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  Abstract 

 Over the past decade, the accumulation of detailed knowledge of antibody structure and function has 
enabled antibody phage display to emerge as a powerful in vitro alternative to hybridoma methods for 
creating antibodies. Many antibodies produced using phage display technology have unique properties 
that are not obtainable using traditional hybridoma technologies. In phage display, selections are per-
formed under controlled, in vitro conditions that are tailored to suit demands of the antigen and the 
sequence encoding the antibody is immediately available. These features obviate many of the limitations of 
hybridoma methodology, and because the entire process relies on scalable molecular biology techniques, 
phage display is also suitable for high-throughput applications. Thus, antibody phage display technology 
is well suited for genome-scale biotechnology and therapeutic applications. This review describes the anti-
body phage display technology and highlights examples of antibodies with unique properties that cannot 
easily be obtained by other technologies.  
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 Methods for generating antibodies were initially developed more 
than a century ago with the production of polyclonal antibody 
preparations from animal immunizations  (  1  ) . The advent of hybri-
doma technology in 1975 enabled the production of monoclonal 
antibodies through the fusion of myeloma cells with antibody pro-
ducing B-cells  (  2  ) . Hybridoma technology advanced our capacity 
for research and diagnostics by providing homogenous, puri fi ed 
antibody preparations that improved tracking, detection, and 
quantitation of target molecules in cells and serum. The hybri-
doma technology, however, is not without its limitations. With 
regard to generating human therapeutics, hybridoma antibodies 
are typically from murine sources, which limits their therapeutic 
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applications due to human anti-mouse antibody reaction  (  3,   4  ) . 
A variety of strategies have been developed to address this prob-
lem, including chimerization and humanization strategies  (  5–  9  ) , 
and transgenic animals with human immunoglobulin loci  (  10–  14  ) . 
Despite these efforts, the generation of antibodies by hybridoma 
technology is still costly and time-consuming. Further, since these 
antibodies are produced in animals, it is dif fi cult to generate them 
against toxic and highly conserved antigens  (  15  )  as well as antigens 
that are not stable in animal systems. 

 Alongside the hybridoma technology, methods have been 
established to generate antibodies using in vitro display technolo-
gies. The  fi rst such method was antibody phage display, introduced 
20 years ago  (  16–  18  ) , followed by yeast, ribosome, puromycin-
based plasmid, and bacterial display systems  (  19–  22  ) . Selection 
platforms  (  23–  25  )  and the design of antibody fragments  (  26,   27  )  
for making libraries have been widely dealt with in previous reviews. 
The purpose of this review is to illustrate how in vitro selection, 
especially phage display, has yielded antibodies with remarkable 
properties that are dif fi cult to obtain using traditional immuniza-
tion methods. 

 Principles behind methods used in all in vitro display systems 
are similar whatever the display platform, and center on the cou-
pling of genotype (gene) to phenotype (binding protein). In prac-
tice, this comprises the creation of DNA libraries encoding binding 
molecules such as antibodies, the display of the encoded proteins, 
the application of selective pressure based on the binding properties 
of the encoded proteins, followed by growth and screening of indi-
vidual clones. Since in vitro display methods are performed in bac-
terial or yeast systems, the turnaround time for antibody generation 
is less, and the potential for high-throughput generation of binders 
is greater  (  28  ) . The power of in vitro antibody selection is further 
enhanced by the ability to precisely control selection conditions. In 
contrast to animal immunization, where there is little control over 
the nature of antibodies produced, manipulation of selection con-
ditions can be carried out in vitro, for example, by presentation of 
speci fi c conformations of the target antigen or by including com-
petitors to direct selection towards targets or epitopes of interest. 
In vitro selection methods also overcome the problem of tolerance, 
which limits the potential for making anti-self antibodies. As toler-
ance is applied to speci fi c variable heavy (VH) and light (VL) 
domain combinations that recognize self-antigens, when in vitro 
libraries are created from natural sources new combinations with 
the capacity to recognize self-antigens can be created. This has been 
proven for example by the selection of hundreds of human antibod-
ies from naive libraries to human targets  (  29–  32  ) . For libraries that 
are constructed using synthetic diversity, the concept of tolerance 
does not apply. This enables the selection of antibodies against 
highly conserved targets such as ubiquitin  (  33,   34  ) , histones  (  35  ) , 
hemoglobins  (  36  ) , and posttranslational modi fi cations  (  37–  39  ) . 
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 Another advantage of in vitro selected antibodies is that the 
gene encoding the antibody is cloned simultaneously with selec-
tion. This is perhaps the most crucial difference between hybri-
doma and in vitro selection technologies and provides many 
advantages for engineering selected antibodies. For example, 
af fi nity maturation of selected antibodies can be easily performed 
using in vitro selection technologies. Maturation of antibody 
af fi nity to the picomolar range  (  40–  44  )  has become relatively rou-
tine and, at least in one case, femtomolar af fi nity has been achieved 
 (  45  ) . These af fi nities are far higher than those that can be obtained 
by immunization, which are limited to ~100 pM by the physiologi-
cal mechanisms of B-cell activation  (  46–  48  ) . In addition, antibody 
speci fi cities can be broadened or narrowed by appropriate selection 
conditions. As a result, in vitro selection has yielded antibodies 
with remarkable properties that are either a direct result of the 
 fl exibility and control that can be applied to all aspects of the selec-
tion processes, or novel properties developed as a direct result of 
the recombinant nature of selected proteins. Finally, the availability 
of the antibody gene allows the creation of a large variety of anti-
body derivatives with added functions by simple subcloning.  

