KRAS
activation is coupled to transcription through the
activation of multiple effector pathways including RAF-
MAPK, PI3K, RALGDS, TIAM1-RAC and ARHGEF2-
RHOA that underlie the phenotypes associated with
pancreatic and other cancers.9-11,15,31,37,41 Finding thera-
peutically tractable targets in RAS effector pathways is
critical for effective treatment of RAS driven cancers.

Pancreatic cancer is a highly metastatic deadly solid
malignancy with a 5 y survival rate of less than 5%. Acti-
vating mutations in KRAS are nearly ubiquitous in
pancreatic ductal adenocarcinoma (PDAC) occurring in
90–95% of cases.1,24,42 Since mutation of KRAS is an
important driver of PDAC often occurring with up regu-
lation and hyperactivation of EGFR1/2, suggests phar-
macological agents aimed at inhibition of the MAPK
pathway offer promising treatments.2,7,25,46 However,
combined treatment of MAPK inhibitors with current
chemotherapy agents such as gemcitabine do not improve
clinical outcome.18,30,45 The effectiveness of pharmacolog-
ical agents that target KRAS effectors often results in acti-
vation of compensatory pathways that limit their efficacy

CONTACT Oliver A. Kent kent.uhn@gmail.com; Robert Rottapel rottapel@gmail.com Princess Margaret Cancer Centre, 101 College Street TMDT
12–701, Toronto ON M5G 1L7.
yThese authors contributed equally.
© 2017 Taylor & Francis

SMALL GTPASES
2017, VOL. 0, NO. 0, 1–8
https://doi.org/10.1080/21541248.2017.1337545

https://crossmark.crossref.org/dialog/?doi=10.1080/21541248.2017.1337545&domain=pdf&date_stamp=2017-06-30
mailto:kent.uhn@gmail.com
mailto:rottapel@gmail.com
https://doi.org/10.1080/21541248.2017.1337545


highlighting the importance of identifying mechanisms of
adaptive response to MAPK inhibitory agents.

The RHO guanine exchange factor ARHGEF2 (also
known as GEF-H1) is a microtubule associated guanine
exchange factor and Dbl family member demonstrating
exchange activity toward RHOA.34 ARHGEF2 was found
to contribute to cell survival and growth in KRAS and
HRAS-transformed cells.9 Furthermore, the oncogenic
potential of ARHGEF2 has been demonstrated in NIH-
3T3 fibroblast transformation assays in nude mice.3

ARHGEF2 plays a critical role in supporting RAS trans-
formation as depletion of ARHGEF2 hinders the growth
of pancreatic xenografts in vivo.9 We have found that
ARHGEF2 is a transcriptional target of oncogenic KRAS
and the ARHGEF2 promoter is transactivated down-
stream of multiple signaling pathways including MAPK
and PI3K.20

It is possible that RAS activation of the MAPK path-
way is coupled to microtubule function through ARH-
GEF2 to promote and coordinate mitogenic signals with
changes in cell shape, migration and morphogenesis.
Indeed, cellular perturbation by mechanical strain has
been shown to activate ERK in a RHOA dependent man-
ner.22,39 Previously, we have demonstrated that ARH-
GEF2 contains negative regulatory sequences between
amino acids 87–151 which sequester ARHGEF2 to the
microtubules.26 Lacking the microtubule binding domain,
ARHGEF2D87–151 interacts with KSR-1, the best character-
ized scaffold for the MAPK pathway and was sufficient
for activation of MEK1/2 and ERK1/2 phosphorylation in
the absence of either PDGF or oncogenic RAS.9

Expression of ARHGEF2 is correlated with KRAS
dependency and growth of pancreatic cancer cell
lines

Previous studies have described a spectrum of KRAS
dependency for a panel of KRAS mutant cancer cell
lines.40 Since RNAi knockdown of KRAS in some cell
lines activates apoptosis, the strict operational definition
of “KRAS addiction” required that KRAS knockdown
induced caspase-3 cleavage. This definition established a
RAS dependency index (DI) for multiple lung and pan-
creatic cancer cell lines harboring KRASmutations.

Using the validated shRNAs for KRAS described previ-
ously,40 we subjected a panel of PDAC cell lines to
shRNA mediated KRAS knockdown to establish a RAS
DI for commonly used PDAC cell lines (Fig. 1A). Most of
the cell lines tested demonstrated exquisite sensitivity to
KRAS ablation with the exception of KP4 which was rela-
tively resistant to shRNA mediated KRAS depletion. These
results demonstrate multiple cell lines are dependent on
the sustained expression of KRAS for growth and viability.

