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ABSTRACT The objective of this review is to identify a target or biomarker of al-
tered neurochemical sensitivity that is common to the many animal models of human
psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene
alterations. Psychosis in humans can be caused by amphetamine, phencyclidine,
steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal
lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitiv-
ity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200–
400% in striata. Similar supersensitivity and D2High elevations occur in rats born by
Caesarian section and in rats treated with corticosterone or antipsychotics such as re-
serpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter
two inducing elevated D2High states less than that caused by haloperidol or olanzapine.
Mice born with gene knockouts of some possible schizophrenia susceptibility genes are
dopamine supersensitive, and their striata reveal markedly elevated D2High states;
such genes include dopamine-b-hydroxylase, dopamine D4 receptors, G protein receptor
kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 recep-
tor, regulator of G protein signaling RGS9, and the RIIb form of cAMP-dependent pro-
tein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal
elevated D2High states; these include mice with knockouts of adenosine A2A receptors,
glycogen synthase kinase GSK3b, metabotropic glutamate receptor 5, dopamine D1 or
D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or
a D1 antagonist. The evidence suggests that there are multiple pathways that
converge to elevate the D2High state in brain regions and that this elevation may elicit
psychosis. This proposition is supported by the dopamine supersensitivity that is a com-
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mon feature of schizophrenia and that also occurs in many types of genetically altered,
drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates
with D2High states. The finding that all antipsychotics, traditional and recent ones, act
on D2High dopamine receptors further supports the proposition. Synapse 60: 319–346,
2006. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Although many biological abnormalities have been
found in various psychotic diseases, it is important to
search for a target or biomarker that is common to
these psychoses, including schizophrenia, so as to de-
velop better treatment of these conditions. This over-
view considers the proposal that one such common bio-
marker is behavioral dopamine supersensitivity and
its accompanying elevation of D2High dopamine recep-
tors (Seeman et al., 2005a), D2High being the func-
tional high-affinity state of the D2 receptor (George
et al., 1985; McDonald et al., 1984).

Considering the many interconnecting pathways
in the brain, it is not surprising that various types of
insult to the brain by drugs, brain lesions, or gene
alterations of a specific biochemical pathway can re-
sult in a major biochemical alteration in another com-
pletely different pathway. For example, as shown later,
various treatments unrelated to dopamine transmis-
sion can result in biochemical and behavioral dopa-
mine supersensitivity, the latter being a feature of
schizophrenia (Curran et al., 2004; Lieberman et al.,
1987). Therefore, while several genes (such as BDNF,
neuregulin, dysbindin, D-amino acid oxidase, and calci-
neurin) are thought to be associated with schizophre-
nia and thought to be related to glutamate or NMDA
neurotransmission (Collier and Li, 2003; Neves-Pe-
reira et al., 2005), this review indicates that mutations
in such genes may well lead to dopamine supersensi-
tivity and to a common biochemical basis for this
supersensitivity.

BIOMARKERS OF PSYCHOSIS AND
SCHIZOPHRENIA

Psychotic symptoms can occur in many diseases,
including schizophrenia, degenerative brain disease,
and with the abuse of steroids, amphetamine, cocaine,
phencyclidine, or ethanol. Although each of these dis-
eases and conditions has its own specific characteris-
tics, no common target has ever been identified to
explain the basis of the psychotic signs and symptoms
in these various conditions. Although there have been
many biological findings proposed as biomarkers of
psychosis, especially in schizophrenia (Tamminga and
Holcomb, 2005; Wyatt et al., 1988), none have yet
stood the test of time.

SUSCEPTIBILITY GENES
FOR SCHIZOPHRENIA

In the case of schizophrenia, for example, an appro-
priate biomarker would be a mutation or a set of gene
mutations that are consistently associated with the ill-
ness in many pedigrees. However, no such genes or
gene regions have yet been found. Although between
10 and 20 chromosome regions harbor genes that are
associated with schizophrenia (Lewis et al., 2003),
these regions include a massive number of possible
genes. In fact, these regions include many genes, !20%
of the human genome, and harboring !6000 genes, as
illustrated in Figure 1.

Among the gene regions identified by Lewis et al.
(2003) are genes frequently mentioned in reviews on this
topic. For example, schizophrenia has been associated
with the genes for neuregulin (Stefansson et al., 2002,
2004; but not by Thiselton et al., 2004), dysbindin-1 (but
not by Morris et al., 2003), D-amino acid oxidase, cate-
chol-O-methyl transferase (COMT; Benson et al., 2004;
Palmatier et al., 2004; Weinberger et al., 2001), proline
dehydrogenase, calcineurin, metabotropic glutamate re-
ceptor 3 (Egan et al., 2004), disrupted-in-schizophrenia
(DISC1; James et al., 2004), and brain-derived neurotro-
phic factor (see reviews by Craddock et al., 2005; Harri-
son and Owen, 2003; Harrison and Weinberger, 2005;
McGuffin et al., 2003; Weinberger et al., 2001).

It has been noted that several of these genes are
related to glutamate neurotransmission, potentially
supporting a glutamate hypothesis of schizophrenia
(Goff and Coyle, 2001; Hashimoto et al., 2004; Krystal
et al., 2005; Mueller and Meador-Woodruff, 2004; Neves-
Pereira et al., 2005; Owen et al., 2005). However, a
review of 18 short-term trials of glutamatergic drugs for
schizophrenia does not show significant clinical benefit
(Tuominen et al., 2005). This situation may change as a
result of the finding by Depoortère et al. (2005) that a
highly selective blocker of the glycine transporter (see
also Atkinson et al., 2001) inhibited amphetamine-
induced locomotion in PCP-sensitized rats. Although
this important finding by Depoortère et al. (2005) sug-
gests that their compound is potentially antipsychotic,
there are many drugs that inhibit amphetamine-
induced behaviors but are not clinically effective as anti-
psychotic medications (Fritts et al., 1997; Itzhak and
Martin, 2000; Kim and Vezina, 2002).

It is possible, therefore, that the activities of these
genes are also readily related to behavioral dopamine
supersensitivity. For example, knockouts of the gene
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for calcineurin (Miyakawa et al., 2003) or proline de-
hydrogenase (Paterlini et al., 2005) cause dopamine
supersensitivity. Furthermore, D-amino acid oxidase
(which interacts with gene G72; Chumakov et al.,
2002) can lead to inhibition of dopamine-b-hydroxylase
(Naber et al., 1982) and consequent dopamine super-
sensitivity (Seeman et al., 2005a; Weinshenker et al.,
2002). Moreover, neuregulin-1 causes dopamine re-
lease (Yurek et al., 2004), while reduction in dysbin-
din-1 interferes with innervation in the entorhinal hip-
pocampal cortex (Talbot et al., 2004), injuries of which
elicit dopamine supersensitivity and a marked eleva-
tion of D2High dopamine receptors (Sumiyoshi et al.,
2005). In addition, it is known that brain-derived neu-
rotrophic factor induces behavioral dopamine sensiti-
zation (Guillin et al., 2001). As reviewed below, behav-
ioral dopamine supersensitivity is invariably associ-
ated with an elevation in D2High, that is, an elevation
in the proportion of dopamine D2 receptors in the state
of high affinity for dopamine (Seeman et al., 2005a).

In searching for schizophrenia risk genes, it has
been especially difficult to replicate the genetic associ-
ation or linkage of a particular gene or a particular
chromosome region to schizophrenia in different pedi-
grees and different groups of patients. This is not par-
ticularly surprising, considering that the findings of
such studies are highly dependent on the ethnic com-
position of the population under study. While no single
gene of major effect has yet been identified, it is likely
that several genes cooperate to lead to schizophrenia,
as noted by many authors (e.g., Talbot et al., 2004).

NONGENE BIOMARKERS

The search for nongene biomarkers for schizophrenia
has resulted in several biomarkers, although none are
unique to psychosis or schizophrenia (Torrey et al., 2005).
For example, the apparent elevation of dopamine D2 re-
ceptors in lymphocytes in schizophrenia or psychosis
(Bondy and Ackenheil, 1987; Soyka et al., 1994) has not

Fig. 1. Chromosome regions and genes associated with schizo-
phrenia, as reported by Lewis et al. (2003). Abbreviations: RGS4, reg-
ulator of G protein signaling; DISC, disrupted-in-schizophrenia; Dys-
bin, dysbindin; GRM3, metabotropic glutamate receptor-3; NRG,
neuroregulin; NCS-1, neuronal calcium sensor-1; G72, which inter-

acts with D-amino acid oxidase; D2, dopamine D2 receptor; COMT,
catechol-O-methyl transferase. The square brackets show the approx-
imate numbers of genes within the regions associated with schizo-
phrenia, the total number of genes being of the order of 6000 genes.
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been pursued further because no saturable binding of a
D2 radioligand was detected on human lymphocytes
(Coccini et al., 1991; Rao et al., 1990; Vile and Strange,
1996).

Important biomarkers for schizophrenia are the eye-
tracking abnormalities extensively studied by Holz-
man and others (Holzman et al., 1988; Kathmann
et al., 2003; Matthysse et al., 2004; Sporn et al., 2005)
and enlarged ventricles (Egan and Weinberger, 1997;
Papiol et al., 2005). There is also a considerable litera-
ture on pathomorphology biomarkers in the temporal
lobe and entorhinalcortex in schizophrenia (Arnold
et al., 1991, 1995; Jacob and Beckmann, 1986, 1994;
Ottersen and Storm-Mathisen, 1984).

