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ABSTRACT

Peptide recognition domains and transcription
factors play crucial roles in cellular signaling. They
bind linear stretches of amino acids or nucleotides,
respectively, with high specificity. Experimental
techniques that assess the binding specificity of
these domains, such as microarrays or phage
display, can retrieve thousands of distinct ligands,
providing detailed insight into binding specificity.
In particular, the advent of next-generation
sequencing has recently increased the throughput
of such methods by several orders of magnitude.
These advances have helped reveal the presence
of distinct binding specificity classes that co-exist
within a set of ligands interacting with the same
target. Here, we introduce a software system
called MUSI that can rapidly analyze very large
data sets of binding sequences to determine the
relevant binding specificity patterns. Our pipeline
provides two major advances. First, it can detect
previously unrecognized multiple specificity
patterns in any data set. Second, it offers
integrated processing of very large data sets from
next-generation sequencing machines. The results
are visualized as multiple sequence logos
describing the different binding preferences of the
protein under investigation. We demonstrate the
performance of MUSI by analyzing recent phage
display data for human SH3 domains as well as
microarray data for mouse transcription factors.

INTRODUCTION

The wiring diagram of cellular signaling pathways is
formed by specific molecular interactions involving
proteins, DNA and other molecules (1,2). Among these,
signaling protein–protein interactions typically consist of
protein domains [such as kinases (3–5), SH3 (6) or PDZ
(7,8)] binding short unstructured regions on their target
proteins. These regions are characterized by very specific
linear sequence motifs that are recognized by the domain
they bind to. For instance, SH3 domains are known to
target PxxP motifs with a positively charged residue
either on the left (Class I, [R/K]xxPxxP), or on the right
(Class II, PxxP[R/K]) of the proline-rich region (6).
Similarly, DNA binding domains of transcription factors
(TF) make direct contact with short stretches of nucleo-
tides that display high sequence specificity (9). This speci-
ficity is crucial for enabling proteins to interact selectively
with their cognate partners within the crowded intra-
cellular environment. Detailed understanding of binding
specificity encoded in these motifs is very powerful to
accurately predict novel interactions (4,10–13) and for
the design of new inhibitor compounds (14).
Various technologies, such as microarrays (12,15,16),

SPOT arrays (17), phospho-proteomics arrays (18), or
phage display (19), have been designed to characterize
the binding specificity of protein domains and transcrip-
tion factors. Data from these experiments enable compu-
tational models to describe binding specificity. One
well-known such model is the Position Weight Matrix
(PWM, also known as Position-Specific Scoring Matrix).
This model has been widely applied to characterize the
binding specificity of both peptide recognition domains
and transcription factors (20–23). However, several
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recent studies suggest that the use of single PWMs leads to
a reductive view of binding specificity, since a PWM does
not consider correlations between different ligand
positions (5,16,24,25). To overcome this limitation, differ-
ent strategies have been developed based on neural
networks (5), hidden Markov models (25) or clustering
(24,26). The latter describes binding specificity with
multiple PWMs corresponding to clusters of ligands that
follow the same specificity. The results of such analysis can
be readily visualized as multiple sequence logos. Clear
examples of multiple specificity were encountered in
several peptide recognition domain families (24), as well
as in transcription factors (16).
Most of these computational tools work efficiently with

up to a few hundred ligands. However, recent technologic-
al advances have increased the throughput of the afore-
mentioned experimental methods by several orders of
magnitude. In particular, combining the power of phage
display with next-generation sequencing currently enables
the retrieval of thousands of different ligands binding to
the same domain (27,28). This deluge of data represents
both a challenge and an opportunity. On the one hand, it
requires more efficient and faster processing systems. On
the other hand, it enables analysis at greater resolution,
such as distinguishing between different multiple binding
specificities. Here, we introduce the integrated system
MUltiple Specificity Identifier (MUSI) that addresses
both these issues, enabling high-throughput analysis of
large data sets and detecting novel multiple specificity.
MUSI provides a simple interface for processing short
peptide or nucleic acid sequence data. Starting from a
set of sequences observed to bind to a given target, it
automatically generates an optimal number of PWMs
based on the different specificity patterns present in
the data. The results are graphically displayed in a table
of sequence logos (Figure 1). These are useful for
visualizing the different binding specificities. The numer-
ical values of the different PWMs are also provided so that
the user can quantitatively compare them, or use them to
predict protein–protein or protein–DNA interactions. We
expect MUSI to be particularly relevant to researchers
working with phage-display, peptide arrays, protein
binding microarrays or similar high-throughput
technologies to map binding specificity of protein inter-
action domains, RNA-binding proteins or transcription
factors.