Since ARHGEF2 is required for pancreatic cancer cell
growth and survival, we queried if the panel of PDAC
cell lines were dependent on sustained ARHGEF2 expres-
sion. Using previously validated shRNAs for ARHGEF2,9

we subjected the same panel of PDAC cell lines described
above to shRNA mediated ARHGEF2 knockdown to
establish dependency of cell lines on ARHGEF2 expres-
sion for growth (Fig. 1B). Similar to KRAS knockdown,
most of the cell lines tested demonstrated striking sensi-
tivity to ARHGEF2 ablation with the exception of KP4
which was relatively insensitive to either shRNA target-
ing ARHGEF2. As we anticipated, these results mirrored
the sensitivity to KRAS knockdown. When LOG2 trans-
formed DI for ARHGEF2 was plotted versus the DI for
KRAS we observed a linear relationship with an R2 Pear-
son correlation of 0.99 (Fig. 1C; P D 2.0 £ 10¡4). In
addition, we also observed a significant Pearson correla-
tion of 0.85 between ARHGEF2 mRNA expression and
the LOG2 ARHGEF2 DI in the panel of cell lines
(Fig. 1C inset; p D 0.01). Collectively, these results show
that PDAC cell lines which are KRAS dependent are also
ARHGEF2 dependent.

Consistent with previous results, when either Panc-
1 or Miapaca-2 cells were treated with siRNA target-
ing KRAS a significant decrease in ARHGEF2 expres-
sion was observed (Fig. 1D). The reduced ARHGEF2
expression observed with KRAS knockdown was of
similar level as that seen by targeting ARHGEF2 with
siRNA directly (Fig. 1D). We hypothesized that ARH-
GEF2 knockdown would phenocopy KRAS knock-
down in activation of apoptosis in PDAC cells with
high DI. Therefore, we assessed levels of caspase-3
cleavage in Panc-1 and MiaPaCa-2 cells, cell lines at
the opposite spectrum of RAS-ARHGEF2 DI treated
with siRNA targeting either KRAS or ARHGEF2.
Panc-1 cells were relatively KRAS and ARHGEF2
independent by the DI prediction (Fig. 1C) and dem-
onstrated a relatively low apoptotic response when
treated with siRNA targeting either KRAS or ARH-
GEF2 (Fig. 1D). In contrast, MiaPaCa-2 cells were the
most KRAS and ARHGEF2 dependent cell line by
the DI prediction in the panel of cell lines tested
(Fig. 1C), and demonstrated a high apoptotic
response as measured by caspase-3 cleavage when
either KRAS or ARHGEF2 were knocked down
(Fig. 1D). We also observed a reproducible reduction
in sustained activity of the MAPK pathway in Mia-
PaCa-2 cells treated with siRNAs targeting either
KRAS or ARHGEF2 as measured by decreased ERK1/
2 phosphorylation (Fig. 1D). These results highlight
an essential role for ARHGEF2 cooperativity with
oncogenic KRAS required for optimal activation of
the MAPK signaling pathway.
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Activation of ARHGEF2 promotes an adaptive escape
pathway from MEK inhibition

Previous studies have shown that cancer cells can activate
adaptive response pathways downstream of PI3K, Wnt or
TGF-b to maintain cell survival and proliferation following

MEK1/2 inhibition.36We find these pathways also activate a
minimal ARHGEF2 promoter reporter construct20 suggest-
ing that up regulation of ARHGEF2 could be an underlying
mechanism for cellular escape fromMEK inhibition. There-
fore, we hypothesized that ectopic expression of ARHGEF2
would desensitize cells toMEK1/2 inhibition.

