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Abstract
In vitro display technologies, best exemplified by phage and yeast display, were first described for
the selection of antibodies some twenty years ago. Since that time a large number of antibodies,
some with remarkable properties, have been selected and improved upon using these methods. The
first antibodies derived using in vitro display methods are now in the clinic, with many more
waiting in the wings. Here we discuss the scope of the technology, some of the powerful
antibodies selected, and the future potential in a post-genomic world. Unique advantages offered
by in vitro display technologies include the ability to carefully define selection conditions,
allowing the derivation of antibodies recognizing predefined epitopes or conformations, the further
improvement of selected antibodies, the potential for high throughput applications and the
immediate availability of genes encoding the selected antibody. We anticipate that the high
throughput potential of these technologies will soon lead to their use to select antibodies against
all human proteins.

Introduction
For the past 35 years, hybridoma technology has enhanced our capacity for research and
diagnostics by providing monoclonal antibody reagents allowing tracking, detection and
quantitation of target molecules in cells and serum. Recently, a number of more advanced
methods to harness the immune response have also been developed1,2,3 that significantly
increase the number of antibody producing cells that can be screened. Alongside these
“traditional” method of making monoclonal antibodies, a quiet revolution has been brewing
in the generation of antibodies using in vitro display technologies, which offer a number of
advantages, including a greater degree of control over the nature of the derived antibodies.
The success of these technologies has relied upon many previous advances, including the
conception and implementation of phage display4,5, the expression of antibody fragments in
bacteria6 and PCR-mediated amplification of antibody genes and libraries7,8,9,10,11. The
most popular technologies, antibody phage8,12,13 and yeast display14,15, which are
complementary in their properties, can be used with naïve, immunized or synthetic
repertoires.

As a direct consequence of genome sequencing, and the advent of high throughput biology,
the demand for large numbers of renewable high quality affinity reagents, recognizing ever-
greater numbers of proteins, for affinity reagent based proteomic scale experiments, is
expected to increase dramatically. In vitro methods have the potential to deliver enormous
improvements from parallelization, automation and miniaturization. In contrast, further
advances in animal immunization technologies are expected to be slim. Furthermore, it is

NIH Public Access
Author Manuscript
Nat Biotechnol. Author manuscript; available in PMC 2011 September 1.

Published in final edited form as:
Nat Biotechnol. 2011 March ; 29(3): 245–254. doi:10.1038/nbt.1791.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



generally accepted that, irrespective of the source, there is an urgent need to improve
antibody quality, as reflected by a raft of recent papers16,17,18,19,20,21,22 showing an
alarmingly high proportion of commercial antibodies demonstrating poor specificity, or even
failing to recognize their targets at all. Given that much of modern biological research relies
on the fidelity of commercially supplied antibodies, there is an urgent need to resolve this
problem. The high throughput potential of in vitro technologies make them ideal platforms
for large scale projects to derive antibodies for all human proteins, which once completed
are likely to have impacts perhaps as great as the completion of the human genome.

By carefully controlling selection and screening conditions, display technologies allow the
generation of antibodies to defined antigen conformations or epitopes, for example, by the
presentation of specific antigen conformations, or the inclusion of competitors to direct
selection towards specific targets or epitopes (figure 1). Moreover, when variable regions
from immunized sources are used with display technologies, specificities not detectable by
traditional immunological techniques can often be selected23. During the process of in vitro
antibody selection, the gene encoding the antibody is cloned at the same time as the
antibody is selected, providing many advantages to the recombinant approach (Fig. 1). The
availability of the antibody gene allows the creation of alternative constructs with added
functionality by simple subcloning (see below). Libraries of mutagenized variants can be
created and the same selection process repeated to yield variants that are improved, both in
terms of specificity and affinity. The improvement of antibody affinity to picomolar
levels24,25,26,27,28 has become relatively routine, with one study describing an antibody in
the femtomolar range29. These affinities are far higher than those of antibodies obtained by
immunization, which are limited to ~100 pM by the physiological mechanism of B cell
activation30,31. In addition, antibody specificities can be broadened or narrowed by
appropriate selection and screening.