MATERIALS AND METHODS

MUSI aims to provide a robust and user-friendly interface
to identify multiple specificity within a set of sequences
(either peptides or nucleic acids). Usually, these sequences
would share some common property, such as binding to
the same target. The algorithm behind MUSI is based on
the idea of fitting several linear probabilistic models (in
our case, PWMs) to a set of sequences to optimally
describe the different specificity classes. It relies on the
mathematical tools of mixture models and uses a
Maximum Likelihood approach with Dirichlet priors for
fitting. It accepts a variety of input formats from

raw Illumina sequencing reads (FASTQ) to peptide or
nucleotide sequences in standard FASTA files. The
program can be executed from the command line or
with a Graphical User Interface (GUI).

Preprocessing of the data

First, a set of N unique sequences is generated
by removing duplicates, since multiple occurrences of the
same sequence are often not very informative in terms of
specificity and could originate from experimental biases
(e.g. artificial amplification of the same ligand along
experimental procedure). These sequences are then
aligned using MAFFT, a sequence alignment tool (29).
In the case of short ligands binding to a linear epitope,
internal gaps are not very structurally meaningful and
may even prevent relavant specificities from being distin-
guished. Hence, we use a large gap opening penalty that is
iteratively increased until internal gaps are eliminated.
Both the redundancy removal and alignment steps can
be optionally skipped in MUSI. Special options are avail-
able for FASTQ data pre-processing (described later).

Algorithm

Starting from a set of N aligned sequences, we use a
mixture model to identify multiple PWMs (24). Aligned
sequences are modeled as strings of M letters, taken from
an alphabet of size S (S=20 for proteins and S=4 for
DNA or RNA). In this model, the specificity is described
with K different PWMs where !kli corresponds to the prob-
ability of residue or nucleotide i at position l according to
the kth PWM. A weight "k is also associated with each
PWM. The goal of the algorithm is therefore to identify
the optimal parameters !kli and "k. For a given K, this
optimization is carried out using standard Maximum
Likelihood with the Expectation-Maximization (EM)
algorithm (24,26). For each optimization, we generate
10 random initial configurations (i.e. 10 random assign-
ments of the sequences to K groups) and keep the one that
gives the highest log-likelihood value.

The problem of finding an optimal value for K is more
challenging and several different methods have been
designed, such as the Bayesian Inference Criterion or
Kolmogorov–Smirnov tests (30). Here, the number of
PWMs is automatically determined by the algorithm in
the following way. Starting from K=1 PWM, we itera-
tively increment K by one and run the mixture model as
described previously. The new configuration with K+1
PWMs is accepted if:

(i) Each PWM has a weight "k larger than P=0.01
and larger than 5/N (if N> 5).

(ii) For any pair of PWMs the Euclidean distance be-
tween the probabilities of at least two positions
is larger than a cut-off distance D. In
other words, for all (k, k0), k 6¼ k0, there exist at
least two distinct positions l1 and l2 such that
ð
PS

i¼1 ð!kl1i#!k
0

l1i
Þ2Þ0:5%D and ð

PS
i¼1 ð!kl2i#!k

0

l2i
Þ2Þ0:5%D.