An additional biomarker that has been extensively
examined is that of prepulse inhibition or PPI, using the
eye-blink component of the startle response. The PPI
test involves measuring the eye blink, or contraction of
the orbicularis oculi muscle, in response to a sudden
loud sound (acoustic startle response). The eye-blink is
attenuated or inhibited when a brief low-intensity stim-
ulus is presented 30–500 ms before the startle-eliciting
stimulus (thus, PPI). Deficits in the magnitude of the
PPI have been found in schizophrenia patients (Braff
et al., 2005; Duncan et al., 2003a,b; Kumari et al., 2004;
Mackeprang et al., 2002; Meincke et al., 2004a,b; Oranje
et al., 2002) and also in their unaffected siblings (Wynn
et al., 2004). In measuring the deficit in patients, some
studies find the optimal interval between the sound and
the eye-blink to be 60 ms (Ludewig et al., 2003), while
other studies can detect the deficit when using an inter-
val of either 30, 60, 100, 120, or 140 ms (see also Caden-
head et al., 2000, who did not find a PPI deficit).
Although men with schizophrenia showed less PPI than
healthy men, women with schizophrenia did not differ
in PPI from healthy women (Kumari et al., 2004). Braff
et al. (2005), however, did find that schizophrenia
women had a reduction in PPI.

Studies with patients on maintenance doses of anti-
psychotics show that there is no effect of haloperidol,
olanzapine, risperidone, zuclopenthixol, perphenazine,
mesoridazine, thiothixene, or M100907 on the PPI defi-
cit (Duncan et al., 2003a,b; Graham et al., 2004; Kumari
et al., 1998; Mackeprang et al., 2002), suggesting that
the PPI deficit is a stable indicator of reduced sensorimo-

tor gating in schizophrenia. However, studies by Oranje
et al. (2002) and Meincke et al. (2004a,b) showed that
clinically improved patients (who had taken various
antipsychotics, including clozapine) did not reveal PPI
deficits. Moreover, it is important to point out that PPI
deficits have been reported in many other nonpsychotic
psychiatric and neurological disorders, suggesting that
PPI deficits may reflect cognitive deficits in general.

PPI is a convenient measurement in animals, and
using gene knockout mice, it has been shown that the
mGluR5 receptor (Brody et al., 2004a,b), the dopamine
D1 and D2 receptors (Ralph et al., 1999; Ralph-Williams
et al., 2002, 2003), the serotonin-1A and 1B receptors
(Dulawa et al., 2000), and the GABA system (Heldt
et al., 2004) may each contribute to the PPI effect. While
the mGluR5 knockout mouse reveals a PPI deficit, the
deficit was not altered by raclopride, clozapine, lamotri-
gine, or M100907 (Brody et al., 2004a,b). This is in con-
trast to the GAD65 knockout mouse (glutamic acid de-
carboxylase) where the PPI deficit was reversed by clo-
zapine (Heldt et al., 2004). Some antipsychotics can
reverse lesion-induced or drug-induced PPI deficits in
animals (Anderson and Pouzet, 2001; Feifel and Priebe,
1999; Feifel et al., 2004; Le Pen and Moreau, 2002; Mar-
tinez et al., 2002; Russig et al., 2004), but not PPI
induced by MK801- or NMDA-type drugs (Bast et al.,
2000, 2001). In general, therefore, the antipsychotic
action on PPI in animals differs from the general lack of
reversal of PPI by antipsychotics in schizophrenia
patients, suggesting basic differences in the underlying
biology of PPI in humans and animals.

BIOMARKER OF DOPAMINE
SUPERSENSITIVITY IN SCHIZOPHRENIA

The psychotic symptoms of patients with schizophre-
nia increase or become worse when challenged with psy-
chostimulants at doses that cause little change in con-
trol patients. For example, the reviews by Lieberman
et al. (1987) and by Curran et al. (2004) show that 74–
78% of patients with schizophrenia became worse with
additional or intensified psychotic signs after being given
amphetamine or methylphenidate, compared to 0–26%
induction of symptoms in control subjects (Table I).
Moreover, the worsening of symptoms caused by the

TABLE I. Psychostimulant response rates

Studies
Schizophrenia

subjects % Worse
Control
subjects

% Worse with
psychotic symptoms

Oral amphetamineb 38 74 39 0
Methylphenidatea 5 65 74 39 10
Methylphenidate i.v.b 54 78 34 26
d-Ephedrinea 9 127 43 307 0
Amphetamine (all routes)a 13 281 24 141 1
Patients on antipsychoticsa 4 52 62
Antipsychotic-free patientsa 17 330 41 248 3

aStudies reviewed by Lieberman et al., 1987.
bStudies reviewed by Curran et al., 2004.
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TABLE II. Dopamine D2 receptors in rat or in knockout mouse striatum

D2 increase (Ref.) D2High increase (Ref.)

Dopamine supersensitivity caused by gene knockouts
a2A adrenoceptor (Lähdesmäki et al., 2004;

Juhila et al., 2005)
– –

a-Synuclein (but not mice with spontaneous
deletion) (Schlüter et al., 2003)

– –

Cannabinoid receptor (CB,"/")
(Martin et al., 2000; Steiner et al., 1999)

1.4-fold (Houchi et al., 2005) –

Catechol-O-methyl-transferase (Comt"/")
(Huotari et al., 2002, 2004)

0.99-fold (Huotari et al., 2004) 1.9-fold (Seeman et al., 2005a)

Dopamine D4 receptor (Drd4"/") (Rubinstein et al.,
1997; Kruzich et al., 2004)

0.91-fold (Seeman et al., 2005a) 1.9–9.9-fold (Seeman et al., 2005a)

Dopamine b-hydroxylase (Dbh"/")
(Weinshenker et al., 2002)

1.03-fold (Seeman et al., 2005a) 1.9–3.2-fold (Seeman et al., 2005a)

ERK1 (extracellular signal-regulated kinase)
(Chen et al., 2004)

– –

Glutamate receptor-A (GluR-A) (Vekovischeva
et al., 2001)

– –

G protein-coupled receptor kinase 6 (Gprk6"/")
(Gainetdinov et al., 2003)

0.88-fold (Seeman et al., 2005a) 1.6–4.4-fold (Seeman et al., 2005a)

Histamine H1 + H2 receptors double knockout
(Iwabuchi et al., 2004)

– –

Melanin-concentrating hormone-1 receptor
(Smith et al., 2005)

1.09-fold (Smith et al., 2005) –

mGluR2 (metabotropic glutamate receptor-2)
(Morishima et al., 2005)

– –

Norepinephrine transporter (Xu et al., 2000) !1 (Xu et al., 2000) –
PSD95 (postsynaptic density 95) (Yao et al., 2004) – –
RIIb protein kinase A ("/")/(+/") (Brandon et al., 1998) 0.87-fold (Brandon et al., 1998) 1.48-fold (G.S. McKnight,

P. Seeman, unpublished data)
RGS9 (regulator of G protein signaling-9)

(Rahman et al., 2003)
1.07-fold (Rahman et al., 2003) 2.35-fold (J. Schwarz,

P. Seeman, unpublished data)
RIM1 a (G protein Rab3A-interacting molecule)

(Powell et al., 2004)
– –

Serotonin-1B receptor (Bronsert et al., 2001) – –
Trace amine-1 receptor (Wolinsky et al., 2004) – 2.6-fold (T. Wolinsky,

T. Branchek,
P. Seeman, et al.,
manuscript in
preparation)

Tyrosine hydroxylase/Dbh (Th"/", DbhTh/+)
(Kim et al., 2000; Zhou and Palmiter, 1995)

0.99-fold (Kim et al., 2000) 2.2-fold (Seeman et al., 2005a)

VMAT2(+/") (vesicle monamine transport-2)
(Wang et al., 1997; Takahashi et al., 1997)

0.98-fold (Takahashi et al., 1997) –

Dopamine supersensitivity caused by lesions or drug treatment
Amphetamine-sensitized rat (see also Robinson

and Berridge, 2000)
0.98-fold (Seeman et al., 2002) 3.5-fold (Seeman et al., 2002)

Caesarian birth of rats (Boksa et al., 2002) 0.82-fold (Seeman et al., 2005a) 2–5.6-fold (Seeman et al., 2005a)
Caesarian birth and anoxia (Boksa et al., 2002) 1.02-fold (Seeman et al., 2005a) 2.3–5-fold (Seeman et al., 2005a)
Cholinergic lesion of cortex by saporin (Mattsson et al., 2004) – 2.3-fold (A. Mattsson, L. Olson,

S.O. Ögren, P. Seeman,
unpublished data)

Clozapine (35 mg/kg for 9 days) (see also Seeger et al., 1982) 0.7-fold (Seeman et al., 2005a) 1.9-fold (Seeman et al., 2005a)
Ethanol withdrawal (Seeman et al., 2004; Suzuki et al., 1997) 0.96-fold (Seeman et al., 2005a) 3–3.7-fold (Seeman et al., 2005a)
Glucocorticoid (corticosterone 10 mg/kg, 5 days)

(Przegalinski et al., 2000)
– 3.1-fold (P. Seeman, unpublished

data)
Haloperidol (0.045 mg/kg for 9 days) (Kapur et al., 2003) 0.8-fold (Seeman et al., 2005a) 2.3-fold (Seeman et al., 2005a)
Lesion of neonatal hippocampus (Bhardwaj et al., 2003) 0.61-fold (Seeman et al., 2005a) 3.7-fold (Seeman et al., 2005a)
Lesion of neonatal hippocampus (Lillrank et al., 1999) 1.06-fold (Lillrank et al., 1999) 2.6-fold (B. Lipska,

D. Weinberger, P. Seeman,
unpublished data; see Fig. 5)

Lesion of entorhinal cortex (Sumiyoshi et al.,
2004, 2005)

– 2-fold (Sumiyoshi et al., 2005)

Lesion of nigral neurones (Schwarting and
Huston, 1996)

!1.3-fold (reviewed by Schwarting
and Huston, 1996)

–

Olanzapine (0.75 mg/kg for 9 days) 0.6-fold (Seeman et al., 2005a) 2.1–2.4-fold (Seeman et al., 2005a)
Phencyclidine-sensitized rat (Robinson and Berridge,

2000; Seeman et al., 2005b)
– 2.8-fold (Seeman et al., 2005a)

Quinpirole-sensitized rat – 1.5-fold (Seeman et al., 2005a)
Quetiapine (25 mg/kg for 9 days) 0.65-fold (Seeman et al., 2005a) 1.4–2.1-fold (Seeman et al., 2005a)
Reserpine (5 mg/kg for 3 days, 2 days no drug) – 2-fold (P. Seeman,

unpublished data)
Risperidone (0.75 mg/kg for 9 days) 0.67-fold (Seeman et al., 2005a) 1.6–3.2-fold (Seeman et al., 2005a)

Average 6 SE 0.94 6 0.04 2.57 6 0.2

(Continued)
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psychostimulants occurred in about two-thirds of
patients despite being on antipsychotic medication, as
indicated in Table I. Overall, the psychostimulants
induced or enhanced psychotic-like symptoms in 40% of
the schizophrenia patients compared to !2% of the con-
trol subjects (Lieberman et al., 1987). Although it is not
known whether the psychostimulants elicited new psy-
chotic symptoms or intensified those that were present,
Janowsky et al. (1977) found that methylphenidate
induced \pathologic thinking" predominantly in individ-
uals with schizophrenia.

