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(“synthetic lethality”) can arise as a consequence of the genetic 
abnormalities in cancer cells, as illustrated by the sensitivity 
of BRCA1/2-mutant breast cancer cells to PARP inhibitors 
(7, 8). The systematic identification of such synthetic lethal 
relationships might suggest new drug targets (9). Comparison 
of the genetic abnormalities and functional  vulnerabilities of 
cancer cells should help researchers identify new drivers and 
provide insight into the complex systems biology of cancer.

RNA interference technology has enabled genome-wide 
loss-of-function screens in mammalian cells. Most screens 
have used siRNAs, usually arrayed in multiwell plates. 
Arrayed screens have focused mainly on specific gene fami-
lies, such as kinases, phosphatases, or selected candidate 
genes, and have yielded new insights into mechanisms of 
cancer cell signal transduction, cell division, and cell death 
(10, 11). Cell proliferation assays in multiwell plates are 
usually constrained to a few population doublings, and 
gene “knockdowns” in these conditions typically last for 
at most a week. Therefore, siRNA screens are, by nature, 
transient, and might underestimate the roles of long-lived 
proteins on a given phenotype. Moreover, given their cost 
and the need for extensive automation to interrogate most 
of the genome, siRNA screens usually are performed on only 
limited numbers of cell lines and might fail to capture the 
genetic heterogeneity in cancer. These properties make it 
difficult to use arrayed screening approaches to construct 
extensive functional genomic maps of cancer cells.

The more recent development of large retroviral- or lenti-
viral-based short hairpin RNA (shRNA) libraries facilitates 
genome-wide screening of cultured cancer cells in a pooled for-
mat (12–14), providing a potential solution to the limitations 
of arrayed screens. Cells are infected with these libraries at a 
low multiplicity of infection (MOI) and allowed to proliferate 
for 3 to 4 weeks, after which shRNAs that have been selectively 
depleted (referred to as “dropouts”) or enriched are identified 

Genomic analyses are yielding a host of new information on the multiple genetic 
abnormalities associated with specific types of cancer. A comprehensive de-

scription of cancer-associated genetic abnormalities can improve our ability to classify tumors into 
clinically relevant subgroups and, on occasion, identify mutant genes that drive the cancer pheno-
type (“drivers”). More often, though, the functional significance of cancer-associated mutations is 
difficult to discern. Genome-wide pooled short hairpin RNA (shRNA) screens enable global identifi-
cation of the genes essential for cancer cell survival and proliferation, providing a “functional ge-
nomic” map of human cancer to complement genomic studies. Using a lentiviral shRNA library 
targeting ~16,000 genes and a newly developed, dynamic scoring approach, we identified essential 
gene profiles in 72 breast, pancreatic, and ovarian cancer cell lines. Integrating our results with cur-
rent and future genomic data should facilitate the systematic identification of drivers, unantici-
pated synthetic lethal relationships, and functional vulnerabilities of these tumor types.

SIGNIFICANCE: This study presents a resource of genome-scale, pooled shRNA screens for 72 
breast, pancreatic, and ovarian cancer cell lines that will serve as a functional complement to ge-
nomics data, facilitate construction of essential gene profiles, help uncover synthetic lethal rela-
tionships, and identify uncharacterized genetic vulnerabilities in these tumor types. Cancer Discovery; 
2(2); 172–89. ©2011 AACR.

INTRODUCTION
Recent technological advances have revolutionized our 

understanding of cancer genetics. Transcriptional profiling, 
copy number variation, and deep sequencing have revised 
the classification of many tumors into molecular subtypes 
that provide improved prognostic information compared 
with conventional clinical and histopathologic classifica-
tion schemes (1, 2). Yet often, these subtypes provide little 
functional information about the molecular events that drive 
cancer cell behavior. Genome-wide sequencing studies have 
identified hundreds to thousands of mutations in individual 
tumors (3–6), yet it frequently is difficult to know which of 
these are essential for pathogenesis (i.e., “drivers”), as opposed 
to “passenger” mutations. Even when a driver oncogene (e.g., 
KRAS, MYC) or tumor suppressor gene (e.g., TP53, BRCA1/2) 
is known, these can be poor targets for drug development. 
In addition, unanticipated gene/pathway  dependencies 
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our confidence in the essentiality score derived for each gene. 
We also developed a set of heuristics to classify shRNAs as 
fast, continuous, or slow dropouts, based on the rate at which 
an shRNA disappeared from the bulk population of cells 
during the screen (see Methods and Supplementary Table 
S3). Examples of these profiles are shown at the right of 
Figure 1A. Using heuristics designed to identify the most po-
tent shRNAs in the fast, continuous, or slow classes resulted 
in the classification of ~2% of the shRNAs in the library into 
one of these categories, with 40% fast, 30% continuous, and 
30% slow dropouts. These classification criteria largely re-
stricted hairpins to a single class. Moreover, dropout behav-
ior largely appeared to be characteristic of the gene targeted 
by the hairpin rather than the shRNA itself: within any cell 
line, a given gene almost always fell into a single dropout 
class (Fig. 1B). Altering our heuristics would allow us to clas-
sify more hairpins but would result in greater overlap be-
tween dropout classes and also lead to classification of less 
potent hairpins. On average, ~0.4% of shRNAs were enriched 
in any given cell line; due to our shRNA bar code detection 
procedures (see Supplementary Table S4 and Methods), this 
is almost certainly a substantial underestimate of the true 
number of enriched hairpins (see Discussion).

To explore the hypothesis that classes of shRNAs are re-
lated to functional categories, we compared the biological 
functions of the gene targets [as assessed by gene ontology 
(GO) categories] of hairpins classified only as fast or continu-
ous dropouts with those classified only as slow dropouts. Fast 
and continuous dropout shRNAs target genes enriched for 
the proteasome (e.g., PSMA1, PSMB2), ribosome (e.g., RPS17), 
splicing machinery (e.g., SNRPD2, SF3B2, AQR, HNRNPC, 
THOC1), metabolism of proteins (e.g., ARCN1, COPZ1), tran-
scription (e.g., POLR2D, POLR2E, PABPN1), and translation 
(e.g., EIF3B), all of which are highly conserved housekeeping 
functions (Fig. 1C and Supplementary Fig. S1). Conversely, 
shRNAs classified as slow dropouts target genes that are en-
riched for regulation of protein phosphorylation, signaling, 
signal transduction, and kinase activity (e.g., PTPRG, EPGN, 
PPP1R3B, RNF128, SERPINA3, CSNK2B, ST3GAL3, UBOX5, 
TNKS2). These results suggest that classifying hairpins on the 
basis of dropout rate reveals different functional properties 
of the genes that they target, providing further evidence that 
hairpin behavior usually reflects the properties of the under-
lying target gene, rather than the specific hairpin per se.

