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SUMMARY

The ability to perturb genes in human cells is crucial
for elucidating gene function and holds great potential
for finding therapeutic targets for diseases such as
cancer. To extend the catalog of human core and con-
text-dependent fitness genes, we have developed a
high-complexity second-generation genome-scale
CRISPR-Cas9 gRNA library and applied it to fitness
screens in five human cell lines. Using an improved
Bayesian analytical approach, we consistently dis-
cover 5-fold more fitness genes than were previously
observed. We present a list of 1,580 human core
fitness genes and describe their general properties.
Moreover, we demonstrate that context-dependent
fitness genes accurately recapitulate pathway-spe-
cific genetic vulnerabilities induced by known onco-
genes and reveal cell-type-specific dependencies for
specific receptor tyrosine kinases, even in oncogenic
KRAS backgrounds. Thus, rigorous identification of
human cell line fitness genes using a high-complexity
CRISPR-Cas9 library affords a high-resolution view of
the genetic vulnerabilities of a cell.

INTRODUCTION

The Human Genome Project has yielded a fairly complete cata-

log of cellular components, and a major goal moving forward will
be to classify all genetic elements involved in normal biological

processes and disease (Lander, 2011). With advances in gene

editing enabled by the CRISPR-Cas system (Cho et al., 2013;

Cong et al., 2013; Jinek et al., 2012; Mali et al., 2013), it is no

longer quixotic to seek a comprehensive picture of cellular cir-

cuitry for human cells.

Yeast research has helped to establish a conceptual frame-

work for systematic genetics, providing a glimpse of the basic

modular organization of a cell and the corresponding genetic

landscape (Costanzo et al., 2010). Importantly, the basis for

many advances in yeast genetics was the discovery and classi-

fication of essential and non-essential genes through systematic

genetic knockout studies (Giaever et al., 2002; Winzeler et al.,

1999). Yet, this binary classification was later demonstrated to

be an artifact of laboratory conditions—while some genes do

indeed seem to be constitutively essential, many others revealed

fitness defects only under environmental stress or in different ge-

netic backgrounds (i.e., context-dependent essentiality) (Hillen-

meyer et al., 2008; Ramani et al., 2012).

The distinction between core and context-dependent essen-

tial genes is particularly relevant in humans, where a typical

cell expresses perhaps two-thirds of the genome’s complement

of genes (Hart et al., 2013). Distinguishing a tissue’s essential

genes, and delineating them from the constitutive essentials

shared across all tissues, may hold the key to unlocking tis-

sue-specific disease. In tumors, this is the foundation for the

concept of synthetic lethality (Hartwell et al., 1997): genes essen-

tial in tumor cells but not in adjacent normal tissues should

make ideal therapeutic targets with high effectiveness and min-

imal side effects. However, identifying these context-specific
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essentials has been no easy feat. To date, this field has been

constrained by technology: RNA interference (RNAi) has been

the best available tool but, despite improvements in reagent

design and analytical approaches, its utility is limited by imper-

fect mRNA knockdown and confounding off-target effects

(Echeverri et al., 2006; Moffat et al., 2007).

Moreover, incomplete knockdown adds a further complication

to negative selection growth screens using pooled library shRNA

reagents, where the final readout is typically a fold-change rela-

tive to an initial population. While a strong negative fold change

implies a growth defect, the scale of the defect is difficult to

quantify: a 50% reduction in proliferation rate could be driven

by anything from partial knockdown of a gene whose total loss

of function results in arrested or inviable cells to full knockdown

of a genewith only a 50%fitness defect. In this study, we define a

fitness gene as any gene whose perturbation causes a prolifera-

tion defect; essential genes are, by definition, a subset of fitness

genes.

Pooled CRISPR-Cas approaches present a major opportunity

for systematic classification of human genetic elements into

functional categories and biological processes. Proof-of-con-

cept genome-wide knockout screens in human cell lines (Shalem

et al., 2014; Wang et al., 2014) suggested that mammalian

cells harbored far more fitness genes than RNAi experiments

had previously uncovered (Hart et al., 2014). Screens for genes

whose loss of function enables drug and toxin resistance

(Koike-Yusa et al., 2014; Shalem et al., 2014; Wang et al.,

2014), accelerates metastasis (Chen et al., 2015), or influences

immune response (Parnas et al., 2015) confirm the vast improve-

ment that the CRISPR technology offers in mammalian genetic

screens.

We recently described the ‘‘Daisy Model’’ of gene essentiality

(Hart et al., 2014), wherein the set of fitness genes for each cell

line or tissue context are conceptually represented by the petals

of a flower. Petals overlap to varying degrees, but all contexts

share a common core of fitness genes that should be present

in every cell. We sought to harness the power of CRISPR screens

to expand our knowledge of both core and context-dependent

fitness genes by generating a high-complexity, second-genera-

tion lentiviral library targeting virtually all human protein-coding

genes. We used the library to screen five human cell lines, repre-

senting a cross-section of immortalized and cancer tissues, to

identify genes whose knockouts induced significant fitness de-

fects. This work lays the foundation for understanding the ge-

netic interaction network that underlies human cells at very

high resolution and how genetic and epigenetic variation across

cell types gives rise to differential genetic vulnerabilities that

may represent therapeutic opportunities in cancer and other

diseases.