 

 Antibody libraries for in vitro selections can be generated from 
immunized repertoires, natural naïve repertoires, or designed “syn-
thetic” repertoires. Strategies to generate antibody libraries have 
been described extensively  (  49,   50  )  and are discussed brie fl y here. 
Immune antibody libraries are generated by cloning antibody frag-
ments, either single-chain variable fragments (scFvs) or antigen 
binding fragments (Fabs), from IgG mRNAs obtained from acti-
vated B-cells  (  49,   50  ) . These libraries are biased for members that 
bind a speci fi c antigen and require that a new library be generated 
for each antigen of interest. Immune antibody libraries have been 
generated against a number of different species  (  51,   52  ) . Human 
immune libraries have been constructed from virus-infected 
patients to generate neutralizing antibodies and from cancer 
patients to isolate tumor speci fi c antibodies  (  53–  57  ) . 

 Although natural naïve antibody libraries have been generated 
using IgM or IgG mRNAs from resting B-cells, initial results indi-
cated that libraries based on IgM mRNA yield more binders  (  17  ) , 
probably because the IgG fraction is biased towards recent immune 
responses. Naturally rearranged variable region genes have been 
used to construct large antibody fragment libraries  (  32,   58–  61  ) . In 
contrast to immune libraries, naïve libraries can be used to gener-
ate antibodies against a variety of antigens; however; they generally 
bind with lower af fi nity and may need to be af fi nity matured. 

  2.  Phage-
Displayed 
Antibody Libraries
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 In synthetic antibody libraries, antibody diversity is designed 
and synthesized in a controlled manner. In these libraries, the com-
position of complementarity determining regions (CDRs) can be 
precisely de fi ned. A number of approaches have been used to design 
synthetic libraries and they vary in the number of variable frame-
work regions used, the design of CDR diversity, and the library con-
struction method. Synthetic libraries have been constructed using a 
variety of different variable framework genes  (  62–  65  ) , with diversity 
introduced into the CDRs, primarily in CDRH3 and CDRL3. 
Results from selections with these libraries have shown that larger 
libraries yield antibodies with higher af fi nity and greater speci fi city 
 (  50  ) , and that speci fi c variable framework regions are over repre-
sented in the selected antibody fragments. This observation led to 
the development of libraries using a single VH and VL combination 
 (  66–  68  ) . A number of different libraries have been devised that dif-
fer in the variable gene and the diversi fi cation strategy. Most libraries 
use a common VH domain (VH3–23) as it is stable, expressed well 
in bacteria and on phage, and pairs with most VL domains. Synthetic 
libraries are constructed by cloning oligonucleotides into the CDRs 
of de fi ned antibody fragments, and thus, these libraries are not lim-
ited to the diversity present in natural repertoires. However, libraries 
have been created by grafting natural CDRs into single frameworks 
 (  69  ) , as well as by using designed oligonucleotides that mimic the 
CDR diversity observed in natural repertoires  (  68,   70  ) . Libraries 
have also been designed with restricted diversity in the CDRs, based 
on the observation that tyrosine and serine are enriched in the anti-
gen-binding sites of antibodies  (  71–  73  ) . 

 In addition to variable domain and CDR design, antibody 
fragments must be fused to the phage coat protein in order to 
establish the genotype/phenotype connection. Phage display 
requires that antibody fragments be displayed rather than IgGs. 
The two most popular antibody fragments used to display the vari-
able antigen binding domains are the Fab and the scFv. The Fab is 
a heterodimer consisting of the variable and  fi rst constant domains 
of heavy and light chains. The scFv consists of the variable domains 
from the light and heavy chains joined by a peptide linker. These 
antibody fragments are most commonly displayed on phage by fus-
ing them to pIII or pVIII coat proteins. The pVIII coat protein 
can potentially enable the display of multiple polypeptides on the 
phage surface, as approximately 2,500 copies of pVIII are present 
on each phage particle  (  74  ) . However, large proteins are not well 
tolerated as pVIII fusions, which limits their use for displaying 
antibody fragments  (  75  ) , and in direct comparisons, pIII display 
appears to be more ef fi cient than pVIII  (  76  ) . Thus, antibody frag-
ments are more commonly fused to the pIII coat protein. There 
are approximately  fi ve pIII coat proteins on one tip of the phage 
particle. Fusion to the pIII coat protein results in low-level display 
of antibody fragments using phagemid systems  (  49  ) , and display 
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levels can easily be switched between monovalent and oligovalent 
display  (  77  ) , which allows selections from large libraries to be opti-
mized for obtaining higher af fi nity antibody fragments by avoiding 
avidity effects. 