As these in vitro methods are based on microbial systems, selection and screening are more
amenable to automation than earlier hybridoma-based approaches. This provides the
potential for high throughput binder generation32,33. In vitro methods also overcome
immunological tolerance, allowing the selection of affinity reagents that recognize highly
conserved targets such as ubiquitin34, histones35, hemoglobins36 and post-translational
modifications37,38,39. While tricks can be used to overcome tolerance during
immunization40,41, none are required to select antibodies against conserved proteins using in
vitro display methods. Remarkably, the selection of hundreds of different antibodies from
naïve human antibody repertoires against many different individual human targets has not
been problematic32,42,43.

Most of the examples described below relate to antibody fragments. However, display
technologies have allowed the development of alternative, non-antibody scaffolds and they
too will provide affinity reagents with similar, or in some applications, superior properties to
those described here. Selection platforms44,45,46 and different scaffold proteins47,48,49,
including antibody fragments50, have been widely dealt with in previous reviews. Our goal
here is not to reiterate the ways in which such libraries are made or used, but to illustrate
how in vitro display methods have yielded antibodies with remarkable properties some of
which have rarely, if ever, been obtained by immunization. This will be carried out by
describing a number of different classes of unique and interesting antibodies, as well as
outlining the enormous advantages provided by immediate access to cloned antibody genes.

Recognition of chemical modifications and small molecules
Monoclonal and polyclonal antibodies with specificities for small molecules have been
obtained by traditional immunization51,52,53,54,55. However, the ability of display methods
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to tailor both affinity and specificity has led to significantly better antibodies than can be
obtained by immunization (Table 1 and Fig. 2).

Sulfotyrosine is a post-translational modification (PTM) predicted to occur in 30% of all
secretory and membrane proteins65. Despite decades of immunization, it has proved
impossible to generate antibodies recognizing this PTM by traditional means. This is
probably due to the innate tolerance immune systems have for such ubiquitous protein
modifications, as well as the presence of the recognized target in the secretory pathway,
resulting in retention and an inability to secrete the antibody. Using phage display, two
groups recently selected antibodies recognizing proteins containing sulfotyrosine (but not
tyrosine phosphate), independently of protein context or sequence38,39. These antibodies
recognized sulfotyrosinated proteins in western blotting, immunofluorescence, ELISA and
immunoprecipitation, and recognition could be abolished by sulfatase treatment or
preincubation with free tyrosine sulfate. This represents an enormous advance in the analysis
of this modification, which has traditionally required thin-layer chromatography of
radiolabeled protein hydrolysates66 or mass spectrometry (MS)67, with the presence of
sulfate groups often inferred, rather than proven.

Specificity for protein sequences and conformations
Phage display allows the generation of antibodies against nearly any target, including toxins,
pathogens, non-immunogenic, or highly conserved antigens. With respect to protein targets,
antibodies have been selected with exquisite specificity, differentiating, for example,
between chicken and quail lysozyme68 that differ by a single surface amino acid, and the
SH2 domains of ABL1 and ABL269,70. Phage antibody libraries have been widely used to
select antibodies against infectious agents. These include antibodies that discriminate
between different strains of Hantavirus71, Dengue virus72, influenza73,74, Ebola75 and
Venezuelan equine encephalitis virus76. Given that many of these viruses are classified
serologically, the ability to select phage antibodies with similar specificities is not
surprising, but unlike antibodies generated by immunization, these have the potential to be
used therapeutically. Human antibodies, some of which are protective in animal
models77,78,79, have also been selected against a number of bacterial biothreat targets,
including Brucella melitensis80, Burkholderia mallei and Burkholderia pseudomallei81,
anthrax toxins77,82,83 and spores84, and Botulinum toxin24,85. One library79 was generated
from servicemen vaccinated against a plethora of different biothreat agents, reflecting the
additional ability of display technologies to exploit antibodies generated during traditional
immunization.

The in vitro nature of phage display technology has been exploited to target particular
features of blood cells. In one study36, antibodies recognizing fetal hemoglobin but not adult
hemoglobin, were selected by depleting high affinity cross-reactive antibodies followed by a
selection against the fetal protein. Notably, the selected discriminatory antibody was of
much lower affinity than cross-reactive antibodies, demonstrating the power of negative
selections to favor clones with desirable binding specificities, even if their affinity is lower.
Similar methods applied to cells have been used to select antibodies specifically recognizing
fetal nucleated red blood cells95.