RESULTS

High-Resolution Detection of Human Cell Line Fitness
Genes with an Ultra-complex CRISPR Library
We sought to confirm the utility of CRISPR as an improved

screening technology to extend the catalog of both the core

and context-dependent human fitness genes. In this study, we

define a fitness gene as any gene whose perturbation decreases
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cell growth and proliferation. We relied on lessons learned from

first-generation CRISPR genetic screens (Shalem et al., 2014;

Wang et al., 2014) and other pooled screening approaches to

design a high-complexity, genome-scale guide RNA (gRNA)

library targeting human protein coding genes and random con-

trols. Briefly, we took the set of reference essentials and nones-

sentials from Hart et al. (2014) and identified all gRNAs in the

Shalem et al. (2014) data targeting these genes. As expected,

the fold-change distribution of all guides targeting essential

genes (‘‘essential gRNAs’’) is strongly shifted relative to the dis-

tribution of guides targeting nonessential genes (Figures S1A

and S1B). To identify sequence biases that differentiated high-

performing essential gRNAs from low-performing ones, we

measured the frequency of each base at each position in the

guide of the top quintile of essential gRNA relative to the bottom

quintile. We noted a strong bias against uridine in the last four

positions of the guide sequence (Figure S1C), consistent with a

similar analysis performed by Wang et al. using their own library

of sequences targeting ribosomal genes (Wang et al., 2014).

Thus, we excluded all candidate guide sequences with U at

those positions, as well as guides with GC content < 45% or >

70% (Figure S1D) based on findings inWang et al. (2014). Finally,

to minimize potential off-target effects, we excluded all candi-

date gRNAs with more than one genomic off-target site within

two mismatches of the guide-plus-PAM sequence (Figure S1E).

From the remaining pool of candidate gRNAs, we selected the

library based on a two-pass approach. For each gene, coding

exons were ordered 50 to 30 and the candidate guides for each

exon identified. For the first pass, only guides with no genomic

off-target sites were used. We iterated over the exons in order

and randomly selected one guide per exon. The process was

repeated until six guides were assigned, or until there were no

more candidate guides (Figure S1F). The resulting library tar-

geted 17,232 genes with a modal number of six guides per

gene (Figure S1G). In addition, this library also includes control

sequences targeting LacZ, EGFP, and luciferase, as well as

two sets of gRNAs targeting random loci on Chr10: 584 with

high specificity (no predicted off-target sites), and 796 ‘‘promis-

cuous gRNAs’’ with 20 or more predicted perfect binding sites

throughout the genome. These sequences were designed to

sample the phenotypic effects of off-target Cas9 cleavage. In to-

tal, this library contains 91,320 sequences, hereafter referred to

as the ‘‘90k library.’’

For the second pass, the process was repeated, this time al-

lowing candidate gRNA with one potential off-target hit (Fig-

ure S1F). We iterated over exons in order until up to 12 guides

were assigned to each gene. This supplemental library, in

conjunction with the 90k library, brings the total to 176,500 se-

quences targeting 17,661 protein-coding genes (Figure S1H),

which we call the TKO (Toronto KnockOut) library (Table S1).

We validated effectiveness of designed guides in Cas9-ex-

pressing cell lines by targeting several genes individually and

testing protein knockdown and cellular proliferation defects (Fig-

ures S2A–S2D). As a proof of concept, we also performed a pos-

itive selection screen with HCT116 cells cultured in an excess of

thymidine to look for suppressors of the imposed G1/S arrest,

wherein we recovered 11 of 12 gRNAs targeting thymidine ki-

nase 1 (TK1) (Figures S2E–S2H), as expected (Meuth, 1989).
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Figure 1. CRISPR-Cas9 Fitness Screens

(A) Cell lines screened and/or analyzed for this

study. GBM, patient-derived glioblastoma cell line.

RPE1, retinal epithelial cells. HCT116 and DLD1,

colorectal carcinoma. HeLa, cervical carcinoma.

A375, melanoma, screened in Shalem et al. (2014)

and reanalyzed here.

(B) Heatmap of Pearson correlation coefficients

among all pairs of screens.

(C) Precision-recall plots of fitness genes for each

cell line. Dashed line denotes 5% false discovery

rate (FDR).

(D) Number of fitness genes detected in each cell

line at 5% FDR. Black, CRISPR screen with TKO

library. White, pooled library shRNA screen. Gray,

CRISPR screen with GeCKo library.

(E) False discovery rate of screens versus ex-

pression level of target genes. Genes are ranked

by expression level and binned (n = 500). The false

discovery rate (13) of fitness gene calls in each bin

(y axis) is plotted against themean expression level

(log2(fpkm+0.01)) for genes in the bin. CRISPR

targets genes at moderate expression levels (light

shaded region) at low FDR, while pooled library

shRNA achieves this FDR only for high expression

genes (white region).
To identify human fitness genes in cell lines, we applied the

177k TKO library to HCT116 colorectal carcinoma cells stably

expressing the Cas9 nuclease. After selection for infected cells

and population sampling at time zero (T0), we conducted parallel

negative selection screens for essential genes and sampled the

evolving populations every 3 days from day 6 to day 18, or �20

cell doublings. Genomic DNA from each time point was isolated

and gRNA abundance wasmeasured by deep sequencing of the

integrated gRNA cassettes in order to monitor the change in

abundance of each gRNA between the initial cell population

and each of the subsequent five time points (Figures S2E and

S2F). gRNAs targeting fitness genes were expected to drop

out of the initial population and result in a lower proportion of to-

tal sequences, while the proportion of gRNAs targeting non-

fitness genes ismaintained.We repeated the screens in triplicate

in HCT116 cells and also screened HeLa cervical carcinoma

cells with the 177k library in triplicate. Using the same approach,

we further screened DLD1 colorectal carcinoma cells, a patient-
Cell 163, 1515–1526, D
derived glioblastoma cell line (GBM) and

hTERT immortalized RPE1 retinal epithe-

lial cells with the first-pass 90k library

(Figure 1A).