  Since the invention of antibody phage display, intellectual property 
issues have delayed its broad use and have limited the number of 
synthetic antibodies in the clinic during the 1990s. Nonetheless, as 
of 2010, phage display technology has been used to generate at 
least 35 human antibodies that are in clinical development  (  78  ) . 
The FDA has approved two of these antibodies (adalimumab and 
belimumab) and one is under review (raxibacumab). The success of 
phage-derived antibodies in clinical trials is similar to monoclonal 
antibodies derived from other technologies  (  78  ) . The number of 
antibodies generated using phage display is rapidly expanding and 
a comprehensive catalog is beyond the scope of this review. Below, 
we highlight some examples of phage-derived antibodies generated 
against extracellular targets as well as some of the unique features of 
antibodies that can be generated using phage display technologies.  

  Phage display technologies are extremely powerful for generating 
functional antibodies that disrupt normal or pathological extracel-
lular signaling. Phage display selects for antibodies that bind their 
target with high af fi nity, however this does not guarantee that they 
will have the desired function. Phage display, however, can pro-
duce many antibodies that bind a given target, increasing the 
chance that some of the antibodies will possess the desired proper-
ties. One such example was the use of phage display to generate 
more than 1,200 antibodies against the B-lymphocyte stimulator 
(Blys)  (  79  ) , a potent cytokine for B-cell proliferation and differen-
tiation. Biochemical and cellular assays were used to subsequently 
identify antibodies, many with subnanomolar af fi nities, which 
blocked B-cell activation by inhibiting the interaction between Blys 
and its receptor. One of these antibodies, which showed speci fi city 
for secreted Blys, was af fi nity matured and shown to be a potent 
inhibitor of Blys signaling  (  80  ) . This antibody, belimumab, has 
been approved by the FDA in March 2011 for use in treatment of 
systemic lupus erythematosus. 

 A second example of an antibody isolated by phage display 
against a cytokine target is the tumor necrosis factor alpha (TNF α ) 
blocking antibody, adalimumab. TNF α  is a proin fl ammatory medi-
ator implicated in autoimmune conditions. Adalimumab has been 
approved for the treatment of several conditions including rheu-
matoid arthritis, ankylosing spondylitis, chronic plaque psoriasis, 
and Crohn’s disease, which was the  fi rst fully human antibody 
approved by the FDA in 2002. A number of other antibodies 
against soluble ligands have been generated by phage display and 
are in advanced clinical trials  (  81  ) . 

  2.1.  Diverse 
Applications 
of Antibody Phage 
Display

  2.2.  Antibodies 
Against Extracellular 
Targets
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 Another strategy to block receptor signaling is to target receptor 
sites that prevent ligand binding. A recent series of studies high-
lights the use of phage-derived antibodies to block Insulin-like 
Growth Factor 1 Receptor (IGF-1R) signaling  (  82–  84  ) . Phage 
display was used to generate antibodies against two unique epitopes 
of IGF-1R. Both antibodies blocked binding of Insulin-like Growth 
Factor 1 (IGF-1) and Insulin-like Growth Factor 2 (IGF-2), but 
they did so by either directly competing for ligand binding or by an 
allosteric mechanism, which decreased the af fi nity of ligand bind-
ing  (  84  ) . Interestingly, cotreatment with both antibodies improved 
both the potency and extent of IGF-1 and IGF-2 blockade com-
pared to treatment with either antibody alone. Similar results have 
been observed with Her2 (Human Epidermal growth factor 
Receptor 2), where combinations of antibodies that bind unique 
epitopes have greater activity than either antibody alone  (  85  ) . 

 Antibodies have also been generated to block ligand-induced 
conformational changes in Notch receptors  (  86  ) . The ectodomain 
of the Notch receptor contains multiple epidermal growth factor 
(EGF) repeats and ligand binding induces a conformational change 
at the juxtamembrane negative regulatory region, which causes a 
protease cleavage site to be exposed. Subsequent proteolysis causes 
the intracellular domain to be translocated to the nucleus. Phage 
display was used to generate antibodies that target the juxtamem-
brane negative regulatory regions of Notch-1 and Notch-2  (  86  ) . 
These antibodies bind and stabilize the “closed” conformation of 
the Notch receptor, preventing proteolytic cleavage. 