Validation of Fast and Slow Dropouts Defined by 
Hairpin Class

To assess further the validity of our results, we performed 
secondary screens using an orthogonal, siRNA-based as-
say. Fifty genes (Supplementary Table S5) available in the 
Dharmacon SMARTpool siRNA library were selected for fur-
ther analysis. All of the shRNAs for each gene chosen fell into 
a single dropout class in our original screen, representing ei-
ther the fast (n = 17) or slow (n = 33) categories. The chosen 
siRNAs were transfected into MDA-MB-231, MIA PaCa-2, and 
KP-4 cell lines. After 7 days, cells were enumerated and com-
pared with a mock-transfected population. Most (80%–93%) 
of the fast dropout and 29% to 38% of the slow dropout genes 
inhibited growth significantly (Supplementary Table S5B; 
adj. P < 0.05, Wilcoxon rank sum test) in this assay (Fig. 1D 

on custom microarrays or by deep sequencing. Pooled screens 
have been used to define genes necessary for cancer cell pro-
liferation/survival in cell culture (12–14), genes that enhance 
or interfere with the action of specific oncogenes (15), or 
genes that enhance the effects of antineoplastic drugs, sug-
gesting potential new combination therapies (16, 17).

Most large-scale pooled shRNA screens have surveyed 
cancer cell lines representing multiple histotypes but usu-
ally with few representatives of any one tumor type, or they 
have focused on cell lines from different histotypes bearing 
the same genetic abnormality (e.g., KRAS mutations) (15, 
18). As an initial step toward a more comprehensive un-
derstanding of the vulnerabilities of breast cancer (BrCa), 
pancreatic ductal adenocarcinoma (PDAC), and high-grade 
serous ovarian carcinoma (HGS-OvCa), we performed near 
genome-wide pooled shRNA screens on 72 cancer cell lines 
and established a unique informatics approach to monitor 
the dynamic evolution of cancer cell populations. We chose 
breast cancer because the extensive genomic information 
and subtype classification schemes that exist for this tu-
mor type facilitate integrated genomic/functional genomic 
analysis. Ongoing genomic efforts should provide similar 
information for PDAC and HGS-OvCa, but we focused on 
these malignancies primarily because they typically are de-
tected at an advanced stage, their prognosis remains dis-
mal, and there is therefore an urgent need to define new 
therapeutic targets. Our large functional genomic data set 
can be used in conjunction with orthogonal efforts to map 
the structural variation within cancer genomes, such as The 
Cancer Genome Atlas (TCGA) or the International Cancer 
Genome Consortium (19), to accelerate the identification of 
drivers. Initial analysis revealed only partial overlap between 
genomic and functional genomic classifications of cancer 
and uncovered novel, unanticipated, cancer cell–specific de-
pendencies in these 3 major types of cancer, some of which 
could be amenable to targeted therapies.

RESULTS
Classifying shRNA Activity across a Compendium 
of Pooled shRNA Screens

To catalogue essential genes across a defined set of can-
cer types, we performed genome-wide pooled screens using 
a library of 78,432 shRNAs targeting 16,056 unique Refseq 
genes (“80K” library, Supplementary Table S1), developed 
by The RNAi Consortium (TRC) (20–22). A total of 72 can-
cer cell lines were screened: 29 breast, 28 pancreatic, and 15 
ovarian (Fig. 1A and Supplementary Table S2). Each line was 
screened in triplicate, and at least 3 time points were assessed 
for overall shRNA abundance during population outgrowth. 
The screens were highly reproducible between replicate bio-
logical populations for all of the cell lines (Ravg(BrCa) = 0.9; 
Ravg(PDAC) = 0.92; Ravg(HGS-OvCa) = 0.87). The result was 
a data set containing more than 50 million data points from 
more than 200 independent cell populations.

Current scoring algorithms for shRNA and siRNA screens 
assess dropouts at only a single time point. We reasoned that 
adding additional time points would provide a detailed his-
tory of individual shRNA performance, allow us to model 
shRNA kinetics during population outgrowth, and increase 
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Figure 1. Outline of procedure for time-course shRNA screening. A, schematic representing steps involved in shRNA functional screening. B, hairpins were 
classified based on heuristic rules (see Supplementary Table S3). The proportion of genes falling into each category is shown as a stacked-bar chart. The pink, 
white, and cyan bar segments detail genes that are targeted by a single hairpin class, while the red and blue segments indicate the sparse overlap between 
classes. Stacked bars do not reach a value of 1.0 as the minimal overlap observed between fast and slow, and all 3 classes are omitted. The full classification 
results are shown in Supplementary Table S3. C, enrichment plot of GO “biological process” terms and MSigDB pathways within classified hairpins. Darker blue 
colors indicate more significant P values corresponding to the enrichment. The full set of enriched terms is shown in Supplementary Figure S1. D, validation of 
selected shRNA hits by siRNA. Growth inhibition due to target gene knockdown was determined relative to mock transfected controls in MDA-MB-231, MIA 
PaCa-2, and KP-4 cell lines. Red dashed lines indicate the mean of 60 replicate mock transfections, while the blue dashed lines indicate mean ± 3 SD.
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than a sliding threshold on the x-axis. Again, GARP per-
formed better overall than the other scoring methods, when 
considering either the conserved gene reference set or the 
housekeeping gene reference set. Although RSA and RIGER_
KS consider all shRNAs targeting each gene, RSA consistently 
produced higher AUCs, presumably because of its different 
underlying statistical approach. More important, the genes 
that drive the performance of GARP in each of the ortho-
log and housekeeping gene sets are largely nonoverlapping 
(Fig. 2C). By examining the top 500 hits as defined by each 
method, we found that GARP identifies a set of genes that are 
common to RSA and RIGER_KS, as well as a unique subset 
of genes that are distinct from the overlap between RSA and 
RIGER_KS in HCC1187, OVCAR5, and HPAF-II cell lines 
(Fig. 2D). In general, the unique subsets of genes identified 
by GARP in the 72 cell lines account for its superior ability 
to identify genes in the housekeeping or highly conserved 
reference sets.

Correlating Gene Activity Scores with Target 
Expression Levels

All RNAi screens are susceptible to off-target effects (11, 
26). Although it is difficult to quantify such effects from 
screening data alone, if off-target effects are common, one 
might expect hairpins directed against nonexpressed genes 
to “score” as frequently as those targeting expressed genes. 
We performed RNA-seq on 7 ovarian cancer cell lines and 
determined the fraction of nonexpressed genes that were 
adjudged “essential” by GARP and the other published scor-
ing metrics (Fig. 2E). Regardless of the scoring method, the 
vast majority of “hits” reflected genes that were expressed, 
defined as “reads per kilobase of exon model per million 
mapped reads” (RPKM) greater than zero. However, com-
pared with the other scoring systems, GARP identified fewer 
nonexpressed genes as “hits.”

We also used receiver operating characteristic curves to 
compare the relative ability of each score to “call” essen-
tial transcripts that also were expressed. Notably, the AUCs 
computed by GARP (μ = 61.8 ± 5.6%) were higher than 
those computed by RSA (μ = 56.1 ± 3.5%; P = 0.013), 
RIGER_KS (μ = 56.4 ± 4.3%; P = 0.006), and RIGER_SB 
(μ = 55.3 ± 4.2%; P = 0.016), using a paired t test with 
unequal variances. The difference between GARP and 
RIGER_WS (μ = 59.6 ± 5.4%; P = 0.079) was not signifi-
cant, although GARP still outperformed RIGER_WS in 5 of 
7 (71%) cell lines. Taken together, these results suggest that 
GARP performs at least as well as, and by many metrics su-
perior to, previous scoring systems for shRNA screens (see 
Discussion).