We adapted the analytical pipeline

described previously in Hart et al. (2014)

to classify fitness genes and to evaluate

the quality of the screens. Using the

gold-standard sets of 360 essential and

927 nonessential genes defined in that

study, we observed that the fold-change

distribution of gRNAs targeting essential

genes is significantly shifted relative to

those targeting nonessential genes, and
that the shift increases with time (Figures S3A–S3E). We then

made improvements to the algorithm described in (Hart et al.,

2014), which we call the Bayesian Analysis of Gene Essentiality

(‘‘BAGEL’’) approach, to calculate a log Bayes factor (BF) for

each gene. More positive scores indicate higher confidence

that a given gene’s knockout causes a decrease in fitness but

are not necessarily a measure of the severity of the phenotype.

Unlike most other analytical methods for large-scale gene

perturbation studies, BAGEL uses the data from all reagents

and all samples in a screen and therefore provides a ready

framework for the integration of experiments with many re-

agents per gene and multiple time points (see Supplemental

Information).

The TKO Library Screens Identify More Fitness Genes
than Any Other RNAi or CRISPR Screen
For each of the screens that we carried out, BFs were calculated

for all targetedgenes (TableS2).WealsousedBAGEL tocalculate
ecember 3, 2015 ª2015 Elsevier Inc. 1517



BFs for a previous screen in the A375 melanoma cell line per-

formedwith the first generation 65k gRNAGeCKo library (Shalem

et al., 2014). To evaluate the consistency of our results, we

measured the Pearson correlation coefficient of the BF distribu-

tions of all pairs of screens (Figure 1B). All TKO library screens

showed very high correlation, withmost having correlation coeffi-

cientsbetween0.65and0.75,while the replicateHCT116screens

had a correlation coefficient of 0.86. The A375 screen showed

lower but consistent correlationwith theTKO library screens, sug-

gesting that the BAGEL algorithm could be used to estimate

screen quality across different libraries and experiments.

The use of gold-standard reference sets enables the unbiased

evaluation of screen performance. After merging the replicate

HCT116 screens, we calculated precision-recall curves for the

six cell lines (Figure 1C). All TKO library screens showed very

high performance, with �2,000 fitness genes identified in each

cell line at a 5% false discovery rate (FDR; Figure 1D). Both

90k and 177k library screens showed similar sensitivity, with

HeLa cells yielding the lowest number of fitness genes despite

using the larger library, possibly due to high ploidy in HeLa cells.

Overall, TKO library screens identified�40%more fitness genes

than the GeCKo screen in A375 (n = 1,270 genes), likely due to

the combination of improved design and larger library size, but

all CRISPR screens captured 4- to 5-fold more fitness genes

than a high-quality genome-wide pooled library shRNA screen

in the HCT116 cell line previously performed in our lab (Vizeacou-

mar et al., 2013), in which only 433 fitness genes were identified

at the same FDR. The key driver for the difference in sensitivity

appears to be expression level of the target gene: lentiviral-medi-

ated pooled library shRNA screens show high specificity only

for high expression targets, while CRISPR screens accurately

detect fitness genes across a broad range of expression levels

(Figures 1E and S3I).

Functional Characterization of Core Fitness Genes
A common aim of fitness screens in cell lines is to identify those

genes whose loss of function is lethal only in a specific genetic

background or environmental context. These ‘‘synthetic lethal’’

or context-specific essentials must be differentiated from core

essentials, which should in principle be detectable in every

screen for cell line fitness genes. We previously introduced the

concept of the Daisy Model of gene essentiality (Hart et al.,

2014), where the fitness genes in each tissue or context are rep-

resented by a petal (Figure 2A). Petals overlap to varying degrees

but all share a common set of core genes that should be detect-

able in every cell line. We estimated the core fitness genes by

considering the frequency with which each fitness gene was

observed across the five TKO cell lines. Of the 4,054 total hits,

1,580 were observed in three or more of the five cell lines, with

more than half (829, 52%) observed in all five (Figure 2B).

Wedefined these 1,580 hits as core fitness genes and analyzed

their functional and genomic properties. Perhaps the most strik-

ing property was the strong enrichment of protein complexes

among this gene set. The number of fitness genes among sub-

units of selected large (Figure 2C) and small (Figure 2D) protein

complexes is compared to the number of subunits among 823es-

sentials identified across 72 genome-scale shRNA screens of

cancer cell lines (Hart et al., 2014). In virtually every case, the
1518 Cell 163, 1515–1526, December 3, 2015 ª2015 Elsevier Inc.
five CRISPR screens identified more subunits of a given complex

than all 72 shRNA screens, and several complexes are identified

exclusively by CRISPR. On average, CRISPR classified 68% of

complex members as hits versus only 35% for RNAi. The only

exception where RNAi outperformed CRISPR was the ribosome,

whose subunits tend to be targeted by a smaller number of

guides in the TKO library (Figure S3J).

Among the complexes detected exclusively by TKO, 111 sub-

units are classified as fitness genes; of these, over 60% (n = 68;

Figure 2E) are expressed at moderate levels, where RNAi is less

sensitive. Notably, fitness genes that are highly expressed, but

still found only by CRISPR, are enriched for genes whose pro-

teins are localized to mitochondria. It was previously observed

that some nuclear-encoded mitochondrial proteins have rela-

tively short mRNA half-lives (Tani et al., 2012). Comparing

high-expression fitness genes detected by RNAi and CRISPR

in HCT116 cells to mRNA half-life data from HeLa cells (Tani

et al., 2012) shows that those detected only by CRISPR tend

to have much shorter half-lives than those detected by RNAi

(Figure 2F), which may partially explain the lack of sensitivity of

RNAi screens in detecting these important genes linked with

mitochondria.