Protein allostery is a common means for the regulation of protein function, and many
signaling proteins exist in alternative conformational states that mediate different cellular
responses. Antibodies that recognize specific proteins conformers are powerful tools for
probing the details of cell signaling. However, the generation of such antibodies by
immunization is complicated by the difficulty of maintaining a particular protein
conformation in an immunized animal. In contrast, in vitro selection technologies are ideally
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suited for these applications. Negative selections can be used to deplete non-specific
binders, and affinity maturation strategies can be employed to fine-tune specificity. In one
study, scFvs specific to the GTP-bound form of the small guanosine triphosphatase
(GTPase) Rab6 were generated by performing selections against a GTP-locked mutant96. In
another study97, small molecules were used to covalently lock caspase-1 in either the active
or inactive form and the locked antigens were used to select Fabs that were highly selective
for either the “on” or “off” form of the protease. The concept of using in vitro selections to
generate conformation specific antibodies has also been combined with selections on whole
cells in a powerful strategy that enables the probing the cell surfaces for conformational
changes in response to various stimuli101.

Finally, phage display has enabled the generation of antibodies recognizing structured RNA
molecules100, which are essentially non-immunogenic, and not as amenable to simple
nucleotide probes. By ensuring a nuclease-free in vitro environment and selecting under
conditions optimized for the structural stability of the RNA, high affinity Fabs were isolated
against a structured domain from the Tetrahymena group I intron. These results hold great
promise, as they establish general methods applicable to the generation of antibodies against
other structured RNAs, and will be useful to decipher the biological roles of the vast
numbers of noncoding RNAs found in metazoan transcriptomes.

Antibodies to cell surface receptors
Communication between cells is driven and controlled by interactions between cell surface
receptors and the ligands they recognize. Antibodies can modify such interactions and many
therapeutic antibodies exert their effect by interfering in communications at the cell surface
using different mechanisms (Fig. 3). In vitro display technologies provide a powerful route
to generating functional antibodies that interfere in normal or pathological extracellular
signaling. Although it is usually difficult to select for function directly, display technologies
have the ability to generate thousands of independent binders, each of which can then be
screened for functional activity. For example, over 1200 different antibodies directed
towards B Lymphocyte Stimulator (BlyS) were generated by phage display102. This large
panel was subsequently screened in biochemical and cellular assays to identify antibodies
that bound to BLyS, preventing its interaction with the receptor (Fig. 3a), and thereby
blocking B cell activation. In some cases blocking antibodies with sub-nanomolar affinities
were isolated directly from the naïve antibody-phage display library102. One of these
antibodies, specific only for the secreted form of BlyS (BENLYSTA), was affinity
matured103 and is close to approval for treatment of systemic lupus erythematosus. Similar
results have been reported for the selection of phage antibodies against a panel of 28
different potentially therapeutic targets, with an average of 120 functionally active (i.e.
antagonistic or agonistic) antibodies selected per target43.

An alternative strategy to block receptor signaling is to target the ligand binding sites on the
receptors, thereby preventing the natural ligand from acting (Fig. 3b). This was used in a
recent study, where antibodies were selected that prevented the interaction of insulin-like
growth factor type 1 (IGF-1) with the IGF-1 receptor106. Several groups of receptor binders
were generated that competed with ligand binding and blocked cell growth in vitro and in
vivo. These antibodies were also found to reduce receptor expression by internalization and
catabolism.

Studies on a panel of therapeutic antibodies targeting the EGF receptor (Erb-B1) have also
shown competition with ligand binding. However, antibodies can also block receptor
signaling by alternative mechanisms120. Erb-B1 has four extracellular domains, which adopt
a mainly closed conformation in the absence of ligand, and a more extended conformation
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allowing dimerization, and subsequent phosphorylation of the intracellular domain, in the
presence of ligand. Structural studies have shown that antibodies such as cetuximab stabilize
the receptor in the closed conformation (Fig. 3d) while zalutumumab keeps intracellular
domains apart preventing phosphorylation (Fig. 3c). Among the anti-Erb-B2 antibodies,
Pertuzumab appears to work by preventing dimerization while trastuzumab (Herceptin)
prevents receptor shedding and forms inactive tetramers120. While the original blocking
antibodies in these examples were generated from mice, they demonstrate the therapeutic
approaches that could benefit from human antibodies isolated directly from display
technologies.