A Snapshot of Gene Essentiality across Three 
Major Tumor Types

We looked for essential genes across all of the cell lines. We 
identified 297 genes with significant GARP scores (P # 0.05) 
in at least 50% of the 72 screens (Supplementary Table S6). 
These “general essential” genes were enriched in housekeep-
ing functions involving the ribosome (P = 2.4e–50; Fisher’s 
exact test), proteasome (P = 1.4e–11; Fisher’s exact test), 
spliceosome (P = 7.7e–28; Fisher’s exact test), DNA repli-
cation (P = 2.5e–3; Fisher’s exact test), protein metabolism 

and Supplementary Fig. S2). These findings again indicate 
that the shRNA kinetics detected by our pooled shRNA 
screens reflect the properties of specific genes (i.e., fast drop-
outs are more likely than slow dropouts to score in this short-
term assay), rather than the quality/knockdown efficiency of 
the shRNA reagents targeted against a given gene.

Conversion of shRNA Class Behavior into  
an Activity Score

To convert time-course information from dropout screens 
into an individual value for each shRNA, we developed the 
“shARP” (shRNA Activity Rank Profile) score. The shARP 
score assigns a value to each hairpin by calculating the av-
erage slope between the measured microarray expression 
intensity at each time point and the intensity at time zero 
(i.e., T0), producing a weighted average of the fold-change 
across time and accounting for the growth rate of the cell 
line (see Methods). By integrating information across the 
time course, shARP can discriminate among “fast,” “contin-
uous,” and “slow” hairpins: in general, slow dropouts have 
less negative shARP scores than fast or continuous dropouts 
(Supplementary Fig. S3A).

Because each gene represented in the TRC library is tar-
geted by an average of 5 hairpins, shARP scores for the dif-
ferent shRNAs must be converted into a gene-level score to 
uncover the behavior of specific genes in a screen. To this 
end, we defined the GARP (Gene Activity Ranking Profile) 
score (see Methods) as the average of the 2 lowest shARP 
scores. We then compared the performance of the GARP 
score with 2 previously developed scoring metrics, RNAi gene 
enrichment ranking (RIGER) (12) and redundant siRNA ac-
tivity (RSA) (23), for their respective ability to rank the genes 
in our large panel of screens. These methods differ in how 
the shRNA sets for a given gene are treated. GARP, RIGER 
“Weighted sum” (RIGER_WS), and RIGER “Second-best 
hairpin” (RIGER_SB) consider only the 2 best hairpins or the 
second-best single hairpin, respectively. By contrast, RIGER 
“Kolmogorov-Smirnov” (RIGER_KS) and RSA consider the 
behavior of the complete set of hairpins against a given gene.

In the absence of a “gold standard” set of essential hu-
man genes, we benchmarked the 5 scoring approaches using  
2 largely nonoverlapping reference sets likely to be enriched  
for essential genes (see Methods): highly conserved genes 
from 8 diverse species, including Arabidopsis thaliana, Bos taurus, 
Caenorhabditis elegans, Canis familiaris, Macaca mulatta, Mus muscu-
lus, Rattus norvegicus, and Saccharomyces cerevisiae (24); and house-
keeping genes (25). If, as seems reasonable, one  assumes that 
housekeeping and ortholog gene sets are enriched for essential 
genes, then the intersection between the top 500 genes from 
each scoring method and each of the  reference gene sets indi-
cated that GARP outperforms the other  scoring approaches in 
representative breast (HCC1187), ovarian (OVCAR5), and pan-
creatic (HPAF-II) cancer cell lines (Fig. 2A).

To examine the performance of each scoring metric more 
thoroughly, we determined the intersection of scored genes 
and reference sets across our entire panel of 72 cell lines, 
then computed the area under the curve (AUC) for each over-
lap. The cumulative distribution of AUCs for each  scoring 
method and reference set is shown in Figure 2B, which de-
picts the fraction of scored gene sets with an AUC greater 
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A HCC1187 OVCAR5 HPAF-II

B C

D HCC1187 OVCAR5 HPAF-II E

Figure 2. Comparison of shRNA scoring approaches. A, overlap of genes ranked by GARP, RIGER (RIGER_KS, RIGER_SB, and RIGER_WS), and RSA with 2 
data sets enriched in essential genes: “housekeeping (HK) genes” defined by gene expression (see Methods), and human genes conserved in 8 eukaryotic 
species. Representative results for the breast cancer line HCC1187 (left), ovarian cancer cell line OVCAR5 (center), and pancreatic cell line HPAF-II (right) are 
shown. Overlaps are included for 10 samples of randomly selected genes (black lines, mean ± SD). B, cumulative distribution plots of AUC for each overlap. 
At each threshold on the x-axis, the fraction of cell lines with higher AUCs is indicated for each scoring method; left, overlap with highly conserved orthologs; 
right, overlap with housekeeping genes. C, stacked-bar chart showing proportion of genes from overlap of top 500 GARP-scored genes and reference sets (HK 
and orthologs) unique to HK set, unique to ortholog set, or common to both. D, Venn diagrams of top 500 ranked genes for each scoring method in cell lines 
HCC1187, OVCAR5, and HPAF-II. E, GARP shows the lowest rate of targeting nonexpressed transcripts. “Nonexpression rates” were determined by RNA-seq 
for genes ranked by GARP, RSA, and RIGER in 7 ovarian shRNA screens. The proportion of nonexpressed genes with RPKM = 0 was calculated for the top N 
ranked genes within each cell line, and the results were averaged for each scoring metric (see Methods). 
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cell lines (Supplementary Fig. S3B). Notably, there was sig-
nificant overlap (P < 1.6e–109; Fisher’s exact text) between 
general essentials identified in our study and in a recent re-
port (18) that also used pooled shRNA screening but tested a 
smaller (~54,000 vs. ~78,000) set of shRNAs (Supplementary 
Fig. S4), and an in-depth cell line–by–cell line comparison 
showed significant overlap in 11 of 15 cell lines in com-
mon between the screens (see Supplementary Materials and 
Supplementary Table S7).

Next, we wished to determine whether the 72 cell lines 
could be classified on the basis of “functional genomics” (i.e., 
their relative sensitivity to shRNAs in the 80K library), and 
if so, how such groups would compare with their respec-
tive histotypes. Of the genes with a significant normalized 
GARP score (P < 0.05) in at least 2 cell lines (~5,508 genes), 
we identified the 10% most variable across all of the lines. 
These genes (n = 551) were subjected to unsupervised com-
plete linkage hierarchical clustering using the Pearson cor-
relation, which divided the cell lines into 2 major groups 
(Supplementary Fig. S5). Notably, cell lines derived from the 
same tissue did not cluster into the same groups, although 
one of the major clusters was markedly enriched (P = 8.7e–5) 
for breast cancer cell lines: 23 of 29 breast cancer cell lines 
appeared in this cluster, which contained a total of 36 cell 
lines. Accordingly, this cluster included genes that we classi-
fied as breast-specific (FOXA1, CDK4, SNW1, ATP5B, CLYBL, 
NDUFS7, CAD, INTS10,) or luminal/HER2-specific (TFAPC2, 
AF3GL2) in subsequent analyses (see  below). Interestingly, 
even though all of the PDAC lines contained a KRAS muta-
tion, these lines scattered throughout the 2 major clusters, 
with 10 PDAC lines in the breast-enriched set and 18 in the 
other major cluster (see Discussion).