The Daisy Model predicts that core fitness genes are enriched

for fundamental cellular processes such as transcription, trans-

lation, and replication. Analyzing the core fitness genes for bio-

logical process annotation enrichment confirms this prediction:

genes involved in RNA splicing, translation, and DNA replication

and repair are more than 4-fold overrepresented among these

genes (Figure 2G). Conversely, genes involved in cell-cell

communication and organismal development are more than 4-

fold depleted, consistent with expectations when screening ho-

mogeneous cell cultures.

We then examined a number of physiological and evolutionary

properties of the core fitness genes (Figures 2H and 2I). First,

we observed that they show strong overlap with human ortho-

logs of both yeast cell and fly cell-line essentials, as well as

whole-organism worm and mouse essentials (Figure 2H and

Supplemental Information). In contrast, non-core fitness genes

(observed in 1–2 cell lines) include less than half as many essen-

tial orthologs. Second, core fitness genes show more than 10-

fold higher average expression across the �1,000 cell lines in

the Cancer Cell Line Encyclopedia (Barretina et al., 2012) than

nonfitness genes and display lower expression variance (Fig-

ure 2I), indicating that these genes exhibit constitutive, invariant

expression across tissues. Third, and as with previous studies in

model organisms, core fitness genes show roughly 4-fold more

interaction partners in protein-protein and functional interaction

networks. Fourth, core fitness genes also show a lower ratio of

nonsynonymous to synonymous mutations when compared to

all mouse orthologs, indicating purifying selection on fitness

genes. Consistent with this observation, core fitness genes

also show lower frequency of deleterious variation across human

exomes. However, core fitness genes are neither enriched nor

depleted for disease genes, contrary to the depletion for disease

genes observed in the smaller set of RNAi-derived, high-expres-

sion core fitness genes described in Hart et al. (2014). Lastly,

while core fitness genes have similar transcript length and cod-

ing sequence length to non-fitness genes, they tend to have
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Figure 2. Core Fitness Genes

(A) The Daisy Model of gene essentiality, where each tissue/context is represented by a petal on the flower. Petals overlap to varying degrees but all share a

common core of housekeeping essential genes.

(B) Distribution of hits at 5% FDR across the five cell lines assayed with the TKO library. We define hits observed in 3 or more cell lines as core essential genes (n =

1,580).

(C) Essential protein complexes. Number of subunits in the core TKO fitness genes (beige) is compared to the number of subunits in the set of 823 global RNAi

essentials from (15) (green) and the total size of the complex (white box).

(D) Small essential complexes, shaded as in (C).

(E) For complexes detected exclusively by TKO (not RNAi), nearly 2/3 show moderate gene expression (shading as in Figure 1E). Highly expressed genes are

enriched for mitochondrial proteins.

(F) Distribution of mRNA half-life of fitness genes detected by CRISPR and/or RNAi.

(G) Selected biological processes enriched or depleted in TKO core essentials (beige), depicted as fold-change relative to random expectation. Green bars are

functional enrichment/depletion in RNAi global essentials (13).

(H) Intersection of core fitness genes with human orthologs of essential genes in yeast, worm, fly, and mouse.

(I) Other physiological and evolutionary properties of core fitness genes, plotted as fold-change of core fitness genes relative to non-fitness genes.

Cell 163, 1515–1526, December 3, 2015 ª2015 Elsevier Inc. 1519
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B Figure 3. Novel Uncharacterized Fitness

Genes

(A and B) Distributions of the number of PubMed

citations (A) or GO terms (B) linked to each gene

symbol in Entrez Gene for core fitness genes (gold

line) versus non-fitness genes (gray line). Dotted

lines indicate median value for each distribution.

Position of selected uncharacterized fitness genes

in the distribution is shown. CCDC84 had no

associated GO terms.

(C) Cell viability assays in HCT116 and HeLa cells

infected with lentiviral-based gRNA expression

cassettes, as measured by AlamarBlue staining

10 days post-selection. Three different gRNA

expression cassettes were used per gene. Data

are represented as means ± SD of 3 replicates

(n = 3 cassettes x triplicates). ***p < 0.001, **p <

0.01, and *p < 0.05; two-tailed unpaired t test.

(D) Immunofluorescence of 293T cells stably ex-

pressing V5-tagged ORFs. Subcellular localization

of ORFs was detected with an anti-V5 anti-

body (green), and nuclei were stained using DAPI

(blue).

(E) Summary of the protein-interaction network of

ANKRD49, ZNF830, CCDC84, and RBM48 de-

tected by AP-MS analysis. V5- or 3xFLAG-tagged

ORFs of the indicated proteins were immunopre-

cipitated from HEK293T and HCT116 cells, and

interactors were identified by mass spectrometry

analysis. Bait proteins are indicated by rectangles

and prey proteins by circles. The color of the node

corresponds to the Bayes Factor essentiality score

in HCT116 cells, and the width of the edges cor-

responds to the number of times the interaction

was detected. Results from five independent AP-

MS experiments are shown for ANKRD49 and

ZNF830 and four independent AP-MSexperiments

for CCDC84 and RBM48.

(F) Co-immunoprecipitation of RBM48 and ARMC7

from HCT116 cell lysates. HCT116 cells stably ex-

pressing V5-tagged RBM48, ARMC7, or LacZ

(control) were transfected with the indicated VA

(3xFLAG)-tagged ORFs of ARMC7 or RBM48 and

immunoprecipitated with anti-FLAG M2 antibodies

and then immunoblotted with anti-V5 antibody and

anti-FLAG antibody. b-actin was used as a loading

control for input samples.
more exons (median 11 for fitness genes versus 7 exons for non-

fitness genes).