 Ligands often act either by causing dimerization of their target 
receptors or by inducing conformational changes in preexisting 
dimers. Antibodies targeting the ligand-binding domain can, in 
some instances, mimic the effect of the natural ligand and cause 
receptor activation rather than inhibition. For example, phage dis-
play was used to generate antibodies that bind to Muscle Speci fi c 
Kinase (MuSK)  (  87  )  or CD40  (  88  )  and function as agonists for 
receptor activation  (  87  ) . In another recent study, over 500 distinct 
antibodies were generated against TRAIL receptor-1 (TRAIL-R1) 
and TRAIL receptor-2 (TRAIL-R2)  (  89  ) . TRAIL is a homotri-
meric ligand that causes multimerization of TRAIL receptors, 
which in turn leads to apoptosis, particularly in tumor cells overex-
pressing the receptors. Ten agonistic antibodies speci fi c for 
TRAIL-R1 and six antibodies acting only on TRAIL-R2 were 
identi fi ed. As expected, these antibodies competed for binding 
with TRAIL, but surprisingly, they were active agonists as monova-
lent antibodies in either scFv or Fab formats, and activity was not 
enhanced upon conversion to IgG. The mechanism of action for 
this unusual agonistic activity is still unclear. 

 In addition to selecting antibodies that bind to puri fi ed pro-
teins, phage display can be used to select antibodies that recognize 
targets expressed on the surfaces of cells. A number of selection 
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protocols have been developed to select antibodies that bind cell 
surface proteins. These include strategies that incorporate negative 
selections or preabsorption steps  (  90–  94  ) , strategies to remove 
unbound phage  (  95,   96  ) , and the path fi nder approach  (  97,   98  ) . In 
vitro selection schemes have also been devised to select for anti-
bodies that mediate receptor internalization  (  99–  101  ) . In these 
selections, phage libraries are incubated with target cells and then 
phage that bind the cell surface are removed and phage antibodies 
inside the cell are isolated. This strategy is useful for generating 
antibodies to deliver drugs to speci fi c cells  (  102,   103  ) . The ability 
to perform selections directly on cells with negative selections has 
proven to be a powerful trait of phage display technology.  

  Phage display has been used to select antibodies against a variety of 
infectious agents. For example, antibodies have been isolated that 
discriminate between strains of Hanta  (  104  ) , Dengue  (  105,   106  ) , 
In fl uenza  (  107,   108  ) , Ebola  (  109  ) , and Venezuelan equine enceph-
alitis virus  (  110  ) . Further, phage display selections do not require 
puri fi ed virus. For the Venezuelan equine encephalitis virus selec-
tion, the use of competitive binding conditions allowed antibodies 
to be generated against impure virus preparations  (  110  ) . In these 
selections, cell extracts from uninfected cells were added to the 
binding buffer, which eliminated the isolation of antibodies against 
components of the host cell and allowed antibodies to be gener-
ated against the viral envelope. Human antibodies have also been 
selected against a number of bacterial bio-threat targets, including 
 Brucella melitensis   (  111  ) ,  Burkholderia mallei ,  Burkholderia pseudo-
mallei   (  112  ) , and anthrax toxins  (  113–  117  )  and spores  (  118  ) . 

 In one study, antibodies were used to block protein interac-
tions associated with in fl uenza entry into target cells. Phage display 
was used to generate antibodies that recognize the H5 hemagglu-
tinin in fl uenza ectodomain  (  119,   120  ) . Structural characterization 
of one of these antibodies bound to H5 showed that it binds to 
hemagglutinin by inserting its heavy chain into a highly conserved 
pocket in the stem region, which prevents structural reorganiza-
tions required for membrane fusion. This conserved epitope is 
found in many different in fl uenza viruses and this antibody was 
shown to neutralize H5N1, H1N1, H2N2, H6N1, H6N2, H8N4, 
and H9N2 viruses. Although antibodies have not been generated 
against this epitope by traditional immunization, and antibodies 
with this speci fi city do not normally arise during infection, anti-
bodies with similar VH gene usage and neutralizing activity have 
been selected from phage antibody libraries created from human 
IgM + memory B-cells from recently infected individuals  (  121  ) .  