We also performed a supervised analysis of the 72 cell line 
data set to identify 2 other types of essential genes: (1) tissue-
specific and (2) subtype-specific essentials, the latter of which 
can be classified further into essential genes found in a subset 
of cell lines from different tumor types or essentials found in 
selected cell lines within a single tumor type. Nonparametric 
statistical testing identified 66 ovarian-, 187 pancreatic-, and 
155 breast-specific essential genes, distinguishable by a sig-
nificantly lower normalized GARP score (see Methods) in 
that tumor type (Wilcoxon rank sum test, P < 0.01) relative 
to the other 2 tumor types. A heat map of these tissue-spe-
cific essential genes is shown in Figure 3B. We also examined 
each list of tissue-specific essentials for gene set enrichment 
using the Molecular Signatures Database (27). The breast 
cancer–specific essentials were enriched for a broad array of 
functions [e.g., cell cycle (q = 7.1e–10), ubiquitin-mediated 
proteolysis (q = 1.1e–3), spliceosome (q = 9.3e–4), oxidative 
phosphorylation (q = 4.4e–3), snRNP assembly (q = 2.1e–3), 
and pyrimidine metabolism (q = 3.5e–4)]. Pancreatic tissue–
specific essential genes were enriched for signaling in the im-
mune system (q = 2e–3), the ETS pathway (q = 2.2e–2), and 
the LAIR pathway (q = 2.2e–2) (Supplementary Fig. S6).

More detailed examination of the tissue-specific essen-
tials revealed that the pancreatic cancer–specific essentials 
included KRAS and the cell-cycle regulator CDK6 (Fig. 3C and 
Supplementary Table S8). KRAS is mutated in most pancre-
atic tumors and promotes ETS-mediated transcription (28), 
which could account for the aforementioned enrichment 
for ETS pathway genes. Most pancreatic cancer lines fail to 

(P = 1e–20; Fisher’s exact test), or mRNA processing (P = 1.3e–12; 
Fisher’s exact test) (Fig. 3A), consistent with observations in 
the fast hairpin dropout class (Fig. 1C). Not surprisingly, gen-
eral essential genes displayed potent inhibitory effects on cell 
growth; all general essentials were “fast dropouts” in at least 
one cell line and behaved as “fast dropouts” in an average of 14  

Figure 3. Identification of general and tissue-specific essential genes. 
A, representation of selection criteria underlying definition of the 297 
general essential genes. The histogram at right shows the number of cell 
lines in which each gene is found essential. The “Wordle” (inset) depicts the 
most frequently occurring KEGG pathways among the general essential 
genes, in which the most frequently occurring terms are illustrated in larger 
type. B, heat map of differentially essential genes in the 3 tumor types. 
Here, 155 genes were identified as specific to breast cell lines, 66 to 
ovarian cell lines, and 187 to pancreatic cell lines. The complete list  
of genes is available in Supplementary Table S8. C, range of zGARP scores 
for 6 tissue-specific genes. P values comparing the range of scores were 
determined using the Kruskal-Wallis test.

A

B

C

 American Association for Cancer Research Copyright © 2012 
 on February 25, 2012cancerdiscovery.aacrjournals.orgDownloaded from 

Published OnlineFirst December 29, 2011; DOI:10.1158/2159-8290.CD-11-0224

http://cancerdiscovery.aacrjournals.org/
http://www.aacr.org/


Discovering Cancer Dependencies with Essential Gene Profiles RESEARCH ARTICLE

FEBRUARY 2012 CANCER DISCOVERY | 179

rate (FDR) < 0.1, Benjamini-Hochberg correction] is shown 
in Figure 4A. Notably, the MCF-7 and KPL-1 cell lines, which 
are derived from the same tumor, clustered most closely in 
this analysis. Moreover, the 2 functional genomic clusters cor-
responded almost exactly with the basal and luminal/HER2 
subtypes defined by expression profiling of the same cell lines. 
The single outlier, Sk-Br-3, is classified as luminal/HER2 by 
microarray analysis but behaved like a basal cell line in our 
functional genomic screen. This unsupervised clustering ap-
proach robustly distinguished basal and luminal/HER2+ cell 
lines even when we used the top 50% most variable genes for 
analysis (Supplementary Fig. S7). By contrast, unsupervised 
analysis of our functional genomic data did not segregate the 
breast cancer cell lines further into, for example, Basal A and 
Basal B, or HER2 versus luminal.

We also carried out a supervised analysis on the same data 
set, searching for the genes that best distinguished basal 
from luminal/HER2 cell lines (Fig. 4B). Remarkably, all 26 
of the genes that met our significance criteria (t test; FDR < 
0.1) were identified by unsupervised clustering (Fig. 4A) as 
well and included well-known determinants of the luminal/
HER2 subtype, such as ESR1, FOXA1, SPDEF, and TFAP2C. 
Although known drivers of the HER2 subtype (e.g., HER2 
and HER3) did not achieve scores significant enough to ap-
pear in the unsupervised or supervised clustering panels, they 
clearly were more essential to the HER2 subtype (Fig. 4C). 
Finally, we interrogated the TCGA database for the levels of 
expression of the 41 genes in breast cancer subtypes. Overall, 
expression did not correlate with functional subtype specific-
ity, except for the few examples depicted in Figure 4D.

Identification of Putative Oncogenic Drivers 
through Integrative Analyses

Genome-scale functional screens can be coupled with ge-
nomic information to identify potential cancer driver genes. 
To facilitate such analyses, we developed a representation 
(“query plot”) that permits simultaneous visualization of 
copy number information from publicly available data (see 
Methods) and GARP scores from functional screens. Each 
query plot displays amplification data (from tumors and cell 
lines) for each gene (as a percentage of total tumors and cell 
lines) as downwardly projecting bars, and the percentage of 
cell lines in which the same gene scored as essential (P < 0.05; 
GARP) as upwardly projecting bars (for details, see Methods).

Initial query plots were generated for known oncogenes, such 
as KRAS, FOXA1, and ERBB2. Notably, compared with the other 
tumor types, KRAS was particularly essential in pancreatic can-
cer cell lines (Fig. 5A), consistent with the known role of KRAS 
mutations in PDAC. Although FOXA1 is amplified in breast, 
ovarian, and pancreatic cancer cell lines, it was essential only in 
luminal/HER+ breast cancer cells (Fig. 5B). As expected, ERBB2 
is clearly the focal point of the ERBB2 amplicon in primary tu-
mors and cell lines and was essential in a subset of breast cancer 
cell lines (Fig. 5C). The ERBB2 locus also was amplified in a sub-
set of PDAC and HGS-OvCa cell lines and tumors but was essen-
tial only in selected PDAC cell lines. Scanning across the ERBB2 
amplicon, we see general essential genes (e.g., RPL19, PSMD3), 
as well as CDK12, recently implicated as a driver in HGS-OvCa 
(34). Taken together (also see the previous discussion of ovarian 
cancer–specific essentials), these data suggest that CDK12 may 
be the key driver within the ERBB2 amplicon in HGS-OvCa.

express the CDK inhibitor CDKN2A (data not shown), which 
might sensitize them to a reduction in CDK activity. Novel 
pancreatic cancer–specific essential genes included DONSON 
(Fig. 3C), a centrosomal protein involved in DNA-damage re-
sponse signaling and genomic integrity (29); the histone acet-
yltransferase MYST3 (30); and the transcriptional repressor 
SSX4 (Supplementary Table S8), although the latter gene has 
been implicated in other tumor types [non–small cell lung 
carcinoma (NSCLC), endometrial, cervical] (31, 32). Also of 
note are PRKAA1 (encoding the catalytic subunit of PKA) and 
TRAF6, which, along with TLR4 (another hit in the screen), 
is involved in autophagy and adaptive and innate immune 
responses (33) (Supplementary Table S8).