ELEVATED D2High RECEPTORS
AS A BIOMARKER FOR DOPAMINE

SUPERSENSITIVITYAND PSYCHOSIS

Ever since the discovery of the antipsychotic recep-
tor (Seeman et al., 1974, 1975, 1976), now known as
the D2 dopamine receptor (see also Seeman 1984,
1985, 1989), many experiments have examined whe-
ther the density of these receptors change after a vari-
ety of treatments and in various psychomotor diseases,
and whether such changes may be related to the dopa-
mine supersensitivity that occurs after such treat-
ments. The two most common types of experiments
have been the denervation of the neostriatum and the
long-term administration of antipsychotics, both proce-
dures of which elevate the density of D2 receptors by
only !10–40% (Schwarting and Huston, 1996; See-
man, 1980). In fact, these small elevations of 10–40%
do not appear to be sufficient to quantitatively explain

the markedly enhanced behavioral dopamine super-
sensitivity (Mandel et al., 1993). Moreover, there are
many instances of dopamine supersensitivity without
any significant change in the density of D2 receptors
(Table II; also see Alburges et al., 1993; LaHoste and
Marshall, 1992; Mileson et al., 1991).

The D2 receptor, however, can exist in either a state
of low affinity for dopamine, D2Low, or in a state of
high affinity for dopamine, D2High, with D2High being
the functional physiological state (George et al., 1985;
McDonald et al., 1984; see Wreggett and Wells, 1995,
for a general description of high- and low-affinity
states). Nevertheless, very few publications have ex-
amined whether there are any changes in the propor-
tions of D2 receptors in the two different states follow-
ing various treatments (Gainetdinov et al., 2003; Hall
and Sällemark, 1987; Seeman et al., 2002, 2004,
2005a). While the majority of these experiments, using
homogenized striata, report that the proportion of
D2High states is normally about 50%, the proportion of
D2High receptors in rat striatal slices is 77% 6 3%
(Richfield et al., 1989).

However, while the increase in behavioral dopamine
sensitivity has been at least !100–300% after dener-
vation or after long-term antipsychotics (Randall,
1985), the D2 dopamine receptors have increased by
only !10–40% (Schwarting and Huston, 1996; See-
man, 1980). Moreover, even though most patients with
schizophrenia are supersensitive to dopamine (Curran
et al., 2004; Lieberman et al., 1987), the density of the
total population of D2 receptors is elevated by only
20–50% in postmortem striatal tissues (Seeman, 1987;

TABLE II. (Continued)

D2 increase (Ref.) D2High increase (Ref.)

Dopamine subsensitivity or no change in sensitivity
Adenosine A2A receptor (Chen et al., 2003) (subsensitive) – 0.25-fold (J.F. Chen, M.A.

Schwarzschild, P. Seeman,
unpublished data)

GR kinase 3 (Gainetdinov et al., 2004) (subsensitive) – –
b-Arrestin-1 (Gainetdinov et al., 2004) (subsensitive) – –
b-Arrestin-2 (Beaulieu et al., 2005) (subsensitive) – –
Cannabinoid receptor (CB,"/") (Houchi et al., 2005)

(no sensitivity change?)
1.4-fold (Houchi et al., 2005) –

Dopamine D1 receptor (Drd1a"/") (no change in sensitivity)
(El-Ghundi et al., 2001)

– 0.93-fold (Seeman et al., 2005a)

Dopamine D3 receptor ("/") (no change in sensitivity) – 0.97-fold (Seeman et al., 2005a)
Dopamine transporter knockdown (Zhuang et al., 2001) 0.99-fold (Zhuang et al., 2001) –
GSK3b (glycogen synthase kinase 3) (GSK3ß+/")

(subsensitive)
(P. Seeman, J. Woodgett, unpublished data; see Beaulieu
et al., 2004)

– 1.19 (P. Seeman, J. Woodgett,
unpublished data; see Beaulieu
et al., 2004)

Histidine decarboxyase (HDC)(Kubota et al., 2002; Iwabuchi
et al., 2004)

– –

Histamine H1 receptor (Iwabuchi et al., 2004) (no sensitivity
change)

– !1-fold (K. Yanai, P. Seeman,
unpublished data)

Histamine H2 receptors (Iwabuchi et al., 2004) (no sensitivity
change)

– !1-fold (K. Yanai, P. Seeman,
unpublished data)

Histamine H3 receptors (Iwabuchi et al., 2004) (no sensitivity
change)

– !1-fold (K. Yanai, P. Seeman,
unpublished data)

mGluR5 knockout (no change in sensitivity) – 1.14-fold (P. Seeman, J. Roder,
unpublished data)

(–), Not reported.
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Seeman et al., 1987), and marginally by 10–20% as
monitored by positron emission tomography (PET)
(Nordström et al., 1995; Tune et al., 1993; Wong et al.,
1997).

A more relevant question to be considered here,
therefore, has been whether the functional state of D2,
or D2High, is elevated in dopamine supersensitive con-
ditions and in schizophrenia, because this topic has
received little or no study.

GENE KNOCKOUTS

Experimentally, dopamine behavioral supersensitiv-
ity occurs after many types of brain lesions, drug

treatment, and gene alterations. Table II lists exam-
ples of at least 20 gene knockouts that resulted in be-
havioral dopamine supersensitivity. Figure 2 shows
examples of these results.

Interestingly, while some of these gene knockouts,
such as genes for histamine receptors, metabotropic
glutamate receptors, and RIIb protein kinase A, are
not directly involved with dopamine neurotransmis-
sion; the deletion of such genes resulted in the brain
becoming supersensitive to dopamine, as indicated by
behavioral tests with either amphetamine, apomor-
phine, cocaine, or methylphenidate.

Other knocked out genes, not listed in Table II and
also not directly involved in dopamine transmission,
such as GABAA receptors, appear to result in dopa-

Fig. 2. Top: Knockouts of the genes for RGS9 receptors (in collabo-
ration with J. Schwarz) induced an elevation of D2High receptors in the
mouse striata, in keeping with an induction of behavioral dopamine
supersensitivity (Rahman et al., 2003). Representative experiment,
using 1.9 nM [3H]domperidone (42 Ci/mmol) in 120 mM NaCl. Bottom:
Knockouts of the gene for adenosine A2A receptors (in collaboration

with J.-F. Chen and M.A. Schwarzchild) markedly reduced the propor-
tion of D2High receptors in the mouse striata, in parallel with the
reduced behavioral dopamine supersensitivity (Chen et al., 2003). Rep-
resentative experiment, using 4 nM [3H]domperidone (68 Ci/mmol) in
120 mMNaCl.
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mine hyperfunction (Yee et al., 2005), but do not lead
to an increase in behavioral dopamine supersensitiv-
ity, as monitored by amphetamine-induced locomotion
(Resnick et al., 1999; Yee et al., 2005).

In fact, of course, not all gene knockouts result in
dopamine supersensitivity, because knockouts of many
genes, such as those for adenosine A2A receptors (Bas-
tia et al., 2005; Chen et al., 2000, 2003), lead to dopa-
mine subsensitivity. Indeed, in keeping with this
reduction in dopamine sensitivity, the D2High receptors
were reduced by 75% in the striata of adenosine A2A

knockout mice (Table II; Fig. 2).
Similarly, knockouts of the metabotropic glutamate

receptor 5 (mGluR5) are not supersensitive (Chiamu-
lera et al., 2001), and the proportion of D2High recep-
tors did not increase (Table II).

In addition, knockouts of dopamine D1 receptors
(Crawford et al., 1997; El-Ghundi et al., 2001; Xu
et al., 1994; but see Karper et al., 2002), dopamine D3
receptors (Karasinska et al., 2005; but also see Accili
et al., 1996; Aiba, 1999; Carta et al., 2000; and Xu
et al., 1997), dopamine D5 receptors (Holmes et al.,
2001), kinases, and arrestins (Table II) lead to dopamine
subsensitivity, or do not cause any change in dopamine
sensitivity (reviewed by Glickstein and Schmauss, 2001;
Holmes et al., 2004; Sibley, 1999).

In some cases it is not obvious as to whether there is
dopamine supersensitivity or subsensitivity. For exam-
ple, in mice with the dopamine transporter (DAT)
knocked down (Zhuang et al., 2001), apomorphine no
longer has any locomotor-stimulating action. However,
an analysis of the data of Zhuang et al. (2001) also
shows that the apomorphine ED50% dose required to
inhibit locomotion went from a control value of 0.4 mg/
kg down to 0.28 mg/kg, an apparent increase in dopa-
mine sensitivity, but presumably presynaptic in nature
(Seeman and Madras, 1998).