(iii) K<Kmax

Condition (i) ensures that each specificity is represented
by the minimal number of sequences in the input data.
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This is important to prevent spurious PWMs supported by
only one or two sequences that most likely result from
sub-optimal maxima in the EM optimization or false-
positives in the experimental data. Condition (ii)
prevents redundancy among the different specificities
identified by the algorithm by ensuring that any pair of
PWMs has at least two positions with significantly differ-
ent specificities. This typically results from positional
correlations between these positions, which are known
to underlie multiple specificity (24). The maximal
number of PWMs (Kmax) in condition (iii) is set to 10 by
default, but can be modified by the user. To prevent the
algorithm from terminating too early because of criterion
(ii), we chose a relatively small value of D=0.5. As a last
post-processing step, we merge pairs of PWMs with less
than two positions with a Euclidean distance larger than
D0 =0.63. These cut-off values were manually chosen
based on our experience with the method in order to
ensure that multiple PWMs are not redundant. Different
choices for P, D and D0 do not significantly affect the per-
formance of the algorithm, as shown in Supplementary
Table S1. Alternatively, the number of PWMs can also
be fixed by the user.

The time complexity of this algorithm scales as
O(NMK) if the number of PWMs is fixed and O(NMK2)

if it is decided by the algorithm. In particular, it runs much
faster than a previous method (24) that relied on a clus-
tering of the ligands scaling typically as O(N2). As such it
can be applied to very large data sets consisting of thou-
sands of sequences in a few seconds (see ‘Results’ section).

Output

The results of the mixture model are used to draw
sequence logos corresponding to each specificity and
these can be displayed in a table such as the one shown
in Figure 1. Additionally, the numerical values of both the
single and multiple PWMs, together with their weights,
can be exported for subsequent analysis, such as genome
or proteome scanning to predict protein–DNA or protein–
protein interactions. For each sequence in the input set, we
also provide its probability with respect to each of the
PWMs (so-called responsibilities). These are useful to
estimate which of the different specificity classes each
ligand belongs to.

Pipeline requirements

MUSI is written in Perl and C++. It uses the Biologically
Relevant Analysis of Interaction Networks (BRAIN)
library, which is built on top of Biojava (31), to generate

Figure 1. General diagram of MUSI describing the steps from sequence files to multiple sequence logos. With typical FASTA input, MUSI optionally
removes redundant sequences, then runs multiple sequence alignment. It then predicts multiple binding specificity. Finally, it generates logos (Examples:
Src SH3 domain, and smad3 TF). When handling raw and barcoded sequencing reads (FASTQ) (for multiplexed applications), it begins by filtering
and sorting by barcodes. The red arrows indicate different starting points that can be selected by the user depending on the kind of input data.

Nucleic Acids Research, 2011 3

 by guest on M
arch 6, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gkr1294/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1294/DC1
http://nar.oxfordjournals.org/


the sequence logos (PDF and PNG files) (32). It uses
MAFFT (29) to align the sequences. Both are integrated
in the system. The Graphical User Interface (GUI) for
Mac OS X is a Cocoa wrapper for perl scripts, written
in Objective C. For PDF table generation, pdfLaTeX is
required.
The pipeline is available for download (http://www

.kimlab.org/software/musi) and runs locally on most
platforms (Mac OS X, Linux and UNIX, the GUI
version is only available on Mac OS X). Detailed instal-
lation instructions are provided on the website.

Processing raw reads from an Illumina sequencer

A set of special input options is included in MUSI to
process FASTQ sequence data labeled by barcodes.
These features enable straightforward processing of data
obtained from Illumina sequencing. Supplementary
Figure S1 summarizes the different steps described here.

Filtering reads using the Phred quality score. To obtain
high-quality results with minimal noise from sequencing,
the sequences are filtered based on quality scores. To
measure sequencing quality, our system averages the
Phred scores within each sequence (33). Users can select
separate minimum average Phred scores for the sequence,
forward barcode and reverse barcode. This is because the
quality of reads tends to decrease toward the end of each
sequence. The default threshold for all three sections is 25
(99.7% sequencing accuracy)

Sort by barcodes. Multiplexing using barcodes is common-
ly used to make optimal use of sequencing capacity.
Hence, MUSI supports multiplexing, by sorting processed
reads according to a user-supplied list of barcodes. In this
step, the system sorts reads from different barcodes into
separate files to process many domains at once.
After sorting and filtering, MUSI continues processing

as described earlier for FASTA files.