Ovarian cancer–specific essentials of note included the 
cyclin-dependent kinase CDK12 (P 5 0.015), which narrowly 
missed our P-value cutoff of P , 0.01, is involved in RNA 
splicing and was recently found to be mutated somatically 
in 3% of HGS-OvCa cases (34). Two other ovarian cancer– 
specific essentials, PIM1 and CARD11, have not been linked 
to HGS-OvCa but are involved in promoting cell-cycle pro-
gression and in NF-κB activation, respectively (35, 36), both 
of which are broadly implicated in oncogenesis.

Breast cancer–specific essentials included known mam-
mary oncogenes such as AKT1, a downstream effector of an-
other mammary oncogene, PIK3CA (37); and CDK4, which 
encodes a binding partner of cyclin D1; the latter is ampli-
fied in a substantial percentage of breast cancers (38). Other 
breast cancer–specific essentials reportedly are overexpressed 
in breast cancer, including ERH, GRN, and KDM1A (39–41); 
coactivate estrogen receptor α (ERα) (SNW1); or are involved 
in tamoxifen resistance (ABCC2) (17, 42, 43). FOXA1 knock-
down was particularly deleterious to ER+ breast cancer cell 
lines (see “supervised analysis of breast cancer cell lines” be-
low, and Fig. 3C), consistent with its well-established role 
in ER action (44, 45), and its prognostic significance (46) in 
breast cancer.

Functional Screening Results Partially 
Recapitulate Breast Cancer Subtypes

Breast tumors can be classified by transcriptional profiling 
into multiple subtypes with different prognostic significance 
(2, 47). By contrast, unsupervised analysis clusters breast 
cancer cell lines into 2 major subgroups, basal and luminal/
HER2. The basal cluster can be divided further (by unsuper-
vised clustering) into Basal A and Basal B, with the Basal A 
subgroup most reminiscent of classic triple-negative breast 
tumors and Basal B enriched for the recently described clau-
din-low tumor subtype (48). The luminal/HER2 cluster can 
be subdivided further on the basis of HER2 amplification.

We wished to determine whether breast cancer cell lines 
also could be classified on the basis of functional genom-
ics, and if so, how such groups would compare with genomic 
subclasses. Of the genes with a significant normalized GARP 
score (P < 0.05) in at least 2 breast cancer cell lines (~3,500 
genes), we identified the 10% that varied the most across all 
of the lines. Subjecting these genes (n = 348) to unsuper-
vised hierarchical clustering using Pearson correlation and 
complete linkage clustering divided the cell lines into 2 ma-
jor groups. A heat map representation of the genes (n = 41; 
Supplementary Table S9) that most significantly discrimi-
nated between these 2 major clusters [t test; false discovery 
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Figure 4. Subtype classification of breast functional screening results. A, unsupervised hierarchical clustering of functional screening data 
classifies the breast cancer cell lines into the known breast cancer subtypes. Seventeen genes corresponded to the luminal/HER2+ subtypes, and 
24 were specific to the basal subtype. B. supervised clustering of screening results according to known breast cancer subtypes. C, normalized 
zGARP scores for genes displaying differential essentiality in specific breast subtypes. Only MYO3B and ESR1 had signals strong enough to be 
included in the unsupervised analysis at the FDR threshold used. The Kruskal–Wallis test was used to determine P values comparing the range of 
scores. D, the normalized gene expression level of 4 genes identified as luminal/HER2+ specific (FOXA1, SPDEF) or basal subtype–specific (CENPO, 
NLN) was obtained from the TCGA data portal. The expression data included 42 basal subtype, 63 HER2+ subtype, and 223 luminal subtype tumor 
samples. The Kruskal–Wallis test was used to determine P values comparing the range of expression values.
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To survey the landscape of potential drivers for breast, 
pancreatic, and ovarian cancer, we examined genes with 
measurable amplification in multiple cell lines that also 
scored as essential (P < 0.05; GARP) in multiple cell lines 
of a given tumor type. Several general essential genes iden-
tified by GARP are involved in cell signaling and repre-
sent putative therapeutic targets. For example, the gene 
encoding the receptor tyrosine kinase DDR1 hit in 49 of 

72 cell lines (P < 0.05; GARP). To explore further the role 
of DDR1, 3 shRNAs from the TRC library, as well as 3 
hairpins from an alternative shRNA library (see Methods), 
were used for secondary assays in the breast cancer cell 
lines Cal51, MCF7, Sk-Br-3, BT-20, HCC1954, and HCC38. 
As positive controls for cell killing, we used 2 shRNAs that 
were lethal in almost all cell lines, targeting small nuclear 
ribonucleoprotein D1 polypeptide (SNRPD1) and the 26S 
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proteasomal subunit non-ATPase 1 (PSMD1), respectively 
(Supplementary Table S6). All 6 DDR1-directed hairpins 
efficiently lowered DDR1 transcript levels and inhibited 
proliferation in the 6 breast cancer cell lines (Fig. 6B, C). 
DDR1 depletion had similar effects on the 3 pancreatic 
cancer cell lines tested, KP-4, Panc08.13, and Panc10.05 
(Fig. 6D), confirming that it is essential for cancer cell 
proliferation. Notably, the most efficacious DDR1 shRNAs 
were as effective at inhibiting proliferation as the SNRPD1- 
and PSMD1-positive controls.

We selected for further analysis an additional 5 genes 
(SKAP1, PRUNE, EIF3H, EPS8, and ITGAV) that mapped within 
amplicons in at least 1 of the 3 tumor types (Supplementary 
Fig. S8) and scored as essential in our screens. SKAP1, which 
scored in multiple breast (13), PDAC (13), and HGS-OvCa (7) 
cell lines (total of 33), is an SRC kinase–associated phospho-
protein thought to function only in T cells (49). We confirmed 

that SKAP1 is expressed in breast cancer cell lines and found 
that SKAP1 knockdown significantly reduced prolifera-
tion in HCC1954 and MCF7 breast cancer cells (Fig. 7A–C). 
PRUNE encodes a phosphodiesterase reportedly involved in 
cell migration and was essential in 25 of our cell lines (PDAC: 
14; BrCa: 7; HGS-OvCa: 4) (50). PRUNE knockdown (by 
either of 2 shRNAs) significantly reduced the proliferation of 
Sk-Br-3 and MDA-MB-436 cells (Fig. 7D–F). Knockdown of 
the translation initiation factor EIF3H, which scored as essen-
tial in 8 BrCa, 5 PDAC, and 4 HGS-OvCa cell lines, by any of  
3 independent shRNAs, significantly reduced cell proliferation 
in the HGS-OvCa cell lines tested (OVCAR5, OVCAR8, and 
A2780) (Fig. 7G–I). Furthermore, knocking down EPS8, which 
encodes an adaptor protein involved in endocytosis and was 
essential in 28 of our cell lines (PDAC: 12; BrCa: 10; HGS-
OvCa:  6), also significantly reduced proliferation in certain 
PDAC-derived cancer cell lines (Fig. 7J–L). Lastly, ITGAV, which 