  With protein targets, antibodies have been selected that display 
high speci fi city for a chosen target. For example, antibodies have 
been generated that differentiate between chicken and quail 

  2.3.  Antibodies 
Against Infectious 
Disease Targets

  2.4.  Antibodies with 
Ultra-High Speci fi city
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lysozyme, which differ by only four amino acids  (  122  ) . Another 
example is the isolation of antibodies that distinguish between the 
SH2 domains of ABL1 and ABL2 tyrosine kinase  (  29,   123  ) , which 
differ by only 11%, and for which it has not been possible to obtain 
speci fi c antibodies by immunization. In such studies, negative 
selection steps have been incorporated into phage display selec-
tions to generate antibodies with desired speci fi city. For example, 
antibodies were generated that recognize only fetal and not adult 
hemoglobin  (  124  ) . In this study, antibodies that recognize adult 
hemoglobin were depleted by preincubating the antibody phage 
library with adult hemoglobin prior to each round of selection 
against fetal hemoglobin. Phage display has also been used to gen-
erate antibodies that recognize speci fi c protein complexes, for 
example the generation of antibodies that recognize unique pep-
tides in the context of speci fi c MHC molecules  (  125–  128  ) . 

 The technology has also been applied to selectively target alter-
natively spliced  fi bronectin variants associated with tumor neo- 
vasculature. Extra-domain A (EDA) and B (EDB) are  fi bronectin 
variants each of which contain an additional domain, both being 
highly conserved between human and mouse. Using a synthetic 
antibody library, it was possible to select human/mouse cross-
reactive scFvs against each of the recombinantly puri fi ed extra 
domains  (  129,   130  ) , and these antibodies were effective for immu-
nohistochemical analysis in vitro and for biodistribution studies 
in vivo. In the case of the anti-EDB antibody  (  130  ) , the modular 
nature of the scFv was exploited to engineer numerous fusion pro-
teins with potential for cancer therapy  (  131  ) , and three of these 
derivatives are now in clinical trials.  

  Phage display has been used to generate antibodies that recognize 
speci fi c protein conformations. Many signaling proteins exist in 
speci fi c conformational states that mediate distinct cellular 
responses. Antibodies that recognize speci fi c protein conforma-
tions provide a unique resource for characterizing signaling path-
ways. These types of antibodies are dif fi cult to generate via 
immunization strategies, as protein conformations are often 
unstable in an immunized animal. In contrast, in vitro selection 
technologies are ideally suited for these applications because selec-
tion conditions can be precisely controlled to favor particular con-
formations. Negative selections can be used to deplete nonspeci fi c 
binders and af fi nity maturation strategies can be employed to  fi ne-
tune speci fi city. 

 Phage display has been used to generate antibody fragments 
that speci fi cally recognize the GTP-bound form of Rab6  (  132  )  
and active and inactive forms of Caspase-1  (  133  ) . scFvs speci fi c to 
the GTP-bound form of the small guanosine triphosphatase 
(GTPase) Rab6 were generated by performing selections against a 

  2.5.  Antibodies 
Against Speci fi c 
Protein Conformations
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GTP-locked mutant  (  132  ) . Fabs speci fi c to on and off states of 
caspase-1 were generated by selecting libraries against capase-1 
complexed to small molecules that lock it in the on or off state 
 (  133  ) . Fabs were converted into full-length IgGs to produce highly 
sensitive af fi nity reagents that could be used to probe the localiza-
tion of active caspase-1 in cells  (  133  ) . Conformation-speci fi c anti-
bodies have also been generated against active cell membrane 
receptors by performing phage selections on whole cells  (  134  ) .  

  Integral membrane proteins absolutely require a membrane or 
detergent environment to maintain their native conformation. 
Consequently, the generation of conformation-speci fi c antibodies 
against membrane proteins by animal immunization is severely 
limited by the denaturing effects of the serum environment. In 
contrast, the ability to control selection conditions makes in vitro 
techniques much more amenable to this task. By performing selec-
tions in the presence of detergent, high af fi nity Fabs were isolated 
against the citrate transporter CitS from  Klebsiella pneumoniae  
 (  135  ) , as well as against the potassium channel KcsA from 
 Streptomyces lividans   (  136  ) . In the latter case, the Fabs were used 
as crystallization chaperones that enabled the elucidation of the 
crystal structure of the full-length potassium channel.  

  Phage display has been used to generate antibodies that recognize 
structured RNA molecules  (  137  ) , which have proven to be essen-
tially nonimmunogenic for hybridoma methods. Using a nuclease 
free selection buffer, high af fi nity Fabs were isolated against a 
structured domain from the  Tetrahymena  group I intron. The 
structure of the Fab/RNA complex was solved to high resolution, 
highlighting the use of antibody fragments as chaperones for RNA 
crystallization. Fabs were also obtained against a class I ligase 
ribozyme and were used as chaperones to obtain the crystal struc-
ture  (  138  ) . One Fab recognized a small, discrete sequence in the 
ribozyme and retained binding capacity when this sequence was 
transferred to other RNA structures, providing a novel RNA crys-
tallization chaperone system.  