Figure 1. ARHGEF2 expression correlates to KRAS dependency and influences survival. (A, B) Growth curves and western blots of the
indicated cell lines expressing shRNA GFP control or one of 2 shRNAs targeting KRAS (A) or one of 2 shRNAs targeting ARHGEF2 (B).
Growth rates were monitored over the indicted time course using the Essen Incucyte Zoom. Western analysis of KRAS and ARHGEF2
expression was examined 72 hours post infection. Quantification of KRAS (A) and ARHGEF2 (B) is indicated. (C) Correlation between the
LOG2 normalized dependency index (DI) for ARHGEF2 and KRAS in the indicated pancreatic cancer cell lines. Cells were treated with
KRAS or ARHGEF2 targeting shRNAs for 5 d and dependency index (DI) was calculated (see methods). Inset: b-actin normalized expres-
sion of ARHGEF2 mRNA in the indicated pancreatic cancer cell lines. The p-value indicates significant Pearson correlation between ARH-
GEF2 mRNA and LOG2 ARHGEF2 DI. (D) Western blot analysis of cleaved caspase-3 and p-ERK activation in Panc-1 and MiaPaCa-2 cell
lines following acute knockdown of KRAS or ARHGEF2 with siRNA (siRNA 5 nM final). Lysates were probed with indicted antibodies
72 hours post transfection. Quantification of p-ERK is the average from 4 independent measurements.
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Since active ARHGEF2D87–151 was shown to induce
ERK1/2 phosphorylation,9 we challenged MiaPaCa-2
cells containing a doxycycline (dox) inducible
ARHGEF2D87–151-GFP to grow in the presence of multi-
ple doses of the MEK1/2 inhibitor AZD6244. Currently
in clinical trials, AZD6244 is a potent MEK1/2 inhibitor
with IC50 of 14 nM and blocks ERK1/2 activation in
PDAC and colorectal cancer cell lines.49 In the absence
of dox, AZD6244 impaired MiaPaCa-2 cell proliferation
with concomitant block in ERK1/2 phosphorylation
(Fig. 2A and B; -dox). In contrast, induction of active
ARHGEF2 expression by dox mitigated the effect of
AZD6244 on MiaPaCa-2 cell proliferation even in the
presence of high doses of drug (Fig. 2A; Cdox). The
enforced expression of ARHGEF2D87–151-GFP potently
activated ERK1/2 phosphorylation even at AZD6244
doses where MAPK signaling was inhibited in the
absence of dox (Fig. 2B).

We previously demonstrated that expression of
ARHGEF2 is activated through the MAPK pathway
via a minimal RAS-responsive ARHGEF2 promoter

(AP-min). We envision that the AP-min construct
can be used as a reporter for MAPK activity or sig-
naling pathways that are able to activate expression of
ARHGEF2. Using MiaPaCa-2 cells with dox inducible
ARHGEF2D87–151-GFP, we find luciferase expression
from the AP-min construct was potently enhanced in
cells treated with dox compared with empty vector
control (Fig. 2C). Furthermore, dox induced
ARHGEF2D87–151-GFP can active the AP-min pro-
moter in the presence of AZD6244 (Fig. 2C). These
results demonstrate that expression of ARHGEF2
establishes a positive feedback loop that activates the
expression of ARHGEF2 through activation of the
MAPK pathway and provides a mechanism for cellu-
lar escape from pharmacological MEK inhibition. We
are currently conducting small molecule screens to
uncover the determinants of ARHGEF2 promoter reg-
ulation that will in combination with existing treat-
ment regimes, increase the efficacy of MEK1/2
inhibitors in clinical trials for treatment of PDAC
and other RAS dependent cancers.

Figure 2. Enforced ARHGEF2 expression desensitizes cells to AZD6244 treatment via activation of the MAPK pathway. (A) Growth curves
of doxycycline inducible ARHGEF2D87–151-GFP-MiaPaCa-2 cells grown in the absence (open shapes, low ARHGEF2) or in the presence of
doxycycline (filled shapes, high ARHGEF2) treated with the indicated doses of AZD6244. Growth rates were monitored over the indicted
time course using the Essen Incucyte Zoom. (B) Western blot analysis of p-ERK activation in doxycycline inducible ARHGEF2D87–151-GFP
MiaPaCa-2 cells grown in the absence [-dox] or in the presence of doxycycline [Cdox]. Lysates were probed with the indicted antibodies
24 hours post induction of ARHGEF2D87–151-GFP. GAPDH served as a loading control. Quantification of p-ERK is indicated. (C) Normalized
luciferase activity generated from the minimal ARHGEF2 promoter (AP-min) or pGL3-Basic empty vector control (EV) transfected in doxy-
cycline inducible ARHGEF2D87–151-GFP MiaPaCa-2 cells grown in the absence [-] or in the presence of doxycycline [C]. Cells were treated
with the indicated doses of AZD6244 8 hours after induction of ARHGEF2. Luciferase activity was normalized to renilla expression and
data are plotted as the fold change over empty vector. Error bars represent standard deviations from 3 independent transfections.
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Discussion