Antibodies that block Notch signaling reveal yet another mechanism of action. Following
ligand binding, a conformational change occurs at the juxta-membrane negative regulatory
region (NRR) exposing a protease cleavage site resulting in the release and translocation to
the nucleus of the intracellular domain. In addition to generating antibodies that block the
interaction with ligand, antibodies recognizing the NRR domains stabilized the “closed”
confirmation of the Notch receptor (Fig. 3d) preventing the proteolytic cleavage and
translocation of the intracellular domain107,108.

Dimeric antibodies targeting ligand-binding domains sometimes mimic the natural ligand,
causing receptor activation rather than inhibition. This is the case for antibodies recognizing
Met109, with monomeric antibodies being antagonistic. However, in the case of TRAIL
receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2)119, an analysis of over 500
distinct selected antibodies, revealed some that were agonistic even as monomeric scFvs or
Fabs. This is difficult to reconcile with the mode of action of TRAIL, which is a
homotrimeric ligand that causes multimerization of the TRAIL receptor leading to
apoptosis, particularly in tumor cells over-expressing the receptor.

Antibodies also have great potential in blocking protein interactions associated with viral
entry into target cells, illustrated by antibodies selected from naïve antibody libraries against
recombinant H5 hemagglutinin influenza ectodomain112,113. Structural analysis of one of
the antibodies showed it bound to hemagglutinin at a highly conserved previously
unrecognized pocket, found in many different influenza viruses. Binding prevents the
structural reorganization required for membrane fusion, rendering the antibody neutralizing.
Although antibodies have not been generated against this epitope by traditional
immunization or infection, antibodies with similar VH gene usage and neutralizing activity
have been selected from phage antibody libraries created from recently infected
individuals23, showing that phage display can access the diversity of immune responses in
ways not possible by traditional immunological means.

In vitro selection schemes have also been devised that allow the direct selection of
antibodies mediating internalization117. This was carried out by incubating phage libraries
with target cells and isolating those phage antibodies found within the cell after removing
phage antibodies bound to the cell surface. The identification of the recognized antigen is
usually carried out after selection. However, the use of mammalian cells transfected with the
target of interest 118, or yeast displaying targets of interest on their surface114, provides a
means of carrying this out on predetermined targets. This approach is particularly suitable
for the selection of antibodies used for specific targeting of chemotherapeutics121,122.

In summary, antibodies and other binding molecules provide a means of modulating
biological function by specifically interfering in protein interactions. In vitro display
systems provide a means of presenting targets in appropriate conformations, including on
cell surfaces, which facilitate rapid screening for potentially rare functional binders.
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Improving antibody affinity and specificity
While initial leads can be used directly as affinity reagents, a major advantage of in vitro
methods is that it is possible to further improve function by constructing secondary libraries
that introduce additional mutations. The most prevalent application of secondary libraries is
the improvement of affinity, and all three major display formats (phage, yeast and ribosome)
have been applied to develop extremely tight affinities that exceed those possible with
natural antibodies (Table 4). Both stepwise123 and computational124 methods have also been
developed that are able to generate similarly high affinity antibodies, but they have not been
as widely used as the in vitro display methods. There are many examples of in vitro affinity
maturation, and here we highlight some key studies. In ribosome display, each selection
cycles involves a PCR amplification step, which is ideal for introducing additional mutations
by error prone PCR. This strategy has been used to simultaneously select and affinity mature
anti-insulin antibodies with affinities in the sub-nanomolar range26. While yeast-displayed
libraries are smaller than phage and ribosome libraries, they allow quantitative and
exhaustive screening by fluorescence activated cell sorting (FACS). Coupled with sequential
rounds of error-prone PCR, modest libraries of 105–107 unique clones were sufficient to
affinity mature an anti-fluoroscein scFv into the low femtomolar range29.

Specificity for a single antigen is generally the goal of antibody engineering. However, in
certain applications, defined cross-reactivity is extremely useful. Species cross-reactivity
allows better assessment of therapeutic efficacy and toxicity in animal models.
Unfortunately, cross-reactive antibodies are often difficult to obtain by hybridoma methods,
due to tolerance. In contrast, in vitro libraries are unaffected by immune tolerance and
antibodies targeting conserved sites across species have proven to be the rule rather than the
exception. In the case of highly conserved proteins, such as vascular endothelial growth
factor (VEGF), human/mouse cross-reactive antibodies have been obtained directly from
naïve libraries128,129. In the case of less conserved orthologs, such as BAFF/BLys receptor 3
(BR3), initial anti-human antibodies with weak cross-reactivity to the mouse protein have
been obtained from naïve libraries and evolved to be highly cross-reactive130. Similar
approaches have been used to generate antibodies recognizing two closely related
chemokines (CXLC10 and CXCL9)125 thereby permitting neutralization of 2 human
chemokines with a single antibody.