The same uncertainty exists for conditional calci-
neurin knockouts (Miyakawa et al., 2003). Although am-
phetamine stimulated locomotion to the same absolute
level of !1000 cm in calcineurin knockout mice and con-
trol mice, the basal activity of the knockout mice was
about twofold higher than control, thus reducing the rel-
ative increment caused by amphetamine.

ELEVATION OF D2High IN DOPAMINE
SUPERSENSITIVE ANIMALS, AND METHODS

FOR MEASURING D2High RECEPTORS

In general, while the dopamine supersensitive
knockout mice do not reveal a significant elevation in
the density of dopamine D2 receptors, a major eleva-
tion of the order of 2.5-fold occurs in the proportion of
D2 receptors in the high-affinity state, D2High, in all
these knockouts (Table II).

Although there are several methods to detect the
proportion of D2High sites (Seeman et al., 2003,

2005a), the best method is to use the competition
between dopamine and [3H]domperidone to demar-
cate the high-affinity sites, as illustrated in Figure 3.
In fact, all of the unpublished data in Table II were
obtained using this method. Although [3H]domperi-
done readily reveals the D2High component (Fig. 3),
[3H]spiperone does not (Fig. 3) (e.g., MacKenzie and
Zigmond, 1984). The only publication using [3H]spi-
perone and reporting an antipsychotic-induced
increase in D2High proportions is that of Hall and Sälle-
mark (1987); here too, however, the demarcation
between the high- and low-affinity components was not
obvious, requiring computer-assisted analysis and the
controversial assumption that the two states of the re-
ceptor do not interconvert.

The method of competing dopamine with [3H]dom-
peridone is more convenient, more reproducible, and
more readily understandable than the [3H]raclopride
saturation method (Fig. 4). The latter method defines
the D2High receptors as those receptors made manifest
by the addition of guanine nucleotide which converts
the receptors from their state of high affinity to their

Fig. 3. Human cloned dopamine D2Long receptors in CHO cells:
Although competition between dopamine and [3H]spiperone (250 pM;
60 pM Kd), or competition between dopamine and [3H]raclopride (2 nM;
1.9 nM Kd), revealed no obvious high-affinity component for dopamine
at D2 receptors in isotonic NaCl, competition between dopamine and
[3H]domperidone (1.2 nM; 0.41 nMKd) in isotonic NaCl revealed a clear
high-affinity component for dopamine with a Ki of 1.9 nM. Representa-
tive experiments. The high-affinity states were entirely removed in the
presence of 200 mM guanilylimidodiphosphate. Nonspecific binding de-
fined by 10 mM S-sulpiride. (From Seeman et al., Synapse, 2003, 49,
209–215, reproduced by permission).
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state of low affinity for endogenous dopamine, thus
increasing the binding of [3H]raclopride.

Compared to [3H]spiperone or [3H]raclopride, which
easily permeate cell membranes, it is likely that
[3H]domperidone more readily reveals the high-affinity
state for the D2 receptor (Fig. 3) because [3H]domperi-
done does not permeate cell membranes (see Refs. in
Seeman et al., 2003), and therefore, preferentially labels
the D2 receptors that are facing the synaptic space. This
view is supported by the fact that the apparent density
of D2 receptors, as labeled by [3H]domperidone, is about
half that labeled by [3H]raclopride. For example, the
density (or Bmax) of D2 receptors in the rat striatum for
[3H]domperidone is 13 6 1 pmol/g (mean 6 SE; n ¼ 3),
while that for [3H]raclopride is 186 0.5 pmol/g (mean6

SE; n ¼ 53), regardless of how the striatal tissue is
homogenized (P. Seeman, unpublished data). Further-
more, the density of the [3H]domperidone sites is mark-
edly increased by 44% (P. Seeman, unpublished data)
when saponin (3–10 mg/ml of holothurin A) is added to
permeabilize the homogenized striatum (Seeman, 1974;
Seeman et al., 1973) and to permit [3H]domperidone to
label internalized D2 receptors. Thus, by apparently
labeling D2 receptors primarily on the exterior aspect of
the cell membrane, [3H]domperidone more readily
detects D2High receptors. This is because the low-affinity
receptors have already been internalized premortem
(Ko et al., 2002), and the low-affinity receptors are
essentially not accessible to [3H]domperidone unless the
tissue is permeabilized.

In contrast to the elevation of D2High in the super-
sensitive animals, the striata from the knockout mice
did not show any increase in the density of D1 recep-
tors or in the proportion of D1High or D3High receptors
(Table III).

LESIONS

Many types of brain lesions have been proposed as
models for schizophrenia, including lesions of the neo-
natal hippocampus (Bhardwaj et al., 2003; Lillrank
et al., 1999; Lipska et al., 1991, 1993, 2003; Lipska
and Weinberger, 1993; Schroeder et al., 1999; Wan
et al., 1996; Wan and Corbett, 1997; Wood et al., 1997),
the cerebral cortex (Mattsson et al., 2004), the entorhi-
nalcortex (Sumiyoshi et al., 2004, 2005; Uehara et al.,
2000), and the medial prefrontal cortex (Flores et al.,
1996a,b; Jaskiw et al., 1990). The striata from adult
rats that have been lesioned neonatally generally do
not show any elevations in D2 receptors (Flores et al.,
1996a,b; Lillrank et al., 1999; Schroeder et al., 1999)
but do reveal two–four-fold elevations in the propor-
tion of D2High receptors (Fig. 5; Table II).

Although dopaminergic denervation of the striatum
in MPTP-treated monkeys is not accompanied by an
increase in D2 receptors labeled by [11C]raclopride
(Doudet et al., 2000), there is likely to be a significant
elevation in D2High receptors, which in principle, could
be measured by [11C]PHNO (Willeit et al., 2006; Wil-
son et al., 2005).

The neonatally lesioned hippocampus is a particu-
larly interesting model for schizophrenia, because
many studies have found a small (4%; Nelson et al.,
1998) but significant reduction in the volume of the
hippocampus bilaterally in schizophrenia (Geuze
et al., 2005). The reduction in the hippocampus vol-
ume, however, does not appear to progress over sev-
eral years (DeLisi et al., 1997; Lieberman et al.,
2001). While such reductions in the hippocampus
volume are not specific to schizophrenia (Geuze
et al., 2005), the decreases are also found in unaf-

Fig. 4. (A) Using the method of dopamine/[3H]domperidone competi-
tion, knockouts of the dopamine D4 receptor gene showed an increase of
222% in the proportion of D2High receptors (from a control value of 18%
to a value of 40%) (Reproduced with permission from Seeman et al., Proc
Nat Acad Sci USA, 2005a, 120:3513–3518). (B) Using the method of satu-
rating the D2 receptors with [3H]raclopride, the difference in D2 density
(Bmax) with and without guanine nucleotide (200 mM guanilylimidodi-
phosphate) was 6 pmol/g. This represents a 10-fold increase in the den-
sity of D2High receptors, when compared to the control value of 0.6 pmol/g
in Figure 2C (Reproduced with permission from Seeman et al., Proc Nat
Acad Sci USA, 2005a, 120:3513–3518).
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fected members of the same family (Tepest et al.,
2003).

PSYCHOSTIMULANTS AND
CAESARIAN BIRTH

Important animal models for human psychosis
include psychostimulant models (Lieberman et al.,
1990; Tenn et al., 2003, 2005; Ujike, 2002; Yui et al.,
1999) and the model of birth hypoxia during Caesarian
section delivery (Boksa and El-Khodor, 2003; El-Kho-
dor and Boksa, 1998). With regard to the Caesarian
section/hypoxia model, it is important to note that adult
rats born by Caesarian section (with or without added
anoxia) have been shown to exhibit dopamine supersen-
sitivity such as enhanced amphetamine-induced locomo-
tion (reviewed by Boksa and El-Khodor, 2003).

Rats that have been sensitized by amphetamine
(Tenn et al., 2003; Ujike, 2002), phencyclidine (Morris
et al., 2005; see Allen and Young, 1978, for patients),
or quinpirole (Lomanowska et al., 2004; Szechtman
et al., 2001) become supersensitive to dopamine agonists
(Robinson and Becker, 1986; Robinson and Berridge,
2000). The sensitization by dopamine agonists appears
to stem primarily from the D2 receptor (Ujike et al.,
1990), although D1 presumably cooperates (Vezina,

1996). The striata from such supersensitive rats do not
reveal any increase in dopamine D1 or D2 receptors, but
do show a two–four-fold elevation in the proportion of
D2High receptors (Seeman et al., 2002, 2005a; Tables II
and III).

While dopamine D2 receptors may be lower in cocaine,
ethanol, and methamphetamine abusers (Volkow et al.,
2001), the proportion of their D2High receptors is likely
to be elevated, in accord with the clinical observation
that such individuals are dopamine supersensitive (see
earlier section).

While the phencyclidine and ketamine psychostimu-
lants are usually recognized as NMDA antagonists
(Krystal et al., 2005; Lahti et al., 2001), it is important
to note that such drugs have a dopamine agonist com-
ponent of action (Greenberg and Segal, 1985; Ögren
and Goldstein, 1994), particularly at the D2High recep-
tor (Kapur and Seeman, 2002; Seeman, 2004; Seeman
et al., 2005b; Seeman and Lasaga, 2005) and possibly
at the D1 receptor (Tsutsumi et al., 1995). Ketamine-
related compounds such as MK801, therefore, may
have a double action at both NMDA and dopamine D2
receptors; for example, even in dopamine-depleted
mice, haloperidol, despite its negligible affinity for
NMDA receptors, reduced MK-801 ambulation by
!40% (Chartoff et al., 2005).