Figure 5. Pattern of functional screening data in amplifications 
with known drivers. A–C, chromosome ideograms indicate known 
regions of amplification in tumors. Bar plots above the x-axis 
depict frequency of cell lines in which each indicated gene is 
essential according to GARP scores (P < 0.05), while below 
the x-axis the frequency of observed amplifications in cell lines 
(orange) or tumors (red) is depicted. For each plot, the 10 genes 
upstream and downstream of the suspected oncogenic driver 
gene (yellow) are shown. ‡, genes not represented in the 80k 
shRNA library.
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Figure 6. Confirmation of essential role of DDR1 in breast and pancreatic cell lines. A, as described in Figure 5, but for DDR1. B, relative number 
of cells remaining 6 days postinfection with 3 different DDR1 shRNAs. SNRPD1 and PSMD1 shRNA were used as positive controls, because these 
were the 2 most potent shRNAs in pooled screening. Control shRNA is the average of a GFP, a LacZ, and a Luciferase shRNA. DDR1 shRNA viability/
cell number is depicted relative to control. Experiments were performed in triplicate. P value was derived using a one-tailed Student t test. 
(shDDR1-83: TRCN0000121083; shDDR1-86: TRCN0000121086; shDDR1-63: TRCN0000121163). Small graph inset, percentage transcript 
remaining determined by qPCR relative to GFP shRNA control. C, relative number of cells remaining 9 days postinfection with 3 different pGIPZ 
DDR1 shRNAs. Negative control was a nonsilencing shRNA. Small graph inset, percentage transcript remaining determined by qPCR relative to GFP 
shRNA control. D, relative cell number determined as in (B) in pancreatic cell lines. *P , 0.05; **P , 0.01; ***P , 0.001.
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encodes integrin a V, a component of the vitronectin receptor, 
was essential in 21 of our cell lines (PDAC: 8; BrCa 7; HGS-OvCa: 
6). Accordingly, knockdown of ITGAV significantly inhibited 
the proliferation of Panc10.05, SU86.86, and Panc03.27 cells  
(Fig. 7M–O).

Finally, we tested whether the effects of knocking down a gene 
identified in our screens could be rescued by re-expressing an 
shRNA-resistant form of that gene. We developed a competition 
assay using PL45 cells expressing (GFP+) or not expressing (GFP–) 
mouse Itgav (Fig. 7P), then monitored the effect on proliferation 
of an shRNA targeting the 3' untranslated region of human 

ITGAV. Indeed, cells expressing Itgav were resistant to the effects 
of the human shRNA, confirming that the inhibitory effect of 
ITGAV knockout on proliferation was specific (Fig. 7Q, R).

DISCUSSION
Functional genomic approaches can complement genomic 

analyses, providing a more comprehensive view of cancer cell 
biology and suggesting new therapeutic strategies. Earlier work 
using large-scale pooled shRNA screens to investigate gene 
essentiality in cancer cell lines surveyed multiple histotypes 
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scores lying outside a stringent statistical cutoff. Furthermore, it 
should be noted that the shRNA detection strategy that we used 
in our screens precludes efficient identification of genes whose 
depletion enhances cell proliferation: in order to detect dropouts, 
hybridizations are carried out with a standard amount of excess 
probe, which limits the detection of “enhancing” shRNAs.

Interestingly, some genes that qualified as general essentials in 
our screen do not serve obvious housekeeping roles. Perhaps the 
most intriguing is DDR1, which encodes a receptor tyrosine ki-
nase (RTK) that binds to collagens (51). Secondary screens using 
shRNAs from 2 independent libraries confirmed that DDR1 is 
required in the 6 breast and 4 pancreatic cancer lines tested. In ad-
dition, several previous studies reported increased DDR1 expres-
sion in various human tumors, including breast, ovarian, lung, 
esophageal, and pediatric brain cancers (reviewed in ref. 52), and 
DDR1 knockdown suppresses tumorigenicity in HCT116 cells 
(53). Furthermore, the DDR1 locus is amplified in a significant 
number of breast, ovarian, and pancreatic tumors and cell lines 
(Fig. 6A). Notably, although they are smaller than control, Ddr1 
knockout mice are viable (51), arguing for a selective requirement 
in malignant cells. These data suggest that DDR1 might be an 
attractive target for antineoplastic drug development, although 
it will be important to confirm its requirement for tumor main-
tenance, not just for cancer cell proliferation in tissue culture. 
Recently, DDR2, which shares substantial sequence similarity with 
DDR1 and also encodes a collagen-responsive RTK, was found to 
be mutated and required in about 5% of squamous cell carcino-
mas of the lung (54). We found that DDR2 also was essential in 36 
of our cancer cell lines. Taken together, these results raise the pos-
sibility that both DDRs play a broader role in oncogenesis than 
previously appreciated.

Supervised analysis of our screening results identified tissue-
specific genes, which are potentially responsible for enrichment 
in different biological processes and may reveal emergent prop-
erties of cancer cells from tissues of different origin. However, 
these tissue-specific genes did not drive (unsupervised) clus-
tering of the lines into histotype-specific groups. Notably, one 
major cluster was enriched in breast cancer cell lines, includ-
ing 13 of 14 lines of luminal/HER2 subtype, and this grouping 
was driven mainly by breast cancer–specific genes and luminal/
HER2-specific genes. Most HGS-OvCa and PDAC cell lines seg-
regated into the same group, even though breast and ovarian 
cancer share some oncogenic drivers (BRCA1/2, HER2, HER3) 
and, unlike PDAC, usually lack KRAS mutations. Moreover, 
while nearly all of the PDAC lines tested have a KRAS mutation, 
these lines did not cosegregate by unsupervised clustering analy-
sis. These data indicate that additional genetic events in PDAC 
modulate the gene essentiality landscape imposed by KRAS mu-
tations. Furthermore, they suggest that, in contrast to previous 
reports (15, 55–57), it might be difficult to identify a universal 
set of “KRAS” synthetic lethal genes; we were not able to uncover 
a set of essential genes specific to mutant KRAS. Rather, there 
might be context-dependent KRAS synthetic lethality imposed 
by the cell of origin of the malignancy and/or its other underly-
ing genetic abnormalities.

Because the breast cancer cell lines we studied have been ana-
lyzed by expression profiling (and copy number variation anal-
ysis), we could explore the relationship between genomics and 
functional genomics in these lines. Remarkably, applying an un-
supervised clustering algorithm to these screening data resulted 
in clustering of the breast cancer cell lines into functional subsets 

but examined relatively few examples of each type (18) or 
sought synthetic lethal relationships with the same oncogene 
expressed in different types of cancer (15). Our study repre-
sents an extensive functional genetic survey of 3 major cancers 
(BrCa, PDAC, and HGS-OvCa), establishes a new metric for 
scoring shRNA dropout screens, uncovers complexity in the 
relationship between genomic and functional genomic classifi-
cation schemes, and reveals unexpected gene dependencies and 
new potential therapeutic targets in these malignancies.