Most specificity engineering examples involve the improvement of pre-existing weak
recognition, due to homology between the recognized targets. In perhaps the most extreme
case of engineered cross-reactivity, Herceptin has been evolved to recognize a very different
protein, VEGF, as well as its original target, Erb-B2126. After significant evolution the
affinities for both targets were comparable to those of therapeutic antibodies (Kd = 3/0.2 nM
for VEGF/Erb-B2). The antibody inhibited both VEGF and Erb-B2-mediated cell
proliferation in vitro and tumor progression in mouse models. The structures of the
bispecific Fab in complex with Erb-B2 or VEGF revealed a common paratope, with the Erb-
B2 functional paratope located predominantly on VH, and that for VEGF on VL (Fig. 4).
The ability to design antigen-binding sites with dual specificity against structurally unrelated
antigens may be important in therapeutic strategies targeting two distinct signaling pathways
with a single antibody.

The ability to improve affinity and broaden specificity also has major implications for the
development of antibodies against pathogens. For the effective inhibition of viral infection
and bacterial toxins, antibodies would ideally recognize a variety of antigen subtypes with
high affinity, to afford broad protection against pathogen variants. Furthermore, several
studies have shown that multiple antibodies targeting distinct epitopes provide synergistic
effects necessary for effective neutralization of pathogens131,132. In vitro antibody
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technologies provide an effective means for achieving these demanding criteria, as
exemplified by a long-term study of neutralizing antibodies against the botulinum
neurotoxin (BoNT). Phage antibody libraries from immunized mice and humans resulted in
the isolation of three antibodies recognizing non-overlapping epitopes on BoNT133. The use
of these three antibodies together as an oligoclonal” IgG provided strong synergy that
dramatically increased toxin neutralization. A long series of affinity and specificity
maturation cycles using yeast display, resulted in the final development of a remarkable
antibody able to recognize Botulinum toxins A, B, E and F, all the serotypes afflicting
man127.

Exploiting the recombinant nature of in vitro selected antibodies
All in vitro selection systems immediately provide the genes, and corresponding sequences,
of antibodies selected against a particular target, providing ready access to additional
antibody formats by simple sub-cloning. Functions adopted using this “gene-based”
approach include dimerization134, multimerization135,136, and fusions to enzymes137,
tags138 or fluorescent proteins139. Fusion to alkaline phosphatase is a particularly useful
example of improved functionality. As this is a dimeric enzyme, fusing antibodies, either
individually or as libraries, to alkaline phosphatase simultaneously provides dimerization
and alkaline phosphatase activity, greatly facilitating screening32,137. Short peptides acting
as in vivo biotinylation tags138, placed at the carboxy terminus of antibody fragments, allow
stoichiometrically defined site specific antibody biotinylation, as well as a straightforward
multimerization method140. Antibody fragments can also be transformed into full-length
antibodies141, or scFv-Fc fusions, which are very similar in many aspects142. The use of
engineered Fc regions can result in improved pharmacokinetics and effector functions (for
reviews see 143,144), including bispecific IgG, in which engineering of two different Fc
regions allow only heterologous pairing145,146.

Other approaches to generate bispecific antibodies build upon the observation that some
scFv fragments form bivalent dimers (diabodies)147, trimers148,149 and even tetramers150

when the VH/VL linker is shortened. Various other bispecific antibody designs have also
been created (see 151 for a review). Even more radically, completely novel biochemical
entities have been added to antigen binding fragments. Fusions of scFv and Fab fragments to
heterologous proteins, such as interleukins and cytokines152,153, apoptotic ligands, enzymes,
toxins or RNases (see 154,155 for reviews) have allowed novel therapeutic paradigms. Many
of the above candidate therapeutic antibody constructs arose from antibody genes initially
isolated from mouse hybridomas, but this is expected to change as more human antibodies
are made available from engineered repertoires.

