SOCIETY FOR AUTONOMOUS NEURODYNAMICS (SAND)


  SAND Home
  SAND I   (2004)
  SAND II  (2005)
  SAND III (2006)
  SAND IV (2007)
  SAND V  (2008)
  SAND VI (2009)
  SAND VII (2010)
  SAND VIII (2011)
  SAND IX  (2012)
  SAND X   (2013)
  SAND XI  (2014)
  SAND XII (2015)
 

PRINCIPLES OF AUTONOMOUS NEURODYNAMICS 2008
Heemstede, The Netherlands
August 24-26, 2008

  SAND 2008 - Netherlands


Call For Presentations:

PRINCIPLES OF AUTONOMOUS NEURODYNAMICS 2008

ONLINE REGISTRATION

Preliminary Program (pdf)

   
 
   
A multi-disciplinary meeting exploring free dynamics in networks and the relation of autonomous neurodynamics to neurological conditions.

The 5th annual meeting of the Society for Autonomous Neurodynamics (SAND) will take place on August 24th, 25th and 26th, 2008 at Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.

We are soliciting participants from a range of fields interested in Autonomous Neurodynamics. If you would like to present work relating to these topics please send in a 250-word abstract by August 8th, 2008 to:
conference.sand@utoronto.ca

Register online at:
http://www.utoronto.ca/sand/PAND2008/register.html

Presentations should be 15 minutes in length. We encourage entries from a diversity of backgrounds and welcome both exploratory and advanced research. Sessions are meant to be fun, dynamic and will include open discussions.


PAGE CONTENTS:
Conference Scope
Dates
Accommodations
The Netherlands and Activities
Accessibility and Child Care
Conference Topics
Organizing and Scientific Committee
Meeting Sponsors
Why Autonomous Neural Systems?
Why Autonomous Neurodynamics and Neurological Conditions?
Meeting Background

CONFERENCE SCOPE

Autonomous Neurodynamics describes interactive systems that can change activity both in response to and independently of the environment. Presentations will focus on the theoretical underpinnings and implications of autonomous dynamics in relation to neural activity, cognition, social systems and general network dynamics. Sessions may encompass a broad array of approaches including presentationsfrom mathematics, physics, philosophy, psychology, computational and theoretical neurosciences.

DATES

Research presentations: August 24-26
Post-presentation activities (Dutch Adventure): August 27-29

Recommended latest arrival: August 23, 2008
Recommended earliest departure, presentations portion only: August 27, 2008
Recommended earliest departure, Dutch Adventure participants: August 30, 2008

ACCOMMODATIONS

Click here for additional information on accommodations.

THE NETHERLANDS AND ACTIVITIES

The conference will take place close to the beautiful city of Haarlem with its intimate cafes and streets evocative of Dutch golden age of painting. From the cobble-stoned streets of Haarlem, the full energy and diversity of the Netherlands can be reached by short train ride to Amsterdam (the cultural hub and capital of the Netherlands). Beyond the historic architecture, windmills, canals and tulips, attendees will find that the Netherlands is a dynamic society at the forefront of exploring concepts of societal freedom. Whether the art of Rembrandt, Vermeer, Van Gogh, or the philosophy of Spinoza, the land has long been a hotbed for artists and free thinkers.

As in previous year, the conference presentations will be followed by an outdoor adventure in which ideas are exchanged and collaborations planned in a more informal, free and dynamic environment. This year the post-presentation event will be a "panoramic sailing and cycling tour" that will explore the Netherlands' North Sea islands by the very Dutch traditions of sailing and biking.

Limited spots. First-come first-served policy

Additional excursion information and payment details are available on this page.

ACCESSIBILITY AND CHILD CARE

All presentations will take place in wheelchair accessible venues. Limited grants to assist with child care arrangements may be available, please indicate requirement during online registration.