Previous studies quantified hairpin dropout at a single (usu-
ally fairly long) time point. Dynamic measurements provide 
additional power for tracking shRNA abundance in a given 
population of cells, and we found that this helps to group 
shRNAs into functional classes that reflect the intrinsic prop-
erties of their corresponding target genes (Fig. 1C). For ex-
ample, shRNAs that drop out early are more likely to target 
housekeeping genes. We developed a new scoring approach 
(shARP) that captures these dynamic properties, as well as a 
gene-level metric, GARP. More important, if one considers 
“housekeeping” or “highly conserved” gene subsets (which are 
largely nonoverlapping; see Fig. 2C) as reasonable surrogates 
for essentiality, GARP outperforms previous scoring metrics in 
its ability to “call” general essential genes (Fig. 2A, B).

Analysis of our 72 screens allowed us to define 3 types of 
essential genes: (i) general essentials, (ii) tissue-specific essen-
tials, and (iii) subtype-specific essentials. General essentials are, 
as expected, enriched for highly conserved, housekeeping func-
tions, such as those associated with transcription, translation, 
splicing, and the proteasome (Fig. 3A, Supplementary Table S6). 
Moreover, the general essentials identified in our screen showed 
considerable (although not complete) overlap with those de-
fined in an earlier study (18) (Supplementary Fig. S4). Such 
similarity in experimental results across a large number of ex-
periments in different institutions argues for the robustness of 
dropout screening methodology and strongly suggests that the 
genes identified as essential in all of these screens are, in fact, 
generally required for cancer cell proliferation/survival. Several 
possible explanations likely contribute to the lack of complete 
overlap in general essentials defined in previous work and our 
study. For example, we observed, retrospectively, that calculat-
ing fold-changes in shRNA bar code abundance for different 
endpoints within the same screen yields rank-ordered gene lists 
that do not overlap perfectly. Our screening approach, which 
employs multiple time points, helps to buffer some of the noise 
introduced by endpoint assays, obviates the need to terminate a 
screen at a precise number of generations, and permits compari-
son of shRNA dropout profiles across multiple cell lines. Thus, 
we believe that dynamic shRNA profiles provide a more robust 
metric than fold-change measurements for ranking shRNA 
dropouts and, hence, essential genes.

Although we are confident that genes that score as general es-
sentials in our screen (and particularly those that are also clas-
sified as general essentials by the other scoring metrics) are, in 
fact, required for cancer cell proliferation, inherent limitations of 
shRNA screening methodology make it likely that we are under-
estimating the actual number of general essential genes. Indeed, 
we have noted that some genes with GARP P > 0.05 are, in fact, 
required for proliferation in secondary assays. Because biologically 
significant results can be obtained for hairpins that lie outside the 
statistically significant range, future users of our resource should 
not a priori exclude from further investigation genes with GARP 
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Figure 7. Validation of genes overexpressed or in regions of copy number gains in cancer cells. A, percentage of cell lines in which SKAP1 was in top 5% of essential 
genes according to GARP. B, relative number of breast cancer cells remaining 6 days postinfection with 3 different SKAP1 shRNAs. SNRPD1 and PSMD1 shRNAs were 
included as positive controls. Control shRNA is the average of a GFP, a LacZ, and a Luciferase shRNA. Viability/cell number is depicted relative to control. P value was 
derived using a one-tailed Student t test from triplicate experiments. C, percentage transcript remaining determined by qPCR relative to GFP shRNA control. D–F, same 
as (A–C) for PRUNE. G–I, same as (A–C) for EIF3H in ovarian cell lines. J, K, same as (A, B) for EPS8 in pancreatic cell lines. 
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that are essentially identical to the classic luminal/HER2 and 
basal subgroups (58, 59). Reassuringly, several of the genes re-
sponsible for the clustering of the luminal/HER2 cell lines are 
well-known drivers of these subtypes (e.g., ESR1, FOXA1, SPDEF). 
The genes whose knockdown preferentially impaired basal breast 
cancer cell proliferation are less well studied in this subtype or in 
breast cancer in general. However, they include genes encoding 
proteins involved in DNA repair (POLE) and with antiapoptotic 
function (XIAP). Our functional genomic classification does not 
separate the luminal/HER2 or basal subgroups further (i.e., into 
HER2-specific, luminal-specific, or Basal A– or Basal B–specific) 
by unsupervised clustering. For the luminal/HER2 breast cancer 
lines, this is not surprising, because HER2 and luminal subgroups 
also are not distinguishable by expression profiling (59). Basal A 
and Basal B cell lines, however, can be discerned by transcriptional 
differences (59). Failure to separate these subgroups by functional 

genomic clustering could reflect insufficient numbers of cell lines 
in our screen or biological nuances that are not completely cap-
tured at the mRNA expression level. Notably, genes specific for 
each subclass (i.e., luminal, HER2, Basal A, Basal B) can be iden-
tified by supervised methods (Fig. 4C); such genes, if validated, 
could yield new insights into subgroup-specific biological differ-
ences and suggest subgroup-specific therapeutic targets.

Recently, PDAC and HGS-OvCa were classified into sub-
groups based on expression differences (34, 60). However, 
unsupervised clustering did not reveal subgroup-specific es-
sential gene maps for our pancreatic or ovarian cancer cell 
lines. Conceivably, the number of cell lines that we screened 
did not provide sufficient predictive power. Alternatively, our 
cell lines might not adequately represent the range of tran-
scriptional subclasses seen in tumors. It also is possible that 
the transcriptional subclasses themselves are not predictive 
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Figure 7 continued. L, Western blot of EPS8 knockdown in pancreatic cell lines. M, N, same as (A, B) for ITGAV in pancreatic cell lines. O, Western blot showing 
effects of ITGAV knockdown in pancreatic cell lines. P, experimental scheme for ITGAV rescue experiment. Q, flow cytometry results for ITGAV rescue experiment. 
R, quantification of results in (Q). *P , 0.05; **P , 0.01; ***P , 0.001.
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of gene sets that are essential for viability. For example, our 
PDAC collection contains cell lines that conform to both the 
classic and quasi-mesenchymal pancreatic subtypes (60), yet 
these lines did not segregate from each other by unsuper-
vised functional genomic clustering. Additional genomic data 
and  further analyses are needed to explore the relationship 
between functional genetic screening data and genomic data 
to identify better prognostic and therapeutic factors for pan-
creatic and ovarian cancers.

Finally, by combining copy number information with the re-
sults of our dropout screens, we identified—and confirmed—sev-
eral unexpected vulnerabilities in breast, pancreatic, and ovarian 
cancer cell lines. For example, SKAP1 encodes an adaptor that 
is generally thought to function only in T cells, where it report-
edly modulates T-cell antigen receptor–induced activation of the 
Ras-ERK-AP1 pathway (49, 61), as well as integrin clustering 
and adhesion (62). Recently, SKAP1 was identified in genome-
wide association studies as a susceptibility locus for ovarian (63) 

and prostate cancer (64). Although this could indicate a role for 
SKAP1 in immune surveillance, our data suggest that these al-
leles might have cell-autonomous effects on tumorigenesis. We 
identified PRUNE as a gene that was preferentially essential in 
breast and pancreatic cancer cell lines (P < 0.028) and confirmed 
this finding in several breast cell lines (Fig. 7). PRUNE encodes a 
phosphodiesterase belonging to the DHH superfamily, which 
reportedly binds NM23-H1 to promote metastasis (65). PRUNE 
also binds to glycogen synthase kinase and reportedly regulates 
cell migration by modulating focal adhesions (50). Moreover, 
amplification and overexpression of PRUNE reportedly corre-
lates with advanced breast carcinomas (66, 67). EIF3H encodes a 
translation initiation factor and is amplified and overexpressed 
in a variety of cancer types including colon (68), NSCLC (69), 
prostate (70), breast (71), and HCC (72). Notably, several other 
members of the eIF-3 translation initiation complex scored as 
essential in our screens: EIF3A (67 lines), EIF3B (70 lines), EIF3C 
(66 lines), EIF3D (65 lines), EIF3G (58 lines), and EIF3I (57 lines). 
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through the time course. The rules involved features describing the 
rate of dropout over the first and second time intervals (i.e., the 
slope of the expression intensity change between time points), the 
ratio of the dropout rates, the fold-change at the end point relative 
to T0 (FC2), and the initial expression intensity at T0. The classes 
were as follows: K—fast dropouts, which lead to rapid hairpin deple-
tion; S—slow dropouts, displaying a lag prior to hairpin depletion; 
E—enhancers, or hairpins that show an increase in abundance over 
time; and C—continuous dropouts, or hairpins that show a con-
stant rate of depletion over time. These rules are summarized in 
Supplementary Table S3.