TABLE III. Dopamine D1 and D3 receptors in rat striatum or in knockout mouse striatum

D1 Increase (Ref.) D1High Increasea D3High Increaseb

Dopamine supersensitivity caused by gene knockouts (Ref.)
Cannabinoid receptor (CB,"/") (Martin et al.,

2000; Steiner et al., 1999)
1.15-fold

(Houchi et al., 2005)
– –

Dopamine b-hydroxylase (Dbh"/")
(Weinshenker et al., 2002)

1.17-fold
(Schank et al., 2005)

1.8-fold (D. Weinshenker,
P. Seeman,
unpublished data)

–

G protein-coupled receptor kinase 6 (Gprk6"/")
(Gainetdinov et al., 2003)

1.06
(Gainetdinov et al., 2003)

1-fold (Gainetdinov
et al., 2003)

–

RIIb protein kinase A ("/")/(+/")
(Brandon et al., 1998)

0.83-fold
(Brandon et al., 1998)

0.96-fold (G.S. McKnight,
P. Seeman,
unpublished data)

1.02-fold (G.S. McKnight,
P. Seeman, unpublished data)

Tyrosine hydroxylase/Dbh (Th"/",DbhTh/+)
(Kim et al., 2000; Robinson et al., 2004;

Zhou and Palmiter, 1995; )

– 1.2-fold (R. Palmiter,
S. Robinson,
P. Seeman,
unpublished data)

4.8%/3% (1.6-fold) (R. Palmiter,
S. Robinson, P. Seeman,
unpublished data)

VMAT2(+/") (vesicle monamine transporter-2)
(Wang et al., 1997;
Takahashi et al., 1997)

1.08-fold
(Takahashi et al., 1997)

1.7-fold (Seeman
et al., 2002)

–

Dopamine supersensitivity caused by lesions or drug treatment (Ref.)
Amphetamine-sensitized rat

(see also Robinson and Berridge, 2000)
0.95-fold

(Seeman et al., 2002)
0.93-fold (Schank

et al., 2005)
–

Caesarian birth of rats (Boksa et al.,
2002; Juarez et al., 2005)

1.1-fold
(Juarez et al., 2005)

– –

Caesarian birth and anoxia
(Boksa et al., 2002; Juarez et al., 2005)

1.08-fold
(Juarez et al., 2005)

– –

Lesion of entorhinal cortex (Sumiyoshi
et al., 2004, 2005)

– 1.19-fold (Sumiyoshi
et al., 2005)

2.9%/5.2% (0.56-fold)
(T. Sumiyoshi, P. Seeman,
unpublished data)

Quinpirole-sensitized rat – 1.03-fold (H. Szechtman,
M. Perreault,
P. Seeman,
unpublished data)

7.9%/5% (1.6-fold)
(H. Szechtman,
M. Perreault, P. Seeman,
unpublished data)

Reserpine (5 mg/kg for 3 days,
2 days no drug)

– !1.1-fold (Schank
et al., 2005)

–

(–), Not reported.
aProportion of D1High defined by dopamine/[3H]SCH23390 competition, where 1–100 nM dopamine inhibited 10–15% of [3H]SCH23390 sites for the control value of D1High.
bProportion of D3High receptors measured by dopamine/[3H]domperidone competition in presence of 15 nM pramipexole. Pramipexole occludes D3High in cloned D3
receptors at 3.5 nM, but blocks cloned D2 receptors above 75 nM (Seeman and Ko, 2005). % Refers to the proportion of [3H] domperidone sites that labeled D3 recep-
tors, normally 3–8%.
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Striata from rats born by Caesarian section (Boksa
et al., 2002; Juárez et al., 2005) also revealed a two–
six-fold elevation in the proportion of D2High receptors,
but no increase in the total population of D1 or D2
receptors (Tables II and III).

STEROIDS

Steroid-induced psychosis is a common complication
of glucocorticoid treatment in humans. In fact, in par-
allel to the human condition, rats given high doses of
corticosterone for 5 days become dopamine supersensi-
tive and respond to amphetamine with increased loco-
motor activity (Przegalinski et al., 2000). The striata
from such corticosterone-treated rats show a threefold
elevation in D2High receptors (Table II). In fact, the
secretion of glucocorticoids is a factor in determining

the extent of dopamine supersensitivity in stressed
subjects (Deroche et al., 1995).

ANTIPSYCHOTIC DRUGS

In addition to the long-term therapeutic use of glu-
cocorticoids, the therapeutic long-term use of antipsy-
chotics is known to elicit dopamine supersensitivity
(Dewey and Fibiger, 1983; Jenner et al., 1982; Seeger
et al., 1982; Seeman, 1980; Smith and Davis, 1975;
VonVoigtlander et al., 1975). The antipsychotic-induced
elevation of D2High receptors is consistent with this
induced supersensitivity. In the case of long-term treat-
ment by antipsychotics, the density of D2 receptors in
the rat striatum generally increases by 10–40% (re-
viewed by Seeman, 1980). The proportion of D2High re-
ceptors, however, increases considerably by a factor of
two–four-fold (Table II). From a clinical point of view in
treating psychosis, however, the antipsychotic-induced
supersensitivity is counterproductive, requiring an in-
crease in the antipsychotic dose to prevent a possible
clinical relapse of the patient (Chouinard, 1991; Choui-
nard et al., 1978; Kirkpatrick et al., 1992).

Not all antipsychotics, however, elicit the same
degree of dopamine supersensitivity or elevation of
D2High receptors, because there are fundamental dif-
ferences between different groups of antipsychotics.
For example, the traditional antipsychotics such as
haloperidol and chlorpromazine bind tightly to the do-
pamine D2 receptor, with dissociation constants lower
than 2 nM, and slowly dissociate from the D2 receptor
in vitro or in vivo (Seeman and Tallerico, 1999; re-
viewed by Seeman, 2001, 2002). The newer or so-called
atypical antipsychotic drugs such as quetiapine, cloza-
pine, paliperidone, amisulpride, and aripiprazole rap-
idly dissociate from the D2 receptor in vitro and in
vivo, with rapid dissociation times (50% reduction in
binding in 60 s or less) from the cloned D2 receptor
(Seeman, 2002, 2005), and clinical dissociation times
of hours, thus minimizing clinical side effects. In accord
with this fast-off-D2 principle for the atypical antipsy-
chotics, it is not surprising that clozapine and quetia-
pine induce the lowest elevation of D2High receptors, in
contrast to the elevations elicited by haloperidol and
olanzapine, as shown in Figure 6.

ARE ELEVATED D2High RECEPTORS LOCATED
PRE- OR POSTSYNAPTICALLY?

Dopamine D2 receptors in the rat striatum are
located postsynaptically on cell bodies (medium spiny
neurons) as well as presynaptically on nerve terminals
of neurones from the substantia nigra and the cerebral
cortex (Fig. 7; Sesack et al., 2003). Therefore, the ele-
vation of D2High receptors may occur in either the pre-
synaptic or the postsynaptic receptors. One possible
method for determining which set of these D2High

Fig. 5. Elevated proportions of D2High dopamine receptors in the
striata of adult rats that had received ibotenic acid bilateral lesions of
the ventral hippocampus at 7 days of age (Lipska et al., 1993). The total
density of D2 was 12.7 6 0.6 pmol/g in sham control samples and 9.9 6
0.2 pmol/g in lesion samples, as measured separately using [3H]
raclopride. This reduction of 22% matched the 15% reduction found by
Schroeder et al. (1999), using [3H]spiperone. Instead of washing, a final
concentration of 200 mM Gpp[NH]p (guanilylimidodiphosphate) was added
to convert the D2 receptors to their low-affinity state, thus minimizing
the masking of D2 receptors by endogenous dopamine (Unpublished
data of B. Lipska, D. Weinberger, and P. Seeman).
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receptors is altered is to measure the D2Short and
D2Long proteins in the striatal tissue. This suggestion
is based on the work of Usiello et al. (2000) who have
shown that D2Short and D2Long are predominantly
located presynaptically and postsynaptically, respec-
tively. In fact, although it is generally assumed that
dopamine supersensitivity is related to postsynaptic
alterations, it is known that altered dopamine sensi-
tivity of the presynaptic system does occur (King et al.,
1994). Such presynaptic alterations may underlie the
enhancement of quinpirole sensitization by the j opi-
ate agonist (Perreault et al., 2005).

REVERSAL OF BOTH DOPAMINE
SUPERSENSITIVITYAND THE ELEVATED

D2High RECEPTORS

Because the dopamine supersensitivity model is use-
ful for determining the biochemistry underlying clini-

cal psychosis, the prevention of such sensitization by
dopamine D1 blockade (Akiyama et al., 1994; Kuribara
1995; Pierre and Vezina, 1998) may provide clues to
the psychotic mechanisms involved, as well as promise
in arresting the progress of human psychosis.

In the same way as D1 blockade prevents the devel-
opment of psychostimulant-induced behavioral dopa-
mine supersensitivity (Pierre and Vezina, 1998), the
coadministration of a D1 blocker (SCH 23,390) with
amphetamine, using the identical protocol of Pierre
and Vezina (1998), blocks the elevation of D2High re-
ceptors in the striatum (P. Seeman, unpublished data)
(Fig. 8).

This prevention of D2High elevation by a D1 antago-
nist may be based on the link between D1 and D2
receptors, either by coactivation in the same neuron
or different neurons (Hersch et al., 1995; Le Moine
and Bloch, 1995; Lee et al., 2004; Surmeier et al.,
1996) or as a D1/D2 dimer (see also Winterer and
Weinberger, 2004, for an analysis of D1 and D2 syn-
aptic signaling). In fact, because clozapine effectively
blocks D1 receptors with a dissociation constant of 90
nM (almost identical to its dissociation constant of 75
nM at D2; Seeman, 2001), clozapine also prevents
amphetamine-induced sensitization (Meng et al.,
1998; Phillips et al., 2001). Curiously, sensitization to
cocaine is apparently not blocked by D1 antagonism
(Mattingly et al., 1996).