  Phage display has been useful for detecting posttranslational 
modi fi cations that have proven intractable to immunization. For 
example, sulfotyrosine is a posttranslational modi fi cation predicted 
to occur in 30% of all secretory and membrane proteins  (  139  ) . 
Perhaps because of its ubiquitous nature, traditional immuniza-
tions have consistently failed to produce anti-sulfotyrosine anti-
bodies. However, using phage display, antibodies were readily 
generated to recognize proteins containing sulfotyrosine (but not 
tyrosine or tyrosine phosphate) independently of protein context 
or sequence  (  39,   140  ) .   

  2.6.  Antibodies 
Against Integral 
Membrane Proteins

  2.7.  Antibodies 
Against RNA

  2.8.  Antibodies 
Against 
Posttranslational 
Modi fi cations
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 Since phage display is an in vitro selection method, it offers many 
advantages for engineering antibodies. The phage display system 
provides the antibody gene and sequence following selection 
against a particular target. This allows antibodies to be easily fur-
ther evolved and engineered to improve binding, to narrow or 
broaden speci fi city, or to improve expression as IgGs or as fusions 
to functional moieties. 

 Antibody fragments isolated from an initial phage display selec-
tion can be used directly as an af fi nity reagent, or they can be used 
as leads for further improving binding. Since the sequence of iso-
lated antibody fragments are rapidly determined by sequencing, it 
is straightforward to make second-generation libraries by intro-
ducing mutations into antibody fragments. Af fi nity maturation 
strategies have been used to generate antibodies with af fi nities that 
exceed those of natural antibodies, which are limited to a ceiling of 
 K  d  > 0.1 nM by the nature of the B cell response  (  46–  48  ) . There 
are many different approaches for introducing diversity into anti-
body fragments to improve the af fi nities obtained from combina-
torial libraries. With in vitro af fi nity maturation selections, 
randomized antibody fragments undergo selection with increased 
pressure to identify variants with enhanced af fi nity  (  141  ) . In gen-
eral, there are two approaches for generating diversi fi cation: tar-
geted and nontargeted. There are many examples of in vitro af fi nity 
maturation, and here we highlight some key studies that demon-
strate the power of the process. 

 Error prone PCR is the most common method for introducing 
nontargeted mutations  (  142  ) . In this method, sequence diversity is 
randomly introduced into the antibody fragment gene by muta-
genic PCR strategies  (  50  ) . The down side of this approach is that 
deleterious mutations can be introduced into the conserved frame-
work region, which reduces the number of functional antibody 
fragments in the library. DNA shuf fl ing is another method for 
introducing nontargeted mutations  (  143  ) . In this method, a group 
of closely related sequence are randomly fragmented and then reas-
sembled by PCR, which leads to a shuf fl ing of DNA fragments. 
The approach can be combined with PCR mutagenesis to further 
enhance diversity. This method was used to increase the af fi nity of 
an scFv for  fl uorescein by 1,000-fold, resulting in subpicomolar 
af fi nity  (  45  ) . 

 As an alternative to random PCR mutagenesis, knowledge of the 
antibody sequence enables precise targeting of mutations for af fi nity 
maturation. Targeted mutation strategies have the advantage of 
focusing mutations to CDR loops, which are most likely to enhance 
af fi nity without introducing deleterious mutations in regions that 
may affect protein folding and stability. Targeted mutagenesis can be 

  3.  Exploiting 
the Recombinant 
Nature of In Vitro 
Antibodies
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performed using degenerate oligonucleotides, which allows for 
precise control over the locations where diversity is introduced. 
Further, CDRs can be targeted in either a parallel or sequential fash-
ion. By targeting CDR loops in phage-displayed antibody libraries, 
an anti-HIV-1 antibody  (  44  )  and an anti-c-erbB-2  (  43  )  antibody 
were af fi nity matured to the low picomolar range. 

 In addition to af fi nity, the speci fi city of antibodies can be 
altered by phage display. While absolute speci fi city for a single anti-
gen is generally the goal of antibody design, cross-reactivity is 
desirable for certain applications. For example, in the case of anti-
body therapeutics, species cross-reactivity enables assessment of 
therapeutic ef fi cacy and toxicity in animal models. Cross-reactive 
antibodies are often dif fi cult to obtain by hybridoma methods 
because of the conservation of functional sites on proteins across 
species. In contrast, in vitro phage antibody libraries are not 
affected by immune tolerance, and generation of antibodies that 
target conserved sites across species orthologues has proven to be 
the rule rather than the exception. For example, antibodies that 
cross-react with human and mouse VEGF were obtained directly 
from phage libraries without further selections to broaden speci fi city 
 (  144,   145  ) . For BAFF/BLys receptor 3 (BR3), antibodies gener-
ated against human BR3 showed weak cross-reactivity with mouse 
BR3. In this case, phage display was used to select cross-reactive 
antibodies from secondary libraries  (  146  ) . This strategy has also 
been used to generate antibodies with cross-reactivity towards 
CXCL10 and CXCL9 homologues  (  147  ) . In an extreme example, 
this approach has been used to broaden the speci fi city of trastu-
zumab so that it cross-reacts with Erb-B2 and VEGF, two proteins 
that share no sequence or structural homology  (  148  ) . In this case, 
secondary libraries were created by diversifying the light chain, 
which plays a minor role in Erb-B2 recognition. Extensive af fi nity 
maturation produced antibodies with low nanomolar af fi nity for 
both ErbB2 and VEGF  (  148  ) . 