Inferring the Function of Uncharacterized Core Fitness
Genes
There still remains a significant portion of human genes that are

uncharacterized or unstudied; part of the ‘‘dark matter’’ of the

genome. We selected four predicted core essential genes

(ANKRD49, ZNF830, CCDC84, and RBM48) that have few

PubMed citations and gene ontology (GO) annotations (Figures

3A and 3B) and confirmed that all four genes are critical for
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cell proliferation in HCT116 and HeLa cells by independent

treatment with single gRNAs (Figure 3C; p < 0.05, Student’s

t test; Figure S4A). CRISPR knockout of ZNF830 and RBM48

with multiple independent gRNAs showed signs of apoptosis

as measured by cleaved Caspase 7 and cleaved PARP (Fig-

ure S4B). Notably, all four of these genes are expressed at

moderate levels refractory to RNAi perturbation. In order to

infer the function of each of these genes, we expressed V5-

tagged open reading frames (ORFs) of the four genes in

HEK293T andHCT116 cells to examine their subcellular localiza-

tion and protein interaction patterns. By immunofluorescence,
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Lethality

(A) The canonical MAPK pathway.

(B) Context-dependent sensitivity to perturbation

of MAPK fitness genes. Cell lines with KRAS and

BRAFmutations show strong pathway bias. Solid,

fitness gene at 5% FDR. Shaded, fitness gene at

10% FDR. Gray boxes represent known essential

oncogenes missed by the screens.

(C) Canonical and HPV-mediated pP53 degrada-

tion pathways.

(D) P53 regulators as fitness genes.

(E) Cell viability assays demonstrating the effect of

Nutlin-3a (an inhibitor of MDM2-p53 interaction)

treatment at the indicated concentrations.

All data are represented as means ± SD (n = 3

replicates). ***p < 0.001, **p < 0.01, and *p < 0.05;

two-tailed unpaired t test.
ANKRD49 showed staining distributed throughout the cell,

whereas ZNF830, CCDC84, and RBM48 exhibited enriched nu-

clear staining (Figure 3D and data not shown). Immunoprecipita-

tions fromHEK293T andHCT116 cell lysates expressing V5- and

33FLAG-tagged ORFs followed by mass spectrometry (IP-MS)

identified protein interactions with all four bait proteins (Figure 3E

and Table S3). With each of the four bait proteins, robust protein-

protein interactions with other core fitness genes were detected,

suggesting that these uncharacterized fitness genes may also

encode members of essential protein complexes. For example,

ANKRD49 was found to associate strongly with FKBPL and

together likely function as an Hsp90 co-chaperone to promote

aspects of protein folding (Taipale et al., 2014). ZNF830 and

CCDC84 interacted with different sets of proteins that are pre-

dicted to participate in mRNA splicing (Figure 3E). Notably,

ZNF830 was previously found to associate with the XAB2

splicing complex (De et al., 2015; Kuraoka et al., 2008), whereas

CCDC84 may be a component of the PRPF splicing complex.

Finally, an interaction between RNA-binding motif containing

protein RBM48 and the product of the uncharacterized fitness

gene ARMC7 was detected by IP-MS and confirmed by co-

immunoprecipitation (Figure 3F). RBM48 and ARMC7 have

been found to be amplified across several cancer tissues and

cell lines (Figures S4C and S4E), and both genes show an enrich-

ment for copy number amplification and a corresponding deple-
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tion for copy loss relative to a pool of

nonessential genes (Figures S4D and

S4F). RBM48 contains an RNA-binding

motif, and ARMC7 is an Armadillo-repeat

containing protein, which suggests that

this RBM48-ARMC7 essential protein

complex may have a role in RNA meta-

bolism and/or transcription.

Selective Dependence on Pathways
Harboring Known Driver Mutations
Defining core fitness genes provides

an important foundation for identifying

synthetic lethal genes that illuminate

context-specific dependencies on signaling pathways and bio-

logical processes, which in turn provide candidate tumor-spe-

cific therapeutic targets. The cells assayed here for fitness

genes represent a cross-section of common cancer genotypes

whose differential genetic vulnerabilities highlight actionable

targets and pathways. For example, we expected to observe

selective dependence on the mitogen-activated protein kinase

(MAPK) pathway, as three of our cell lines harbor driver muta-

tions in this pathway (KRASG13D in DLD1 and HCT116, and

BRAFV600E in A375). The canonical MAPK pathway carries sig-

nals transduced by various cell surface receptors (Figure 4A),

which regulate many cellular processes, including cell prolifer-

ation, cell survival, and cell-cycle control (Lemmon and

Schlessinger, 2010). We observe multiple hits downstream of

the driver mutations in all three MAPK pathway mutants (Fig-

ure 4B), including selective PI3K dependency in the KRAS

mutant background, consistent with KRAS activation of the

PI3K/AKT pathway (Boj et al., 2015; Castellano and Down-

ward, 2011). As the stringent sequence identity filters used

to generate the TKO library resulted in only one gRNA target-

ing the KRAS gene, KRAS itself does not emerge as a fitness

gene. Similarly, the GeCKo library screen does not identify

BRAF as a hit in the A375 cell line. Nevertheless, the overall

trend of oncogene-driven MAPK pathway dependency is

strongly affirmed.
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In addition to the oncogene-driven MAPK activity, we