Microinjected antibodies have been long used to knock out intracellular functions156.
Antibody fragments can be expressed within target cells and targeted to various subcellular
compartments141,157 by adding suitable signal sequences, allowing visualization or
functional modification of proteins in different compartments. Removing the standard leader
sequence results in cytoplasmic expression while the addition of a nuclear localization signal
targets to the nucleus. The combination of a leader sequence and the endoplasmic reticulum
(ER) retention sequence retains expressed antibodies in the ER and has been used to prevent
the expression of membrane proteins by sequestration in the ER. These include human
interleukin 2 receptor, the ErbB-2 receptor, s-amyloid precursor protein, vascular adhesion
molecule 1 and many others158,159,160,161. The advantage of this strategy is that it requires
antibodies that bind to any accessible epitope to provide the functional knockout, as opposed
to the functional activity required of cytoplasmically expressed antibodies. Functional
studies of membrane receptors or secreted proteins can thus be attempted by a single
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standardized subcloning step immediately after in vitro antibody selection, providing
equivalence to RNAi knockdowns at the protein level.

While expression in the secretory pathway is straightforward, folding of antibody fragments
in the cytoplasm is far more challenging, due to the absence of specific chaperones, and the
reducing environment, which prevents disulfide bond formation162. Despite these problems,
there are examples where cytoplasmic proteins have been targeted with intracellular
scFvs96,163. The success of this approach has been improved by the creation of libraries of
particularly stable scFvs164,165,166, preselecting antibodies for functional cytoplasmic
expression167,168, or by using binder libraries based on molecular scaffolds that do not rely
on disulphide bond formation, such as engineered ankyrin repeat proteins169,170. One major
advantage of such protein based allosteric blockers is the ability to generate very specific
binders, able to distinguish between closely related family members. While the need to
genetically modify the target cell is a major disadvantage, this has been partly alleviated by
fusion to internalizing sequences that allow antibodies to enter the cell from the outside171.

High throughput selection by in vitro display methods
The ease with which antibodies can be selected, screened and produced by in vitro display
technologies, makes generation and screening of antibodies rapid and simple compared to
hybridomas. Typically a panel of ELISA positive monoclonal antibody fragments can be
generated within two weeks. Early experiments demonstrated the feasibility of semi-
automated selection/screening of phage antibody libraries172,173,174 on small numbers of
targets. More recently, selections on over 400 different antigens were successful with 54%
of bacterial, and 88% of mammalian-produced antigens32 yielding antibodies, with the
differences between the two protein classes probably due to the levels of correct folding. In
a recent international comparative study antibodies were raised to 20 different human SH2
domains using hybridoma or phage display. Results from two of the participating phage
display labs69,70, show that antibodies (some with sub-nanomolar affinities) were generated
to all antigens, with 55% of positive antibodies specific for target SH2 domains when
assessed against the entire SH2 panel. These antibodies were validated in a broad range of
assays, including microarrays, immunoblots, immunofluorescence and immunoprecipitation.

The future vision of affinity reagents generated by display technologies
If antibodies selected by in vitro methods are so powerful, why are they not more widely
perceived as valuable research reagents? Part of the answer lies in the difficult patent
situation, which resulted in restriction of this technology to the high margin therapeutic
markets for commercial use. It is perhaps significant in this regard that hybridoma
technology was never patented, and achieved relatively wide acceptance within a short
period. The situation for some of the core phage display patents is in the process of rapid
change as most platform patents have either expired, or will do so over the next few
years175, and it is possible that the technology will become more widely disseminated as a
result.

Largely unnoticed by the research community, some commercial “monoclonal antibodies”
are actually recombinant antibodies selected by phage display, reformatted to look like
traditional murine antibodies by the fusion of Fc regions to human variable regions (e.g. the
sulfotyrosine antibody described above38). ABDSerotec also sells a number of unmodified
recombinant Fab fragments selected by phage display. It therefore seems that the most
important impediments to widespread adoption are a lack of knowledge of the capabilities of
this technology, coupled with limited expertise and library availability. Furthermore, the
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number of companies willing to carry out in vitro selection as a fee for service is vanishingly
small compared to the 180 companies willing to generate antibodies by immunization16.