The multistage process of cancer development is driven
by the acquisition of genetic lesions that initiate and
maintain cancer cell proliferation and survival.29,47 In
some cases cancer cells can become dependent on or
addicted to one or several oncogenes driving tumor initi-
ation and/or tumor growth.16 The concept of “oncogene
addiction” is also supported by preclinical and clinical
data and suggests many cancers are sensitive to the inhi-
bition of a single oncogene.29 In the present study, we
show that a panel of PDAC cell lines demonstrates a
continuous distribution of KRAS dependency which cor-
relates highly to ARHGEF2 dependency. These data sug-
gest that one feature of KRAS dependency is coupled to
the expression of ARHGEF2. Interestingly, circulating
pancreatic tumor cells following surgery express a cell
motility gene signature that includes increased levels of
ARHGEF2 which was found to negatively predict overall
survival.38 Taken together, targeting ARHGEF2 may be a
novel therapeutic approach for treatment of RAS-depen-
dent cancers.

Despite the high frequency of oncogenic RAS muta-
tions in cancer,32 there are no clinically successful drugs
that target RAS proteins directly. RAS has been viewed
as a challenging target due to an apparent lack of drug-
gable pockets.8,28 In fact, the NCI launched a ‘RAS Proj-
ect’ in 2013 aimed at renewing efforts to find clinical
inhibitors of RAS signaling. A large body of evidence
suggests that RAS is a clinically relevant target since con-
tinued expression of mutant RAS is necessary for tumor
initiation and maintenance. For example, RNAi knock-
down of RAS has been shown to impair the in vitro and
in vivo growth of PDAC cell lines.4 Similarly, in mouse
models of PDAC driven by an inducible mutant RAS,
lesions depended on continuous RAS expression for
maintenance.6,50 However, after prolonged KRAS inacti-
vation renewed tumor growth upon KRAS reactivation
rapidly led to acquisition of resistance.6

RHO has a demonstrated role in the RAS-transforma-
tion program5,33,35 and can affect tumorigenic processes
in multiple cancers.43 Unlike RAS however, mutations of
RHO in cancers are rare44 suggesting RHO hyperactiva-
tion likely occurs through dysregulation of RHOGEFs
and/or RHOGAPs downstream of oncogenes such as
RAS. Although our results show that ARHGEF2 is essen-
tial for the survival of PDAC cells likely through regula-
tion of the MAPK pathway, whether the dependency on
ARHGEF2 requires its RHOGEF activity remains to be
determined. The enforced expression of ARHGFE2
could promote signal diversification to potentiate posi-
tive feedback through the MAPK pathway and increase
RHOA-GTP signaling.20 Whether these 2 events are

mechanistically linked is unclear. In HRAS transformed
MEFs however, ERK1/2 phosphorylation by ARHGEF2
did not require its RHOGEF activity.9 In addition, previ-
ous studies have found that RHOA activation by onco-
genic RAS may depend on cytosolic p190-RHOGAP
activity5 rather than overexpression of a RHOGEF.

In the present study, we have used a constitutively
active ARHGEF2 construct unable to associate with
microtubules to uncouple localization and function.
Microtubule repressed RHO signaling has been attrib-
uted to the microtubule sequestration of ARHGEF2 in
an inactive state.21 Previously, we have found that phar-
macological disruption of microtubules by nocodazole
induces microtubule depolymerization and released
ARHGEF2 from the microtubules resulting in a spatially
defined activation of RHOA.26 Furthermore, we have
found that wild type MEFs treated with nocodazole
potently activate ERK whereas ARHGEF2¡/¡MEFs do
not (Sandi and Rottapel, unpublished). These data estab-
lish a link between microtubule stability and the activa-
tion of RHO and RAS signaling pathways dependent on
the cellular localization and therefore activation of
ARHGEF2.