observed differential p53 regulation consistent with the cells’ ge-

notypes. The canonical p53 protein degradation pathway in-

volves ubiquitination by the E3 protein-ubiquitin ligase MDM2

(Figure 4C) (Momand et al., 2000). Three of our wild-type TP53

cell lines are dependent on MDM2, and the related p53 inhibitor

MDM4 is also a hit in two of those three lines (Figure 4D; FDR <

5%). HeLa cells also carry wild-type TP53 but are driven by

human papilloma virus (HPV) infection, where the HPV protein

E6 mediates p53 degradation through its interaction with the

endogenous UBE3A E3 ubiquitin-protein ligase (Scheffner

et al., 1993) (Figure 4C). Importantly, we observed that HeLa cells

require UBE3A for proliferation, but not MDM2 or MDM4. In

contrast, DLD1 cells have an oncogenic TP53S241F/� mutation

(Ahmed et al., 2013; Sur et al., 2009), circumventing dependency

on these protein degradation pathways. Differential response to

treatment with Nutlin-3a, which inhibits MDM2 protein interac-

tion with and subsequent degradation of p53, confirms the

selective dependence on this interaction (Figure 4E) and is

consistent with prior observations of genotype-dependent res-

ponse to MDM2 inhibition (Sur et al., 2009). Neither MDM2 nor

MDM4 are discovered in the HCT116 RNAi screen, demon-

strating both the improved sensitivity and specificity that TKO

fitness screens provide.

Identification of Novel Context-Specific Vulnerabilities
While the genetic dependencies that emerge as a consequence

of the known oncogenic drivers demonstrate the sensitivity of

the CRISPR screens, the large number of fitness genes identified

in each cell line enables a data-driven approach to discovering

context-specific vulnerabilities. We took the fitness genes in

each cell line and subtracted the core fitness genes to specify

a set of context-specific genes for each line (Figure 5A). We

then analyzed each set of genes for enrichment in Gene

Ontology biological process or cellular component annotations,

using the GOrilla web service (Eden et al., 2009). Comparing en-

riched terms revealed that each cell line had a highly unique

signature of essential biological processes and associated com-

ponents (Figure 5B). We noted that the ‘‘telomere maintenance’’

pathway was enriched only in RPE1 cells, which is consistent

with that cell line having been immortalized by telomerase

reverse transcriptase (hTERT; Bodnar et al., 1998). We discov-

ered unexpected differential hits across several receptor tyro-

sine kinases (RTKs) upstream of the MAPK signaling pathway

described earlier (Figures 4B and 5C). To our surprise, the

epidermal growth factor receptor EGFR was a strong hit in

KRASG13D DLD1 cells, along with signal transduction adapters

SHC1, GRB2, and SOS1 (Figure 5D). In contrast, KRASG13D

HCT116 cells showed no hits in this pathway. DLD1 cells show

a selective response to EGFR inhibitor erlotinib (Figure 5E), con-

firming this observation. Unlike HCT116, DLD1 cells carry a

TP53S241F mutation, which we hypothesized might be related

to the EGFR dependency; interestingly, HPAF-II cells also carry

both KRAS (G12D) and TP53 (P151S) mutations and are also

sensitive to erlotinib (Figure S5A). However, further examination

of a series of isogenic HCT116 cell lines with varying TP53 geno-

types, and DLD1 cells with varying KRAS genotypes, indicated

that TP53 genotype does not re-sensitize HCT116 cells to erloti-
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nib (Figure S5B). Thus, dependency on signaling components

upstream of a well-characterized driver oncogene violates pre-

dictions that the driver mutation disconnects cells from up-

stream signal relays and highlights potential differences in ther-

apeutic options even within well-defined subtypes.

Other RTKs also showed differential sensitivity across our

screens. GO biological process term ‘‘insulin receptor sig-

naling,’’ enriched in HeLa-specific fitness genes, includes fibro-

blast growth receptor FGFR1 and insulin-like growth factor 1

receptor IGF1R. HeLa cells showed specific sensitivity to the

FGFR1 inhibitor PD173074 (Figure 5F), as predicted by com-

paring FGFR1 hits across cell lines (Figure 5D), while treatment

with custom synthetic human antibodies generated against

IGF1R that block IGF stimulation of IGFR1 (Figure S5C) reduced

cell viability in HeLa and A375 but not in HCT116 cells

(Figure 5G).

The GO term enrichment analysis also suggested a surprising

and specific dependency onmitochondrial activity (Figure 5B). In

particular, fitness genes in HCT116 are highly enriched for sub-

units of electron transport chain complex I; as predicted, growth

of HCT116 cells was strongly inhibited by complex I inhibitor

rotenone (Figures 5H and 5I) and by biguanide derivatives phen-

formin (Figure S5D) and metformin (Figure 5J), an inhibitor of

oxidative phosphorylation (Bridges et al., 2014) that is commonly

prescribed for type 2 diabetes. Similarly, DLD1 fitness genes are

enriched for genes encoding subunits of the mitochondrial ribo-

some (Figure 5B). Several antibacterial drugs, including linezolid

(Nagiec et al., 2005), tigecycline (Olson et al., 2006), and chlor-

amphenicol (McKee et al., 2006), have been shown to specif-

ically inhibit mitochondrial ribosome function in mammalian cells

(Figure 5H) (Skrti�c et al., 2011). As predicted, DLD1 cells show

preferential sensitivity to these small molecules (Figures 5K,

5L, and S5E).

In addition to fitness genes that were negatively selected in our

screens and conditionally required for cell proliferation, we also

identified context-specific genes whose knockout enhanced

proliferation. Since BAGEL is designed to identify negatively

selected genes, we used the MAGeCK algorithm (Li et al.,

2014) and identified a number of positively selected genes

from our screens. For example, the HeLa screen identified com-

ponents of the Hippo tumor suppressor pathway, including NF2/

merlin (adjusted p = 0.005) and LATS2 (p = 0.018). The GBM

screen identified the tumor suppressor gene TP53 (p = 0.001),

as well as other potential candidate tumor suppressor genes,

including the nuclear exportin XPO7 (p = 0.001) and DHX29/

DEAH-box protein 29 (p = 0.001). The RPE1 screen identified

TP53 (p = 0.005), as well as a number of additional candidate tu-

mor suppressor genes, including PDCD10/CCM3, mutations in

which are one cause of cerebral cavernous malformations.