However, one commonly cited issue relates to the ability to express these antibodies. While
the specificities obtained, and described herein, are remarkable, the expression and stability
of antibody fragments varies enormously, from exceptionally stable scFv fragments used in
clinical trials176 to other fragments that are poorly expressed. A typical selection almost
always generates a number of different binders to any well-folded antigen. Among these
there is usually at least one that is sufficiently stable and well produced for research use.
Furthermore, it is expected that stability and expression levels will improve as libraries are
based on more stable scaffolds177. The studies described above indicate that this goal can
now be met in highly parallelized screening setups with low effort per antigen69,70, provided
that libraries of sufficient diversity and optimized protocols are used. Furthermore, stability
and expression screening can be easily included as part of the HT screening process. An
additional issue with in vitro derived antibodies is that they are either not glycosylated if
expressed in bacteria, or incorrectly glycosylated if expressed in standard yeast strains. If
correct glycosylation is necessary, this can be overcome by expression in human cells or
yeast modified to give human glycosylation patterns178.

Once an antibody is generated, it can be defined precisely by sequence and even
“distributed” in this way. Gene synthesis is progressing at a remarkable pace, with the cost
per base of synthesized genes falling dramatically. In fact, genes corresponding to the
sequences of specific antibody fragments can now be synthesized for less than the cost of
purchase of some antibodies from traditional vendors.

The present state of this field can be compared to the situation with sequencing technologies
at the start of the human genome project. Just as enormous technical advances occurred in
the human genome project once it was started and rigorous industrial processes were
applied, so we anticipate dramatic improvement in all aspects of selection, screening,
downstream use and distribution of in vitro derived affinity reagents once a proteomic scale
project is initiated and financed.

In summary, in vitro display technologies permit the facile generation of antibodies by
providing access to billions of potential binders in large “universal”, or immune, display
libraries. The technologies facilitate production, screening and maturation of selected
binders, allowing selection on target conformations and formats not possible by more
traditional routes based on immunization. Furthermore, the easy availability of the gene
sequence not only provides a definitive description of the product but also allows electronic
sharing and recreation of the binding molecule through gene synthesis. Over the last 20
years display technologies have been applied successfully to the development of therapeutic
antibody candidates. In the coming decade we expect to see increased realization of the
benefits of this technology within the research and diagnostic markets as well.
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Figure 1.
The additional capabilities of in vitro selection offer a new approach to antibody generation,
allowing the selection of antibodies with particular properties by predefining panning
conditions. Variations in salt and pH conditions, the conformational form of the target and
the presence of closely related proteins help determine the biochemical properties, fine
specificity, cross-reactivities and affinity of resulting binders. Further, the immediate
availability of the antibody gene provides significant additional value. Complemented by a
more rapid antibody generation cycle, this will broadly change the manner in which
antibodies will be made and used for research in the near future.
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Figure 2.
In vitro selected antibodies can recognize minute differences in small molecules. A)
Antibodies against 6-monoacetylmorphine, the major heroin metabolite, do not recognize
the closely related morphine56. B) Many different antibodies have been selected and
subsequently had both affinity and specificity matured to recognize each of the represented
steroids (for references see Table 1). C) Antibodies against tyrosine sulfated modified
proteins do not recognize proteins containing either tyrosine or tyrosine phosphate38,39.
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Figure 3.
Mechanisms for blocking or activating receptor signaling using antibodies. The EGF
receptor is used to exemplify mechanisms by which antibodies can block signaling in
different classes of receptor. The EGF receptor is a single trans-membrane domain with
multiple extra-cellular domains (represented as different colored ovals) having different
functional domains. In this example, binding of ligand (green circle) occurs at domain 3,
receptor dimerization occurs through domain 2 and interactions between domains 2 and 4
stabilize the “closed” conformation of the receptor. Antibodies can block signaling by a.
binding to the ligand and preventing interaction with receptor, b. binding the ligand binding
site of the receptor and preventing interaction with ligand, c. preventing dimerization by
binding the dimerization domain or sterically blocking the interaction d. stabilising the
closed conformation of the receptor. e. Activation can occur by binding the ligand-binding
site typically with bivalent antibodies.
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Figure 4.
An engineered dual specificity synthetic Fab. The bH1 Fab binds to both Her2 (orange, PDB
entry 3BDY) and VEGF (red, PDB entry 3BE1). The heavy and light chains of the Fab are
colored cyan/grey or blue/black respectively, with the different colors derived from
structures of bH1 binding to either Her2 or BEGF.
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Table 1