CONFERENCE TOPICS

SAND conference presentations typically encompass a wide range of themes that have included:

  • Physiology, Sensorimotor Systems & Behavior
  • Neuroanatomy
  • Neurogenetics and Pathobiology
  • Pharmacology
  • Hormones and Reproduction
  • Nutrition and Biochemistry
  • Personal Narratives
  • Gender and Social Sciences
  • Neurology and Clinical Perspectives
  • Neuropsychoanalysis
  • Dynamical Systems
  • Embodied Modeling / Autonomous Agents
  • Nonlinear Analysis
  • Computation and Information Processing
  • Network Theory
  • The Role of Noise / Stochasticity / Randomness

  • In addition to these topics we welcome novel approaches and interdisciplinary research that can synthesize findings from various fields. Presentations may also consider the implications of research findings on ethical theory, autonomy and health. We particularly encourage presentations that examine changes in neurodynamics in neurological conditions such as epilepsy, Parkinson’s, and Alzheimer’s that can have a tremendous impact on an individual’s autonomy and quality of life. Investigations may also include more common conditions in which changes in neural dynamics impact volitional activity such as sleep.

    ORGANIZING AND SCIENTIFIC COMMITTEE:

    • Stiliyan Kalitzin, Dutch Epilepsy Clinics Foundation (SEIN), The Netherlands (CHAIR)
    • Hanneke de Boer, Dutch Epilepsy Clinics Foundation (SEIN), The Netherlands
    • Peter Carlen, Toronto Western Research Institute, Canada
    • Steven Claus, Dutch Epilepsy Clinics Foundation (SEIN), The Netherlands
    • Marija Cotic, University of Toronto, Canada
    • Kathryn Hum, University of Toronto Epilepsy Research Program, Canada
    • Fernando Lopes da Silva, Dutch Epilepsy Clinics Foundation (SEIN), The Netherlands
    • Caroline Morton, Dutch Epilepsy Clinics Foundation (SEIN), The Netherlands
    • Elan Liss Ohayon, University of Toronto, Canada
    • Piotr Suffczynski, Warsaw University, Poland
    • Ping Wang, Computational Neurobiology Laboratory, Salk Institute, USA

    MEETING SPONSORS:


    WHY AUTONOMOUS NEURAL SYSTEMS?

    Clearly neural systems can perform incredibly complex computations but what are the features that underlie their autonomy? How do healthy embodied brains remain independent from the dynamics of the world while also being responsive? How do neural networks find balance yet avoid infinite repetition or silence?

    Emerging techniques in complexity sciences and neural modeling provide the tools to explore dynamics in such systems but have yet to explain how daily computational tasks are accomplished in a continuous and autonomous fashion. These questions regarding system autonomy are often independently explored in physics, mathematics, philosophy and other fields. The issue of increasing freedom in systems is at the foundations of cognitive and social sciences.

    WHY AUTONOMOUS NEURODYNAMICS AND NEUROLOGICAL CONDITIONS?

    The most devastating aspect of a neurological condition is often the impact on independent activity. For example, in epilepsy the changes in neurodynamics result in an acute and often devastating loss of freedom, in which an individual's autonomy is lost and regained in very sudden and dramatic ways. The generally unpredictable nature of this transition to a state of partial or total functional neuronal impairment makes epilepsy more a dynamical system condition than a product of any single factor. Why and how does the transition occur and why and how does the epileptic state terminate? Are these transitional states a by-product of a complex neuronal system meant for autonomous operation in changing environments? Do these transitions hint at fundamental neuronal mechanisms? At the other extreme, aging is an example of a process in which changes to neurodynamics come about very gradually but can be no less devastating.

    Neuroscience researchers are often focused on controlling phenomena, forgetting that an important goal is to increase individual autonomy. There are many routes to changing neural dynamics (increasing activity, stopping a seizure), the difficulty is ensuring that as a consequence the individual becomes more autonomous rather than less so. What can theories of autonomous systems tell us about treating these conditions? What can these conditions tell us about how complex systems maintain freedom in the environment?

    MEETING BACKGROUND

    The first meeting of the Society for Autonomous Neurodynamics was held at the University of Toronto, in August 2004. Subsequent meetings took place at the Institute of Experimental Physics, Warsaw University (2005), the Marine Biology Station, Eilat (2006) and at Université Laval in Québec (2007).

    The meetings have included empirical scientists, theoreticians and personal reports. They have proven to be cognitively intense, high-energy, autonomous events in a fun and informal atmosphere. The gatherings also mark the continuation of an international collaboration on the subject between researchers in the Netherlands and Canada including the Dutch Epilepsy Clinics Foundation (SEIN), the University of Amsterdam and the University of Toronto Epilepsy Program.


    Please send comments to: ohayon@chass.utoronto.ca
    Last modified: Thursday July 31, 2008
    Society for Autonomous NeuroDynamics (SAND) Home Page
    University of Toronto home page