Taken together, our screens identified both negatively and posi-

tively selected genes simultaneously and report clear results

across different genetic backgrounds.

Guides Targeting Random Loci Suggest Negligible
Off-Target Effects
A key design criterion for the TKO library was strict control over

potential off-target effects by excluding candidate gRNA

with multiple genomic binding sites, even including up to two
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Figure 5. Data-Driven Discovery of Genetic Vulnerabilities

(A) The Daisy Model from Figure 2, here focusing on the petals: each cell line’s fitness genes, minus the core.

(B) Selected enrichedGeneOntology Biological Process andCellular Compartment terms. Color represents fold enrichment for termsmeeting a p value threshold

(p < 10�3). Green box highlights experimentally validated GO terms.

(C) Representative RTK complexes and their inhibitors.

(D) Context-dependent sensitivity to perturbation of RTK fitness genes. Solid, fitness gene at 5% FDR. Shaded, fitness gene at 10% FDR.

(E) Cell viability assays demonstrating the effect of erlotinib (EGFR inhibitor) and (F) PD173074 (FGFR1 inhibitor) treatment at the indicated concentrations in

DLD1, HCT116, A375, RPE1, HeLa, and GBM cells.

(G) Cell viability assay demonstrating the effect of custom synthetic IGF1R antibodies (IGF1R-161 and IGF1R-165 at 50 mg/ml) in the indicated cell lines. MBP

(Maltose Binding Protein)-IgG was used as a control antibody.

(H) Differentially essential mitochondrial functions and their inhibitors.

(I and J) (I) Cell viability assays demonstrating the effect of rotenone (complex I inhibitor) and (J) metformin (OXPHOS inhibitor) treatment at the indicated

concentrations.

(K and L) (K) Cell viability in response to linezolid and (L) chloramphenicol, inhibitors of mitochondrial translation. All data are represented as means ± SD (n = 3

replicates). ***p < 0.001, **p < 0.01, and *p < 0.05; two-tailed unpaired t test.
mismatches. To more systematically explore the phenotypic

effect of off-target gRNA binding, we examined the fold changes

of the TKO library guides targeting random loci on chromosome
10. Guides with only one predicted target site (n = 584)

show negligible fold-change distribution, similar to guides tar-

geting nonessential genes (Figure S1I). However, promiscuous
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gRNAs—those targeting at least 20 genomic loci (n = 796)—are

more similar to guides targeting essential genes (Figure S1I). This

behavior is consistent across all five TKO cell lines and suggests

that off-target effects only become an issue in negative selection

screens if there are many target sites; the odds of a single

random off-target locus causing a significant phenotype appear

to be quite low.

DISCUSSION

We developed and used the TKO library to conduct genetic

screens to identify fitness genes in human cell lines. We identi-

fied �2,000 high-confidence fitness genes in each cell line,

four to five times more genes than an RNAi screen yielded at

the same false discovery rate. Using the Daisy Model as a frame-

work, we classified 1,580 genes as core fitness genes (hits in 3 or

more of the 5 cell lines). This vastly expands the catalog of hu-

man cell line fitness genes; by way of comparison, the number

of CRISPR-identified core human fitness genes that have essen-

tial yeast orthologs (n = 569) is more than 50% larger than

the entire set of core fitness genes identified by systematic anal-

ysis of 174 human cell-line shRNA screens (n = 360; Hart et al.,

2014).

Of particular interest is the strong enrichment among core

fitness genes for well-annotated protein complexes. Enlarging

the census of essential protein complexes has potentially major

chemotherapeutic implications. In a recent study, Nijhawan et al.

(2012) discovered that partial copy loss of subunits of some

essential protein complexes—presumably as passenger losses

related to genetic deletion of nearby tumor suppressors—ren-

ders cells more susceptible to inhibition of those complexes.

The study relied on RNAi to identify genetic susceptibility and

yielded results enriched for highly expressed ribosome, protea-

some, and spliceosome subunits. Consistent with this hypothe-

sis, Liu et al. (2015) report that the RNA polymerase II subunit

POLR2A, located at cytoband 17p13, is frequently deleted along

with neighboring tumor suppressor TP53. This copy loss results

in selective sensitivity to perturbation of either thePOL2RA gene,

by RNAi, or of RNA polymerase complex function by a-amantin.

RNA polymerase II is one of many essential complexes for which

specific inhibitors already exist, which could lead to repurposing

of existing drugs to target tumor-specific haplo-insufficiencies.

With the CRISPR core fitness genes, we expand the hypothesis

of passenger-driven genetic vulnerability by extending the list of

candidates to dozens of protein complexes comprised of hun-

dreds of subunits.

This set of core fitness genes should prove useful acrossmany

disciplines of human genetics and genomics. In cancer geno-

mics, chromosomally unstable tumors should, in principle,

show lower frequency of deletion at fitness gene loci than

random. In population genetics, these loci should show lower

rates of deleterious mutation and copy number variation, based

on the Daisy Model hypothesis that cell line fitness genes are a

subset of organism-level fitness genes. Furthermore, the census

of core fitness genes will be refined as the number of high-quality

cell line genetic screens expands and researchers integrate

these results with other functional genomics and orthology

data. Finally, this refined core will be used as an updated yard-
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stick to evaluate improvements in both screening technologies

and analytical methods.