In vitro selected antibodies recognizing small molecules and modifications

Targets Notes Refs

6-monoacetylmorphine and morphine Competition with morphine during panning to avoid crossreactivity 56

Fluorescein Affinity matured to 48 fM by yeast display 29

testosterone, progesterone and 17  oestradiol 57,58,59,60,61

Sulfotyrosine as a post-translational modification Antibodies recognize all sulfo-tyrosinated proteins and peptides 38,39

Sulfur mustard–modified keratin 62

Fluorogenic dyes Antibody binding increases dye fluorescence up to 15,000 times by
limiting conformational movement

63

Metallic gold 64
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Table 2

In vitro selected antibodies recognizing protein sequences and conformations

Target Notes Ref

Peptide MHC complexes (similar to T cell
receptor recognition)

Similar antibodies obtained by immunization86,87 have lower affinities. 88,89,90,91

Fibronectin splice variants, EDA and EDB Selection directed towards recognition of both human and mouse variants,
allowing same antibody to be used in both models and clinical studies.

92,93,94

Fetal hemoglobin 36

Fetal nucleated red cells 95

GTP-bound Rab6 Antibodies were used to track activated Rab6 in the cell as GFP fusions 96

Caspase 1 Antibodies recognize either the “on” or “off” forms 97

Integral membrane proteins CitS from Klebsiella pneumoniaei and KcsA from Streptomyces lividans.
KcsA antibodies used as crystallization chaperones

98,99

RNA Structured domain from Tetrahymena group I intron. Antibody used as
crystallization chaperone

100

ABL1 versus ABL2 Differ by only 11% 69,70

Chicken versus quail lysozyme Differ by only four amino acids, of which only one surface exposed 68
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Table 3

In vitro selected antibodies recognizing cell surface receptors

Target Notes/therapeutic indication Ref

Blys Systemic lupus erythematosis 102

Tumor necrosis factor a Phage display was used to convert a murine mAb into a human antibody by guided selection.
Rheumatoid arthritis, ankylosing spondylitis, chronic plaque psoriasis and Crohn’s disease, antibody
developed by guided selection phage display

104,105

IGF-1 receptor Blocking of ligand-binding site of receptor and receptor down-regulation by endocytosis. Potential
application in cancer

106

Notch Prevent proteolysis of juxtamembrane NRR domain 107,108

Met Dimeric antibodies are agonistic, monomeric ones are antagonistic, and prospected for non-small
cell lung cancer

109

MuSK Agonsitic antibodies demonstrate that MuSK activation is capable of triggering a key event in
neuromuscular junction formation

110

CD40 Agonistic antibodies which activate normal human B suppress HIV-1 infection in vitro 111

Hemagglutinin Antibodies recognize a previously unknown conserved conformational epitope. Isolated from both
naïve and immunized libraries.

23,112,113

EphA2 and CD44 Selected from phage antibody library on yeast displayed antigen, followed by selection for
internalization on cells

114

CD166 Internalizing antibodies selected directly for internalization on cancer cells (CD166 on prostate,
ErbB2 and Transferrin receptor on breast, EGFR on A431). Antigen identified after selection.
Potential utility for internalization of chemotherapeutics.

115,116

ErbB2 117

Transferrin receptor 117

EGFR 118

TRAIL-R Over 500 different scFvs and Fabs isolated by phage display. 119
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Table 4

Affinity and specificity maturation of antibodies by in vitro selection methods

Target Notes Ref

Affinity maturation

HIV CDRs targeted for mutation, 15pM affinity 28

c-erbB-2 CDRs targeted for mutation, 13pM affinity 27

Insulin Ribosome display, random errors, 82pM affinity 26

Fluorescein Affinity matured to 48 fM by yeast display 29

Specificity modification, recognition specificities

CXCL10 & CXCL9 Antibody selected against CXCL10 and evolved to also recognize CXCL9 125

VEGF and Erb-B2 Antigens are completely unrelated, and antibody binds with 3/0.2nM affinity to VEGF/Erb-B2
respectively

126

Botulinum toxin A, B, E and F One antibody able to recognize all Botulinum types afflicting man was selected by yeast display. 127
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