Fig. 6. The atypical antipsychotics clozapine and quetiapine
induced significantly less elevation of D2High receptors compared to the
older antipsychotics haloperidol, olanzapine, and risperidone. The anti-
psychotics were given at doses that were clinically equivalent, using
doses that all led to the same therapeutic D2 occupancy of 60–80% in
the rat striatum in vivo (Kapur et al., 2003). Haloperidol (0.045 mg/kg),
olanzapine (0.75 mg/kg), risperidone (0.75 mg/kg), quetiapine (25 mg/
kg), and clozapine (35 mg/kg) were given i.p. daily for 9 days.

Fig. 7. Dopamine D2 receptors are located postsynaptically on
medium spiny neurons in the striatum, and presynaptically on neu-
rons from the cerebral cortex and the substantia nigra. Elevated
D2High receptors may occur at any of these three sites. The work of
Usiello et al. (2000) indicates that D2Short and D2Long are predomi-
nantly located presynaptically and postsynaptically, respectively
(Figure reproduced with permission from Sesack et al., Ann N YAcad
Sci, 2003, 1003, 36–52).
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It is important to emphasize that, despite these D1/
D2 interactions, the clinical use of D1 antagonists does
not alleviate schizophrenia or the other psychoses.
Such D1/D2 interactions are not sufficiently strong or
adequate to activate the antipsychotic pathway, what-
ever these steps may be.

The long-term blockade of D2 receptors can also pre-
vent the sensitization and dopamine supersensitivity
elicited after neonatal hippocampal lesions. For exam-
ple, Richtand et al. (2006) found that a low dose of
risperidone (0.045 mg/kg) given between 35 and 56
days postnatally suppressed or prevented development
of dopamine supersensitivity in rats with neonatal
lesions of the hippocampus, as tested on day 57.
Although a higher dose of risperidone (0.085 mg/kg)
did not suppress or prevent the development of dopa-
mine supersensitivity, the proportion of risperidone
and its active metabolite, 9-hydroxyrisperidone, varies
considerably (the metabolite is 30–60% of the total ris-
peridone in plasma), and this variation may depend on
the dosage.

Nevertheless, the suppression or inhibition of the de-
velopment of dopamine supersensitivity in the lesioned
rats by risperidone would be expected to be mirrored by
a corresponding block in the elevation of D2High states in
lesioned animals (Fig. 5). The risperidone inhibition of
dopamine supersensitivity is consistent with the clinical
finding by McGorry et al. (2002) that risperidone
delayed or protected by 6 months prepsychotic
patients from developing characteristic schizophrenia.
Therefore, it is possible that the biomarker of elevated
D2High states may become a useful index to test
whether various medications inhibit the progress of

sensitization and the development of dopamine super-
sensitivity.

It should be noted that the prevention of psychostimu-
lant sensitization by D1 blockade is not unique, because
the blockade of b-adrenoceptors by timolol (Colussi-Mas
et al., 2005) and the block of dopamine D3 receptors by
nafadotride (Richtand et al., 2000) also prevent amphet-
amine-induced sensitization.

THE PHYSICAL EXISTENCE OF THE
D2High STATE

Dopamine D2 receptors belong to a group of more
than one thousand receptors known to be associated
with G proteins. The binding of an agonist to such a
G-linked receptor occurs in two concentration ranges.
Low nanomole concentrations of the agonist binds to
the high-affinity state of the receptor, while high micro-
mole concentrations bind to the low-affinity state of the
receptor. Generally, it is the high-affinity state of the re-
ceptor that is the functionally active state of the recep-
tor, because the agonist affinities for the high state are
usually identical to the concentrations that elicit the
physiological action of the agonists. This holds for
many neurotransmitter receptors, including dopamine
D2 receptors (George et al., 1985; McDonald et al.,
1984), cholinergic muscarinic receptors (Birdsall et al.,
1977), a2-adrenoceptors (Thomsen et al., 1988), and
b2-adrenoceptors (Stadel et al., 1981). (It should be
noted that each tissue has spare receptors, and when
these are irreversibly blocked, the agonist concentra-
tions that are functional under these conditions can

Fig. 8. The administration of amphetamine (method of Pierre
and Vezina, 1998) induced a marked increase in the proportion of
D2High receptors in rat striatal tissue, in parallel with the behavioral
dopamine supersensitivity induced by amphetamine. Cotreatment of
the rats with 0.2 mg/kg SCH23390 to block D1 receptors prevented

the amphetamine-induced elevation of the D2High receptors (P. See-
man, unpublished data), in parallel to the D1 blockade of behavioral
dopamine supersensitivity elicited by amphetamine (Pierre and
Vezina, 1998). Representative experiments, using 2 nM [3H]domperi-
done (68 Ci/mmol) in 120 mM NaCl.

331PSYCHOSIS PATHWAYS CONVERGE VIA D2High

Synapse DOI 10.1002/syn



correlate with the agonist concentrations acting at the
low-affinity state of the receptor).

There are at least two views of the physical exis-
tence of the high-affinity state. The traditional view
is that the high-affinity state of the receptor exists
when the receptor, R, is associated with the G protein,
and the agonist, D, binds to this high-affinity state
to form the \ternary complex," namely DRG (De Lean
et al., 1980). This view of the receptor proposes that
the low-affinity state occurs when the G protein is not
associated with the receptor.

However, there are many significant short-comings
with this view of the high-affinity state of the receptor
in the ternary complex model, as pointed out by Green
et al. (1997). For example, the ternary complex sug-
gests that RG should have a transient existence. This
is the not the case, however, because it has been found
that the purified muscarinic RG is stable (Wreggett
and Wells, 1995). Moreover, the purified muscarinic re-
ceptor, free of G and GDP, clearly shows high-affinity
and low-affinity states (Wreggett and Wells, 1995).

An alternate view of the high-affinity state of the re-
ceptor is the \cooperativity" model, as worked out by
Wells and coworkers (Chidiac et al., 1997; Sum et al.,
2001). The cooperative model proposes that the recep-
tor cooperates with other receptors to form a dimer, a
tetramer, or a larger oligomer. The receptor is in the
high-affinity state when it is vacant and unoccupied
by the agonist. However, when the agonist binds to the

vacant receptor, the occupied receptor interacts or
\cooperates" with the other receptors (within the tet-
ramer) such that the affinity of the other receptors for
the agonist is markedly reduced (Chidiac et al., 1997;
Sum et al., 2001). This reduced affinity for the agonist
is a result of \negative cooperativity" between the re-
ceptors, and corresponds to the low-affinity state of the
receptor.

In other words, if there is very strong negative coop-
erativity, then the second, third, and fourth receptors
(within the tetramer) would hardly bind the agonist,
and only the high-affinity sites would be observed in
the competition between, say, dopamine and [3H]dom-
peridone, all taking place at the first receptor. These
events are depicted in a diagram in Figure 9.

According to this negative cooperativity model,
therefore, the increased number of D2 receptors in the
high-affinity state, D2High, found in the striata of
supersensitive animals may be attributed to a reduc-
tion in the overall negative cooperativity between the
receptors, as illustrated in Figure 9. Therefore, to de-
termine the molecular mechanism of dopamine super-
sensitivity, it will be essential to determine the factors
that reduce negative cooperativity among the D2 re-
ceptors or that alter the association of the receptor
with its G protein. The role of guanine nucleotides in
regulating the overall sensitivity of the dopamine D2
receptors would be to alter the extent of the receptor–
receptor negative cooperativity.

Fig. 9. Illustration of negative cooperativity or receptor–receptor
negative interaction (Chidiac et al., 1997; Sum et al., 2001) between
dopamine D2 receptors, and how dopamine supersensitivity can arise
from a reduction of such a negative interaction. Four D2 receptors
are drawn as a tetramer, all four of which are in the high-affinity
state when vacant and not occupied by dopamine. The binding of a
single molecule of dopamine to any of the four unoccupied D2 recep-
tors exerts a negative effect on the other three receptors, lowering

their affinity for dopamine. (The situation is analogous to that for he-
moglobin where the hemoglobin chains interact to alter the affinities
for oxygen; Gourianov and Kluger, 2005.) However, in striatal tissues
from animals that are supersensitive to dopamine, the factors con-
tributing to dopamine supersensitivity would reduce the negative
interaction between the D2 receptors. This reduction in negative
cooperativity would leave more D2 receptors in the high-affinity state
and allow them to be occupied by dopamine.
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BIOCHEMICAL FACTORS PROMOTING THE
D2High STATE

The rate of interconversion between the high- and
low-affinity states of a G protein-linked receptor is gen-
erally of the order of minutes or seconds (Posner et al.,
1994). There are many factors that increase the preva-
lence of the high-affinity state, and therefore, increase
the sensitivity of the tissue to the agonist. The following
proteins are a few of the numerous proteins and factors
that alter the dopamine sensitivity of a tissue.

G proteins

Generally, the level of G proteins do not change in do-
pamine supersensitive conditions. For example, long-
term antipsychotic treatment or reserpine-induced su-
persensitivity is not accompanied by any change in the
protein levels of Gai1, Gai2, or Gao, as seen by immuno-
blotting or by toxin-catalyzed ADP ribosylation (Butker-
ait et al., 1994; Meller and Bohmaker, 1996). This also
holds for behavioral sensitization by cocaine, where no
expression changes were found in Gas or Gao, but Gai1
expression was transiently increased while Gaolf was
reduced (Perrine et al., 2005); more importantly, the pro-
tein levels of these latter four a-subunits were not signif-
icantly altered by cocaine. However, short-term cocaine
treatment increased the protein levels of Gaq and Ga11
(Carrasco et al., 2004). In addition, few changes occur in
the expression of Gq, G11, and Gz after dopamine dener-
vation of the rat striatum (Friberg et al., 1998).

RGS proteins, or regulators of G protein signaling,
activate the breakdown of GTP which transiently
attaches to the G protein (Neubig, 2002; Neubig and
Siderovski, 2002; Xu et al., 1999). Thus, the RGS pro-
teins essentially act as GTPase activators to shorten
or terminate the action of an agonist.