Though preliminary, our census of core fitness genes provides

a foundation for identifying context-specific fitness genes that

illuminate biological differences between cell types and warrants

further research into genotype-driven therapeutic targets for

cancer. Each cell line we assayed offered a unique signature of

essential biological processes, many of which we confirmed by

orthogonal small-molecule or antibody inhibitors. In general,

essential pathways were consistent with expectations based

on known oncogenic drivers—cell lines with KRAS or BRAF

driver mutations, for example, rely on downstream MAPK

pathway elements, and wild-type TP53 cells showed vulnera-

bility to inhibition of MDM2. However, we also observed counter-

intuitive differences between ostensibly similar cell lines. Both

HCT116 andDLD1 areKRAS-mutant colorectal cancer cell lines,

but DLD1 also relies on EGFR signaling, contradicting the model

that activating mutations decouple biological pathways from up-

stream signaling. HCT116, on the other hand, demonstrates a

specific dependence on ETC complex I activity and selective in-

hibition in response to metformin, a widely prescribed antidia-

betic drug. Lower cancer rates among metformin users have

been observed for years, leading to clinical interest in metformin

as an anticancer agent (Jalving et al., 2010). This preliminary

work strongly supports the idea that oxidative phosphorylation

dependency—a clear exception to the Warburg effect—is a

targetable weakness of some tumors.

It is tempting to ascribe the differences between these two

similar cell lines to other differences among well-characterized

cancer genes—for example, TP53, which carries an oncogenic

mutation in DLD1 but not HCT116. However, such an observa-

tion is at best correlative, given only two cell lines. We emphasize

that it is the discovery of this unexpected variation, confirmed

through orthogonal assays, that represents the true novelty of

this aspect of our results, though we cannot currently explain

the source of this variation. In fact, we are far from understanding

the genetic and epigenetic rewiring of cells that give rise to these

selective vulnerabilities. It took a decade of technology develop-

ment, systematic experimentation, and advanced analysis to

map the genetic network of a yeast cell in a single growth condi-

tion (Costanzo et al., 2010), and we are only just beginning to un-

derstand the dynamics of that network (Bandyopadhyay et al.,

2010). Translating that work into humans must take into account

the ‘‘dimension problem’’ of more diverse genotypes, more

epigenetic states/tissue types, and more environmental condi-

tions (i.e., growth media and required supplements for different

cell lines). Nevertheless, with the advent of CRISPR-Cas9 tech-

nology, this goal may finally be achievable. Future systematic

high-resolution fitness screens across multiple query knockout

strains in an isogenic background, analogous to the yeast

approach, should yield a first draft of the human genetic network.

Concurrent screening of a large, diverse panel of well-character-

ized cancer cell lines (Boehm and Golub, 2015) may tell us how

genetic variation changes that network and how to take advan-

tage of the surprising emergent vulnerabilities of specific tumors.

This work advances the current state of the art for those future

studies and provides a crucial baseline for their analysis and

integration.



EXPERIMENTAL PROCEDURES

Online Resources

TKO library sequences, raw and processed data from the experiments

described here, and details on the BAGEL software can be downloaded at

the TKO website at http://tko.ccbr.utoronto.ca.

Genome-Scale Lentiviral gRNA Library Design and Construction of

the TKO Library

gRNA target sites containing the N20NGG motif were chosen from protein-

coding exons and filtered for nucleotide composition and transcript position.

gRNAs were synthesized as 58-mer oligonucleotides on two microarrays

(CustomArray), each with a density of �90,000 sequences, and amplified by

PCR as a pool. The PCRproducts were purified and cloned into pLCKO vector.

Colonies were scraped off plates and pooled, and the plasmid DNA was

extracted. Library virus was produced in HEK293T cells, and MOI was

determined for each cell line screened (see Supplemental Experimental

Procedures).

Pooled gRNA Depletion Screens

Cas9-expressing cells were infected with the lentiviral TKO library at an

MOI�0.3 such that every gRNA is represented in�270 cells. 24 hr after infec-

tion, infected cells were selected with puromycin for 48–72 hr. After selection,

cells were split into three replicates, passaged every 3 days, and maintained

at 200-fold coverage. Cells were collected at a 200-fold coverage for

genomic DNA extraction at day 0 and every 3 days from day 6 to day 18

post-selection.

Genomic DNA was extracted from cell pellets. gRNA inserts were amplified

via PCR using primers harboring Illumina TruSeq adapters with i5 and i7 barc-

odes, and the resulting libraries were sequenced on an Illumina HiSeq2500

(see Supplemental Experimental Procedures).

Analysis of Negative Selection Screens: The BAGEL Algorithm

The BAGEL algorithm was used to calculate a Bayes factor for each gene rep-

resenting a confidence measure that the gene knockout results in a fitness

defect. The algorithm uses reference sets of essential (n = 360) and nonessen-

tial (n = 927) genes from Hart et al. (2014). Gene-level Bayes factors for all

screens described in the manuscript are available in the Supplemental Exper-

imental Procedures.

Analysis of Screen False Discovery Rates Using Gene Expression

In addition to using the gold standard reference sets, we evaluated screen

quality by an independent method comparing essential genes to gene expres-

sion. A background error rate for each screen was calculated by taking all

genes with trace/no expression (logFPKM < �2) and measuring the fraction

classified as essential, assuming that these trace/no expression genes are

false positives (see Supplemental Experimental Procedures).

Identifying Core Fitness Genes

We chose a per-screen false discovery rate (FDR, 1-Precision) of 5% as a cut-

off. Genes with BFs above the threshold in the given cell line were considered

fitness genes in that cell line. Genes observed in 3 or more of the 5 TKO

screens (n = 1,580) were considered ‘‘core fitness genes’’ and retained for

further analyses (see Supplemental Experimental Procedures).
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