While RAS-effectors offer potential for therapeutic
intervention, the efficacy of RAF and MEK inhibitors
is primarily limited by the development of drug resis-
tance. For example, the initial clinical response to
Vemurafenib (a BRAF inhibitor) can be impressive in
certain individuals but tumor resistance usually occurs
after several months of treatment. Mechanisms of
resistance include mutational activation of NRAS or
receptor tyrosine kinase (RTK)-mediated activation
of RAS, both leading to CRAF-dependent activation of
MEK-ERK signaling.19,27 MEK has also become an
attractive drug target and offers the promise of a novel
therapeutic approach for RAS-mutant tumors.36

AZD6244 is an allosteric MEK1/2 inhibitor that is
highly selective, but has been found to exhibit modest
clinical activity as a single agent and may show greater
efficacy in combination therapies.36 We have shown
that enforced expression of active ARHGEF2 in Mia-
PaCa-2 cells can activate ERK1/2 phosphorylation in
the presence of relatively high doses of AZD6244.
Interestingly, AZD6244 in combination with doce-
taxol, a microtubule stabilizing agent and hence deacti-
vator of ARHGEF226 results in regression in human
tumor xenograft models and is currently being investi-
gated in clinical trials.17 Other reported mechanisms
of MEK inhibition have been described including
increased RAF dimerization, down regulation of the
RASGAP NF1, and up regulation of RTKs which pro-
mote increased flux through the ERK signaling
pathway.36
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In summary, we have determined that PDAC cells
demonstrating KRAS addiction are significantly depen-
dent on expression of ARHGEF2. The results presented
here and in our previous studies, show ARHGEF2 signal-
ing activates a positive feedback loop amplifying the
MAPK pathway and is required for growth and survival
of RAS-transformed cancer cells. Targeting ARHGEF2
expression and signaling may increase the efficacy of
MAPK pathway inhibitors and inhibitors of other RAS
effectors for treatment of pancreatic cancer.

Methods

Cell culture

All cell lines used in the study (ATCC) were cultured as
described previously.9 For siRNA mediated knockdown,
cells (5.0 £ 105) were transfected with siRNA against
KRAS (siGenome) or ARHGEF2 (Silencer select, Invitro-
gen) at 5 nM final concentration using RNAiMax (Invi-
trogen) according to the manufacturer’s protocol.
Knockdown was confirmed by western blot. Stable
ARHGEF2D87–151-GFP inducible cells were established as
described previously.20 To induce ARHGEF2D87–151-GFP
expression, cells were grown in media supplemented
with 0.1mg/mL doxycycline.

ARHGEF2 expression analysis

Cells were transfected with siRNA against KRAS (siGe-
nome) or ARHGEF2 (Silencer select, Invitrogen) at 1–
5 nM final concentration using RNAiMax (Invitrogen)
according to the manufacturer’s protocol. Total RNA
was isolated from cells with TRIZOL (Invitrogen).
cDNAs were made using the QuantiTect kit (Qiagen).
QPCR was performed using an ABI7900 system with the
Fast-SYBR Green PCR core reagent (Applied Biosys-
tems). Expression of ARHGEF2 normalized to b-actin.
Primer sequences as described previously.20

Promoter assays

Luciferase reporter assays were conducted using the Dual-
Luciferase Reporter Assay System (Promega) and reading
on a Glo-Max dual injector luminometer (Promega) as
described previously. The ARHGEF2 promoter (AP-min)
was defined as ¡264 to C23 relative to the TSS and cloned
into pGL3-Basic (Invitrogen) as described previously.20

Relative dependency index

Transient shRNA knockdown of ARHGEF2 and KRAS was
accomplished with lentivirus as described previously.9 Cell

lines were infected with hairpin control (shGFP) or ARH-
GEF2 targeting shRNAs (shARHGEF2–1 and shARH-
GEF2–2) in parallel at an MOI of 5. After 48 hours of
puromycin selection, infected cells were counted and
replated at equal cell densities in 96 well plates in quadrupli-
cate. Relative cellular viabilities were measured by quantitat-
ing optical densities (ODs) using AlamarBlue (Thermo-
Fisher Scientific) when shGFP control-expressing cells
reached confluence. ODs were used to calculate the relative
dependency index using the formula: RDI at MOI of 5 D
(1/OD shARHGEF2–1 C 1/OD shARHGEF2–2) x
ODshGFP (in each cell line tested). Proliferation rates were
measured by plating 5000 cells/well in a 96-well plate and
monitoring growth with Essen Incucyte Zoom (Essen
Biosciences).

Statistical analysis

Statistical analysis was done using Student’s t-test,
assuming equal variance, and p-values were calculated
based on 2-tailed test.

Western blot

Cells were lysed with 2X sample buffer and boiled to
denature proteins. Standard protocols for western blots
were followed and blots were imaged and quantified
with BIO-RAD Quantity One. Antibodies used are as
described previously.20
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