RGS9 (Regulator of G protein-signaling 9) is localized
in the retina (as RGS9-1) and in the striatum and the
hippocampus (as RGS9-2) (Gold et al., 1997). This protein
colocalizes with D2 receptors in the striatum and acceler-
ates the termination of D2-triggered events (Kovoor
et al., 2005) by increasing the rate of hydrolysis of GTP
bound to the a subunit of the G protein (Neubig and
Siderovski, 2002; Siderovski et al., 1999). As summar-
ized by Traynor and Neubig (2005), RGS proteins limit
the strength of the steady-state signal, because there is a
balance between the rate of receptor-stimulated binding
of GTP and the rate of hydrolysis of GTP (Cabrera-Vera
et al., 2004). A reduction in RGS9, as occurs in RGS9
knockout mice, leads to behavioral dopamine supersensi-
tivity (Rahman et al., 2003) and a marked increase
in the proportions of D2High receptors in the striatum
(Table II; Fig. 2), even though the total density of D2
receptors does not change (Rahman et al., 2003).

Consistent with the dopamine supersensitivity of
RGS9 knockout mice, overexpression of RGS9 on one
side of the brain (nucleus accumbens) reduced the do-

pamine sensitivity of the injected side (Rahman et al.,
2003). Moreover, although estrogen can both diminish
and enhance the action of dopamine, the psychostimu-
lant-enhancing action of estrogen is accompanied by a
reduction in the expression of RGS9 (Sharifi et al.,
2004). It should be noted, however, that a reduction in
RGS9 expression is not specifically associated with en-
hanced dopamine neurotransmission, but is also associ-
ated with amarked enhancement of behavioral responses
to acute and chronic morphine (Zachariou et al., 2003).

Some, but not all, postmortem schizophrenia prefron-
tal cortex tissues reveal a 40% reduction in RGS9 expres-
sion (Mirnics et al., 2001). Moreover, the expression of
RGS9 was reduced after amphetamine (Burchett et al.,
1998, 1999) and after the dopamine agonist quinpirole
(Taymans et al., 2003). Altogether, therefore, the data for
RGS9 suggest that this gene may be a significant suscep-
tibility gene for schizophrenia. In fact, the gene for RGS9
is located in chromosome region 17q21-25 (Zhang et al.,
1999), a region which contains at least one marker
linked to schizophrenia (Cardno et al., 2001).

Because RGS9-1 in the retina is anchored to the
membrane by protein R9AP (Hu and Wensel, 2002), a
defect in this anchoring protein markedly reduces the
action of RGS9-1, thus prolonging the action of the
agonist on the receptor. This principle has been illus-
trated clinically in the case of people with genetic
defects in R9AP in their prolonged response to light
(Blumer, 2004; Nishiguchi et al., 2004). In the striatum,
RGS9-2 is anchored to the membrane by R7BP, a protein
that is related to R9AP, but no clinical defects have yet
been reported in R7BP.

RGS4 has received considerable attention as a possi-
ble susceptibility gene for schizophrenia, because there
is a weak association with schizophrenia (Chowdari
et al., 2002; Williams et al., 2004), and because it is
reduced in schizophrenia prefrontal cortex (Mirnics
et al., 2001). Knockouts of this gene, however, did not
reveal any obvious spontaneous locomotor hyperactiv-
ity (Grillet et al., 2005), as occurs in animals sensitized
by psychostimulants. Psychostimulants, such as am-
phetamine or cocaine, did not alter the expression of
RGS4 (Burchett et al., 1998; Ingi et al., 1998; Taymans
et al., 2003); quinpirole elevated the expression of RGS4
(Taymans et al., 2003, 2004). Moreover, overexpression
of RGS4 on one side of the brain did not cause any
change in apomorphine-induced circling (Rahman et al.,
2003), consistent with the knockout data that RGS4
does not have a role in altering dopamine supersensitiv-
ity and is unlikely to have a role in eliciting psychosis.

RGS2 is slightly reduced in postmortem schizophre-
nia brain (Mirnics et al., 2001), but amphetamine,
methamphetamine, and cocaine all elevate its expres-
sion (Burchett et al., 1998, 1999; Ingi et al., 1998; Tay-
mans et al., 2003), suggesting that RGS2 is an
unlikely candidate for contributing to dopamine super-
sensitivity or psychosis.
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Protein kinase A (PKA), protein kinase C (PKC),
and G protein receptor kinases (GRKs) phosphorylate
serine and threonine within the intracellular loops
and the tail regions of the receptor (Ferguson, 2001).
The kinases are activated by intracellular increases
in cyclic AMP, Ca2+, and diacylglycerol. The phospho-
rylation of the receptor leads to the binding of arrest-
ins to uncouple the receptor from the G protein (Pippig
et al., 1993). A reduction in one of these kinases, there-
fore, as in knockouts of G protein receptor kinase 6,
would result in dopamine supersensitivity (Gainetdi-
nov et al., 2003) and a considerable increase in
the proportions of D2High receptors in the striatum
(Table II).

Although GRK6 knockout mice are supersensitive to
dopamine with elevated D2High states, GRK2 heterozy-
gotes were not found to be generally supersensitive to
various doses of amphetamine, cocaine, or apomor-
phine, with the exception of a single dose of 20 mg/kg
cocaine where supersensitivity occurred. Surprisingly,
GRK3 knockout mice are dopamine subsensitive to
cocaine and apomorphine, while GRK4 and GRK5
knockout mice show no change in behavioral dopamine
sensitivity (Gainetdinov et al., 2004).

GTP exchanges with the GDP bound to the a sub-
unit of the G protein, resulting in a rapid subsecond
dissociation of the entire agonist–receptor–G protein–
GDP aggregate (Herrmann et al., 2004; Posner et al.,
1994; Roberts et al., 2004), followed by the dissociated
subunits (a and bg) of the G protein eliciting the tissue
responses.

Arrestins prevent the receptor from exchanging
GTP for GDP on the G protein a subunit, thereby inac-
tivating the G protein and the receptor (Gainetdinov
et al., 2004). In principle, therefore, arrestin-knockout
mice should be dopamine supersensitive. In fact, how-
ever, mice with knocked out b arrestin-1 or b arrestin-
2 (which prefers D2 receptors; Macey et al., 2004) were
slightly less sensitive to cocaine, and considerably less
sensitive to apomorphine (Gainetdinov et al., 2004).

IS THERE A COMMON BASIS FOR DELUSIONS
AND HALLUCINATIONS IN THE PSYCHOSES?

It appears reasonable to consider D2High to be the
common target for the convergence of the various psy-
chosis pathways, because D2High receptors are consis-
tently elevated in all the animal models of the various
human psychoses (Table II, and Fig. 10), and because
virtually all psychoses respond to D2 blockade, with
the possible exception of prolonged, never-treated psy-
chosis.

ARE DOPAMINE SUPERSENSITIVE MODELS
RELATED TO THE RISK FOR PSYCHOSIS?

The various animal models for human psychosis are
associated with dopamine supersensitivity and reveal

elevated D2High receptors (Table II, and Fig. 10). It is
reasonable to suppose, therefore, that factors or al-
tered genes that lead to dopamine supersensitivity can
also increase the risk for psychosis or schizophrenia.
More specifically, as Table II indicates, dopamine super-
sensitivity and elevated D2High occurs in rats as a conse-
quence of factors known to elicit psychosis in humans,
including amphetamine (Curran et al., 2004; Lieberman
et al., 1990; Stéphane et al., 2005; Strakowski et al.,
1996, 1997; Yui et al., 1999), phencyclidine (Allen and
Young, 1978), cocaine (Brady et al., 1991), corticoster-
one, brain damage, ethanol, birth trauma, and genetic
alterations. Moreover, the dopamine supersensitivity
and elevation of D2High receptors elicited by antipsy-
chotics readily explains antipsychotic-induced super-
sensitivity psychosis (Lu et al., 2002; Prien et al.,
1969; Whitaker, 2004; see also Schooler et al., 1967).

In fact, the common target of D2High elevation in
drug abuse and in the models of psychosis may partly
explain the well known fact that schizophrenia patients
commonly overuse substances, with !4% addicted to
alcohol, !6% addicted to amphetamine, and !17% being
abusers of cocaine.

Consistent with the hypothesis of D2High being the
convergent target for various psychoses is the fact that
all psychoses respond to treatment with D2 antago-
nists, including phencyclidine psychosis (Giannini et al.,
1984, 1984–85). In fact, the effective treatment of phen-
cyclidine psychosis by haloperidol (Giannini et al., 1984–
85) is particularly significant, because haloperidol does
not block NMDA receptors, indicating that the D2 target
is critically and primarily active in phencyclidine psycho-
sis. Moreover, the D2 receptor is the common target for
all antipsychotics, including both the traditional and the
newer ones (Miyamoto et al., 2005; Seeman, 2001).

Because the D2High receptor is the functional state
of the dopamine receptor (George et al., 1985; McDon-
ald et al., 1984), it is reasonable to consider the ele-
vated D2High receptors to be related to some of the clin-
ical signs and symptoms of psychosis. It is even likely
that the fluctuations in the clinical intensity of psy-
chotic signs and symptoms are related to the fluctuat-
ing proportions of D2High and D2Low (Fig. 11). This
relation will need to be tested when the selective imag-
ing of D2High in patients becomes possible by radioac-
tive D2High-selective agonists (Seeman et al., 1993;
Willeit et al., in press; Wilson et al., 2005).