Scoring of shRNA Screens
To incorporate measurements from multiple time points in an 

shRNA screen, we developed the shARP score, as shown in the fol-
lowing equation:

where n is the number of time points, ∆y is the change in expres-
sion intensity at ti relative to t0, and ∆x is the number of doublings 
for the cell line at ti relative to t0. The shARP scores are determined 
for each of the 78,432 hairpins in the library. They are then used to 
calculate the GARP score by averaging the 2 lowest shARP scores. 
A significance value is assigned to each GARP score through boot-
strapping, in which the shARP scores are randomly permuted 1,000 
times, GARP scores are recomputed, and a P value is determined by 
the frequency with which the actual GARP score is lower than the 
permuted GARP scores. To facilitate comparisons between screens, 
GARP scores were Z-score normalized.

In addition to the GARP score, we applied 2 previously pub-
lished shRNA scoring methods to rank the normalized shARP 
scores from our screens. First, we applied RSA (23) using the R 
package provided by the original authors. Briefly, all shARP scores 
were normalized using a robust Z-score before applying RSA itera-
tively to each screen, setting the UB parameter to 0, the LB param-
eter to –3, and using the Entrez Gene ID as the unique identifier 
for each gene. Second, we ranked the normalized shARP scores 
by RIGER (12), as implemented in the GENE-E software pack-
age. Genes were ranked by each of the 3 RIGER methods to col-
lapse hairpins to genes: RIGER_WS, RIGER_SB, and RIGER_KS. 
To avoid RIGER scoring dropouts and enhancers separately, the 
shARP score distribution was shifted below zero prior to applying 
Kolmogorov-Smirnov scoring by subtracting the maximum value 
from each distribution.

Benchmarking Scoring Methods
To benchmark our scoring method against existing approaches 

such as RIGER and RSA, the top-ranked genes from each screen 
were overlapped against 2 data sets likely enriched in essential 
genes. First, housekeeping genes are genes universally expressed 
to maintain cellular function: the more tissues in which a gene is 
expressed, the higher the likelihood that it will be essential (78). 
Second, highly conserved orthologs are genes that are shared 
among species, which have a higher likelihood of being essential 
(79, 80). Housekeeping genes (n = 1,722) were identified as genes 
expressed in at least 73 of 79 tissues in a human expression com-
pendium (25). Highly conserved orthologs (n = 1,617) were iden-
tified as human genes with orthologs in 8 different species (A. 
thaliana, B. taurus, C. elegans, C. familiaris, M. mulatta, M. musculus, R. 
norvegicus, and S. cerevisiae), as determined by InParanoid (24). There 
are 315 genes in common between the housekeeping genes and 
conserved orthologs.

The top 500 genes ranked by each scoring method in each 
screen were selected and overlapped with the reference sets, 

EPS8 is an epidermal growth factor receptor (EGFR) substrate 
that mediates RAC1 activation and trafficking of EGFR in a 
RAB5-dependent manner (73). EPS8 also has been implicated 
in cell migration and ovarian cancer metastasis (74), and EPS8 
overexpression has been observed in PDAC (75) and oral squa-
mous cell carcinoma (76). Finally, ITGAV encodes integrin a 
chain V, a component of the vitronectin receptor, which has 
been associated with multiple different cancers (77).

Taken together, our results have interesting implications for 
the systems biology of cancer. Our finding that functional ge-
nomic and genomic classification schemes yield only partially 
overlapping results implies that functional genomic studies reveal 
nuances in cancer cell biology that have not been captured by ex-
isting genomic analyses. By (re)-analyzing genomic data in cancer 
cells grouped by similar gene essentiality profiles, it is likely that 
new drivers and synthetic lethal relationships will emerge. Future 
exploitation of our functional genomic resource will require vali-
dation of the multiple types of essential genes that we have identi-
fied, along with integrative analysis of functional genomic and 
detailed genomic information from these cell lines.

METHODS
Cell Lines

A full description of each cell line used, where the cell lines were 
obtained, and the method and date of cell line authentication are 
detailed in Supplementary Table S2.

shRNA Dropout Screens
Each cell line was grown to a population size of ~2 3 108 cells 

in the requisite medium (see Supplementary Table S2). Cells were 
washed with warm PBS, trypsinized, resuspended in warm medium, 
and counted. An aliquot of the 80k human shRNA lentivirus pool 
(22) and either polybrene (4–8 g/mL) or protamine sulfate (5 g/mL) 
were added such that an MOI of 0.3 to 0.4 would be achieved (de-
termined by prior testing of each cell line). Cell–lentivirus mixtures 
were plated into 15-cm-diameter culture dishes and incubated at 
37°C with 5% CO2. Twenty-four hours postinfection, the medium 
was replaced with fresh medium containing puromycin (puromy-
cin concentration determined by prior tests on each cell line), and 
cells were incubated for an additional 48 hours. Culture dishes 
were washed with warm PBS to remove dead cells, and surviving 
cells were collected by trypsinization and resuspended in warm 
medium. Cell populations were  quantified, aliquots of 2 3 107 
cells were removed and pelleted by centrifugation, and 3 replicate 
populations of 2 3 107 cells were plated at appropriate density 
into 15-cm-diameter culture dishes. When replicate populations 
reached 80% to 90% confluency, cells from each replicate were col-
lected by  trypsinization and mixed (cells from different replicates  
were not comingled). From these mixtures, 2 aliquots of 2 3 107 
cells were removed, pelleted, and frozen down, while one aliquot 
of 2 3 107 cells was replated for further growth. This step was re-
peated until a minimum of 6 to 8 doublings for each replicate cell 
population was obtained. Genomic DNA was prepared from cell 
pellets using the QIAmp Blood Maxi kit (Qiagen #51194). Genomic 
DNA was precipitated using ethanol and sodium chloride and re-
suspended at 400 ng/L in 10 mmol/L Tris-HCl, pH 7.5. shRNA 
populations from cell lines were amplified via PCR and prepared 
and applied to GMAP arrays as described previously (22).

Identification of Hairpin Classes
Hairpins were segregated into classes using rules based on a 

Boolean combination of features that describe the hairpin behavior 
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starting with the top 5 genes up to the top 500 in 5 gene steps. 
The overlap was plotted, and the AUC was calculated for each 
overlapping gene set.
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