 The ability to improve af fi nity and broaden speci fi city also has 
major implications for the development of antibodies against infec-
tious disease agents. For the effective inhibition of viral infection 
and bacterial toxins, antibodies must be of very high af fi nity, and at 
the same time, they should be cross-reactive with a variety of anti-
gen subtypes to afford broad protection against pathogen variants. 
A powerful example of using af fi nity and speci fi city selection cycles 
was demonstrated for an antibody with broad speci fi city for differ-
ent subtypes of Botulinum toxins. Remarkably, this antibody is 
able to recognize Botulinum toxins A, B, E, and F, all the serotypes 
that af fl ict humans  (  149,   150  ) . 

 The ability to rapidly obtain the gene for a selected antibody 
fragment allows the antibody to be easily engineered by simple 
subcloning strategies. Antibody fragments produced from phage 
display selections can be subcloned into IgG expression systems to 
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produce antibodies in mammalian tissue culture systems  (  151  ) . 
Antibody fragments have also been engineered with other functions 
by fusing them to peptides and proteins that induce dimerization 
 (  152  )  and multimerization  (  153–  155  )  to facilitate detection and 
puri fi cation, or that provide them with  fl uorescent  (  156–  158  )  or 
enzymatic  (  159  )  properties. In vivo peptide biotinylation tags 
have been fused to the C-termini of antibody fragments to enable 
antibodies to be immobilized or multimerized  (  153,   160–  163  ) . 
Antibody fragments have been fused to the dimeric enzyme alka-
line phosphatase, which provides both dimerization and alkaline 
phosphatase activity that greatly enhances functionality and simpli fi es 
screening  (  30,   159  ) . scFvs have also been fused to Fc domains, 
converting them into antibody-like molecules with properties similar 
to IgGs  (  164–  167  ) . 

 Recombinant technologies have enabled the generation of a 
large variety of bispeci fi c antibodies that recognize two different 
targets (ref.  168  and see    also Chapter   16    ). This can be accom-
plished by engineering two different Fc domains to allow heterolo-
gous pairing  (  169,   170  ) . Alternatively, scFvs can be fused 
recombinantly to IgGs to impart bifunctionality  (  171  ) . This strat-
egy has recently been used to generate bispeci fi c antibodies against 
IGF-1R, which blocked ligand binding better that either 
monospeci fi c IgG  (  172  ) . The bispeci fi c antibodies also showed an 
improved ability to reduce the growth of multiple tumor cell lines, 
to inhibit ligand-induced IGF-1R signaling in tumor cells, and to 
block in vivo tumor growth  (  172  ) . Bispeci fi c antibody fragments 
have also been generated by varying the peptide linker length that 
connects VH and VL domains in scFvs. This strategy has been used 
to generate dimers  (  173–  175  ) , trimers  (  174,   176,   177  ) , and 
tetramers  (  178  ) . Various other bispeci fi c antibody designs have 
also been created (see ref.  179  for a review). 

 Within the context of improved antibody therapeutics, fusion 
proteins that can extend the capabilities of natural IgGs have been 
constructed. By exchanging or engineering the Fc region, antibod-
ies with designed pharmacokinetics and improved effector func-
tions have been obtained (for reviews see refs.  180,   181  ) .  

 

 The ease and speed with which antibody fragments can be selected 
using phage display, usually between 1 and 2 weeks, allows the 
technology to be implemented in a high-throughput manner  (  29, 
  30,   123,   182,   183  )  and see also Chapters   3    –  6    . Initial experiments 
using a limited number of targets showed that antibodies could be 
generated from semiautomated selections using phage antibody 

  4.  High-
Throughput 
Antibody 
Selections and 
Next-Generation 
Sequencing
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libraries  (  182–  184  ) . More recent studies have shown that phage 
display selections can be scaled up to target a larger number of 
antigens  (  29,   30,   123,   182,   183  ) . For example, phage antibody 
selections were carried out on over 400 different antigens repre-
senting 292 proteins. In total, 25% of antibodies screened were 
positive, and 80% of these were speci fi c when screened against 
irrelevant antigens  (  30  ) . The practicality of generating antibodies 
against a broad array of different targets was further demonstrated 
in a recent multinational study in which antibodies against 20 dif-
ferent SH2 domains were generated via immunization and hybri-
doma technology or by phage display technology  (  31  ) . The phage 
display selections were successful against all 20 targets and yielded 
at least ten unique binders for each target. Both phage display 
and hybridoma technologies produced many binders with low-
nanomolar af fi nities. Antibodies were validated using a number of 
different assays, including microarrays, immunoblots, 
immuno fl uorescence, and immunoprecipitation. Overall, this study 
shows that antibodies with high af fi nity and speci fi city can be 
ef fi ciently generated using high-throughput phage technologies. 