While the psychotic signs might be related to D2High,
the gene for D2 may or may not be associated with
schizophrenia. In fact, present data show that there is
a significant association of the D2 gene with schizo-
phrenia (Dubertret et al., 2004; Glatt et al., 2003; Hir-
vonen et al., 2005; Jonsson et al., 1999, 2003; Lawford
et al., 2005; Virgos et al., 2001). Moreover, unmedi-
cated patients have \an increased occupancy of D2
receptors by dopamine at baseline in schizophrenia in
comparison with healthy controls" (Abi-Dargham,
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2004), indirectly indicating an increase in the propor-
tion of D2High receptors with endogenous dopamine
tightly occupying the high-affinity state of D2 (Abi-
Dargham et al., 2000; Seeman and Kapur, 2000; See-
man et al., 2002, 2004).

A more difficult question is whether a risk factor or
a risk gene can be ruled out as a risk if that factor or
altered gene does not lead to dopamine supersensitivity
and elevated D2High. For example, deletion of the gene
for glycogen synthase kinase 3 (or GSK3b+/") caused

Fig. 10. Summary of elevated D2High receptors in striata from
animals made dopamine supersensitive by lesions, drugs, and gene
knockouts. D2High receptors were only elevated in striata from ani-
mals that had become dopamine supersensitive. The two points indi-
cating \hippocampus lesion" (3.7-fold) and \amphetamine" were
done by the method of [3H]raclopride saturation (i.e., Scatchard anal-
ysis) with and without guanine nucleotide (Seeman et al., 2005a),

and this method tended to reveal very high increases in the proportion
of D2High sites. The method used for most of the other types of experi-
ments was the method of competition between dopamine and 2 nM
[3H]domperidone. Using this latter method, the bilateral hippocampus
lesion data in Figure 4 revealed an increase of 2.5-fold. (From Table II
and Seeman et al., 2005a).
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dopamine subsensitivity (Beaulieu et al., 2004) and did
not elevate D2High more than 1.19-fold (Table II). There-
fore, using the criteria of dopamine supersensitivity and
elevated D2High, it appears unlikely that GSK3b is a
psychosis risk gene, in agreement with the lack of an
association to schizophrenia (Ikeda et al., 2005; Nadri
et al., 2004; but see Emamian et al., 2004).

MULTIPLE PATHWAYS, MULTIPLE GENES,
MULTIPLE CAUSES

If indeed there are multiple neural pathways that
mediate psychosis and converge to the same set of
brain D2High targets, it suggests that there are multi-
ple causes and presumably multiple genes associated
with psychosis in general and schizophrenia in partic-
ular. It is even likely that different pedigrees have dif-
ferent sets of risk genes for schizophrenia. Some schiz-
ophrenia pedigrees, for example, have a unique trans-
location of a chromosome segment (1q42 relocated to
11q14) (Blackwood et al., 2001; St. Clair et al., 1990).
Other schizophrenia pedigrees have chromosome seg-
ments that translocate and disrupt brain-expressed
genes DISC1 and DISC2 on chromosome 1 (Ekelund
et al., 2001; Millar et al., 2000).

Different schizophrenia pedigrees may have differ-
ent sets of susceptibility genes, and different family
members within a pedigree may have a different in-
heritance of the several genes involved in the set of
risk genes. As noted by Millar et al. (2003), this situa-
tion is analogous to Hirschsprung disease (aganglionic
megacolon), where there is one gene of major effect,
with two other genes of less major effect (Gabriel et al.,
2002), and analogous to neurofibromatosis where the

same genetic error can result in different clinical pheno-
types (Carey and Viskochil, 1999).

This speculation, if true, may partly explain the diffi-
culty in identifying and replicating susceptibility genes
for schizophrenia; for example, although strong linkage
of schizophrenia to chromosome region 1q21-22 was
found in a group of Celtic families (with a 6.5 LOD or
log-of-the-odds score; Brzustowicz et al., 2000), a larger
heterogenous set of families did not detect this linkage
(Levinson et al., 2002). As pointed out by Millar et al.
(2003), many studies have found strong linkage with
high LOD scores between 3.6 and 7.7, including those at
chromosome regions 2q35, 6q25, and 18q12 (see also
Fig. 1), but these findings can be diluted and minimized
when massive numbers of families are pooled and meta-
analyzed.

Therefore, the possibility of multiple psychosis path-
ways and the possibility of different risk genes in differ-
ent pedigrees may limit the biological value in using
meta-analysis of whole-genome linkage scans (Maziade
et al., 2001; Mowry et al., 2004) to detect risk genes
(Badner and Gershon, 2002).

Given the rich neural interconnections in the brain,
it is reasonable to expect that the striatum develops
biochemical alterations after neonatal lesions or dur-
ing sensitization by psychotomimetics. For example,
there are extensive projection fibers of afferents and
efferents between the cerebral cortex and the subcorti-
cal structures of the putamen and the caudate nu-
cleus, as well as afferents and efferents between the
hippocampus, the amygdala, and the nucleus accum-
bens, as depicted in Figure 12. Additional intergyral
fibers and longitudinal fasciculi interconnect the occi-
pital, frontal, and temporal lobes. Neonatal lesions of
the cortex or hippocampus, therefore, would be expected

Fig. 11. Summary diagram depicting the good fit between dopa-
mine and the three amino acids of D (aspartic acid) and S (serine),
comprising the high-affinity state of D2, or D2High. The low-affinity
state, D2Low, is considered to have a poor fit between dopamine and
the three amino acid residues (Seeman et al., 1985). Although the
two states constantly interconvert in a matter of seconds or minutes
(Posner et al., 1994), there is a shift toward an increase in the num-

ber of D2High states in response to psychosis-inducing factors, as
listed. Guanyl nucleotides (such as GTP or guanilylimidodiphos-
phate) or anesthesia promote a shift to the low-affinity state (Seeman
and Kapur, 2003). Examples of gene mutations or deletions are RGS9
(regulator of G protein signaling), COMT (catechol-O-methyl-trans-
ferase), TH (tyrosine hydroxylase), and DbH (dopamine-b-hydroxyl-
ase).
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to have compensatory alterations within the caudate
nucleus and the putamen. Sensitization by psychoto-
mimetics would also be expected to lead to changes in
biochemical sensitivity in the dopamine-rich striatum
during the course of several weeks.

FUTURE RESEARCH ON D2High

There is a wide variety of additional knockout mice
that have not yet been tested for dopamine supersensi-
tivity. On the basis of the present hypothesis that do-
pamine supersensitivity and elevated D2High receptors
are biomarkers of psychosis risk factors and risk genes,
such testing should reveal additional susceptibility
genes for psychosis and schizophrenia. In particular,
there are many proteins which regulate the high-affin-
ity state of D2 receptors (see above section), and many

proteins which directly interact with D2, including cal-
cium sensor-1 (NCS-1; Bai et al., 2004; Bergson et al.,
2003; Kabbani et al., 2002; Koh et al., 2003) and cal-
nexin (Hazelwood et al., 2005). Either knockouts of
genes for these proteins, or specific drug antagonism
of these proteins, may lead to the discovery of critical
proteins associated with risk for psychosis or schizo-
phrenia.

Finally, aside from genes and psychostimulants,
there are other factors that are associated with psy-
chosis or schizophrenia, such as prenatal influenza
(Beraki et al., 2005; Brown et al., 2004), prenatal drug
treatment (e.g., reserpine), and obstetrical complications
(see Refs. in McNeil et al., 2000), most of which are
known to induce dopamine supersensitivity (Beraki et al.,
2005; Boksa et al., 2002) and elevated D2High receptors
(Table I).

This review focuses on a possible final common path-
way—dopamine supersensitivity and elevated D2High

receptors—through which the positive signs of psycho-
sis (hallucinations and delusions) are mediated. The
hypothesis is that this mechanism is also operative in
the psychosis of schizophrenia.

Furthermore, and most important, the main point in
this review is that elevation of D2High receptors may
be a necessary minimum for psychosis, although it is
not likely to be sufficient for full expression of the psy-
chotic features. This is similar to the findings of Hirvo-
nen et al. (2005), showing a significant elevation of D2
receptors in healthy co-twins of schizophrenia individ-
uals, suggesting that the elevation of D2 was neces-
sary but not sufficient for psychosis to develop. At the
same time, the elevation of D2 is becoming recognized
as a valuable biomarker for prognosis and outcome in
first-episode psychosis (Corripio et al., 2006; Glenthoj
et al., 2005). Future work may show that direct mea-
surement of D2High receptors by means of radioactive
(+)PHNO (Wilson et al., 2005) may become an even
more reliable biomarker for prognosis and outcome.
Although extensive meta-analyses on 3707 schizophre-
nia patients and 5363 control subjects reveals a con-
sistent association of schizophrenia with the Seri-
ne311Cysteine polymorphism of D2 (Glatt and Jöns-
son, 2006), this biomarker by itself is not diagnostic
for single individuals.

Although this review summarizes molecular dopa-
mine supersensitivity as a possible basis of the positive
signs of psychosis, less is known about the basic biol-
ogy underlying the negative aspects of psychosis, espe-
cially cognition, which is diminished by !5% to !10%
in schizophrenia individuals. Recent work, however,
has found that overexpression of D2 in the striatum
(Kellendonk et al., 2006) or overexpression of the
human COMT-valine gene (Chen et al., 2005) leads to
cognitive deficits in animals.

Dopamine supersensitivity is likely to be a second-
ary or compensatory mechanism, the brain’s response

Fig. 12. Examples of extensive neural interconnections in the
brain, and extensive projection fibers of afferents and efferents
between the cerebral cortex and the subcortical structures of the
putamen (P) and the caudate nucleus (C), as well as extensive affer-
ents and efferents between the hippocampus (HIPP), the amygdala
(AM), and the nucleus accumbens (AC). Neonatal lesions of the cor-
tex or hippocampus, therefore, would be expected to have compensa-
tory alterations within the caudate nucleus and the putamen. SN,
substantia nigra; G, globus pallidus.
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to many different primary neural defects. The primary
defects probably lead to other secondary effects as
well, such as the reduced cognition mentioned above,
thus accounting for the wide variation of clinical signs
and symptoms, not only in schizophrenia but in psy-
chosis in general.
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