 Next-generation sequencing (NGS) technologies have been 
used to improve the characterization of mouse immunizations and 
phage display selections and to speed up the identi fi cation of anti-
bodies. Several studies have utilized NGS for high-resolution anal-
ysis of natural  (  185  )  and synthetic  (  186  )  antibody repertoires. The 
454 sequencing platform, which provides sequencing reads 
between 250 and 400 bases, was used to provide information on 
the diversity of CDRs and on VH and VL pairings  (  185,   187  ) . The 
Illumina sequencing platform, which provides a higher number of 
shorter reads (~100 bases), was used to analyze the CDRH3 region 
of an scFv library  (  186  ) . NGS platforms provide information on 
V-gene family frequency, CDR length and diversity, and a compari-
son of the theoretical and actual properties of the library  (  188  ) . 
NGS has also been used to characterize how the immunoglobulin 
repertoire changes after immunization, where NGS was used to 
monitor enrichment in antigen speci fi c V-genes  (  189  ) . 

 For phage display selections, NGS was used to monitor enrich-
ment of antibody sequences during successive rounds of selection 
 (  186  ) . The information generated by NGS can be used to bypass 
antibody screening, which is time-consuming and expensive. For 
antibodies generated by mouse immunization, NGS was used to 
indentify heavy and light chains and pairings between them were 
inferred based on their frequencies in the repertoire  (  189  ) . A simi-
lar strategy was used to identify antibodies from phage display 
selections  (  186  ) . High frequency antibody fragments were 
identi fi ed following rounds of selection and desired antibody frag-
ments were recovered by PCR  (  186  ) . Identi fi cation of antibody 
sequences following selection eliminates the characterization of 
redundant clones. Further, it reduces the amount of target protein 
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required to perform and characterize antibodies from immuniza-
tions or phage selections. Lastly, NGS was used to characterize an 
antibody phage display selection against a protein target IL-6, 
expressed on the surface of  E. coli   (  190  ) . This study highlighted 
the potential for using NGS to characterize phage display selec-
tions against complex targets.  

 

 It is now well accepted in the scienti fi c community that there is an 
urgent need to improve antibody quality in general, as an alarm-
ingly high proportion of commercial antibodies either show poor 
speci fi city, or fail to even recognize their targets  (  191–  194  ) . At the 
same time, high-throughput genomics and proteomics technolo-
gies have vastly expanded the scope of proteins and pathways that 
now await detailed analysis at the cell biology level. To deal with 
the thousands of new proteins revealed by genomics and proteom-
ics projects, there is an urgent need for high quality antibodies, and 
it is clear that the current hybridoma methods are not suitable for 
this task. 

 In this landscape, the emergence of high quality in vitro anti-
body libraries is both timely and opportune. Numerous studies have 
reported in vitro repertoires that routinely yield antibodies that rival 
or surpass hybridoma antibodies in terms of functionality. Moreover, 
while further improvements in hybridoma technology are likely to 
be slight, in vitro repertoires and selection methods continue to 
improve. Universal in vitro libraries that can provide antibodies 
against virtually any antigen are now a reality, and it is hoped that 
the technology can be broadly disseminated in the near future. 

 The recombinant nature of in vitro repertoires is a fundamental 
advantage that extends the technology beyond the scope of hybri-
doma technology. With synthetic antibodies in particular, frame-
works can be chosen for favorable traits such as low immunogenicity 
or high stability, initial clones can be rapidly af fi nity matured and 
reformatted, and antibodies can be shared and distributed in the 
form of synthetic DNA. Furthermore, precise control over selec-
tion conditions allows for high precision engineering of speci fi city 
and af fi nity. Further standardization of libraries and selection 
 methods will enable the adaptation of the technology to high-
throughput pipelines to enable antibody generation on a proteome 
scale, and the ability to select directly against cells and tissues will 
further expand the scope of the technology. Clearly, in vitro anti-
body libraries are ideally suited for addressing the challenges of cell 
biology in the genomics era, and the technology is poised to play 
an ever-expanding role in the future of biological research.      

  5.  Conclusions 
and Future 
Perspectives
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