Experimental data sets

All sets of nucleotides binding to 305 different transcrip-
tion factors and homeodomains come from three studies
based on protein binding microarrays (16,34,35) and were
downloaded from the UniPROBE website (36). By testing
all possible 8-mers, this technique generates both positive
and negative data. We used a cut-off values of 0.35 on the
enrichment score to define positives and of #0.3 to define
negative data, To map the specificity of the human Src
SH3 domain, we used phage-display technology (19),
where very large libraries of random peptides can be ex-
pressed on the surface of phage particles. The phage
colonies were then sequenced with Illumina deep
sequencing. In this way, a total of 2457 unique peptides
were identified to bind to Src SH3 domain (raw data for
this domain can be downloaded from http://www.kimlab
.org/software/musi).

Comparison with BEEML

To compare MUSI with BEEML (37), we have down-
loaded intensity information (normalized intensities and

60-mer probe sequences) and seed PWMs from
UniPROBE (36) for each protein from Berger et al. (35).
After running BEEML on each pair of inputs, we have
used the PWMs from BEEML to perform cross-validation
in the same way as cross-validation of PWMs from
UniPROBE.

RESULTS

Cross-validation

To probe the accuracy of the different PWMs generated
by MUSI, we performed standard 10-fold cross-
validation. We used the data from UniPROBE (36) con-
sisting of in vitro DNA sequences binding to different
transcription factors generated with protein binding
microarrays (16,34,35). We split the positives and nega-
tives into 10 groups for cross-validation. The multiple
PWMs were generated with MUSI based on 9 of the 10
groups (training set), and used to compute the score of the
sequences in the last group (testing set). As MUSI does
not incorporate information about negative data sets, only
positive examples were used to build the multiple PWMs.
The procedure was repeated 10 times for each domain,
each time using a different group of positives and nega-
tives for the testing set. Figure 2 shows the average of
Receiver Operating Curve (ROC) over all transcription
factors and all 10 cross-validation runs. We compared
MUSI results with the PWMs generated by the BEEML
method (37), the MEME software (with the maximum
number of motifs set to five) (38), as well as the ones
provided on the UniPROBE website itself. Both MEME
and UniPROBE methods are able to detect cases of
multiple specificity. All four methods performed well in
terms of cross-validation, with MUSI still giving statistic-
ally significantly higher Area Under the ROC (AUC)
values (Figure 2 and Supplementary Figures S2–S4).

Figure 2. Averaged ROC from 305 test sets [transcription factor
binding sites from (16,34,35)] for 3 algorithms, (MUSI, UniPROBE
and MEME) (Mean AUC: 0.9721, 0.9167 and 0.9192, respectively).
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CPU performance

A crucial requirement for MUSI is to perform efficiently
with large data sets. Figure 3 shows the results in CPU
time for different sets of nucleic acids and peptides. Each
point represents either a nucleotide or peptide data set
(MUSI is blue and MEME is red). The CPU time of
MUSI including all steps from redundancy removal and
alignment to logo generation grows linearly with the size
of the input, enabling the processing of tens of thousands
of unique sequences in a short time. Comparison with the
MEME and the method of (24) (Figure 3) as well as
BEEML (Supplementary Figure S4) software shows that
MUSI runs orders of magnitude faster than these two
methods.

Using MUSI as a denoising tool

A common issue with high-throughput experimental
techniques is the high rate of false positives. It is therefore
useful to understand how MUSI performs on noisier data
sets. To investigate this, we used the experimental phage
display data for the human SH3 domain and mixed them
with increasingly higher numbers of randomly generated
peptides (excluding random peptides that by chance were
already present in the initial set). We observed that, in
general, the presence of false-positives yields one addition-
al completely unspecific PWM (Supplementary Figure S5)
that contains almost all randomly generated peptides.

Using MUSI with longer sequences

Another important issue can arise with the length of the
input sequences, since motifs spread out within long

sequences are much more difficult to automatically
identify. To test this possible limitation, we added
random flanking sequences on both sides of the phage
display peptide data for the human SH3 domain. We
observed that multiple specificity is correctly detected as
long as the total size of the flanking sequences remains
<40 (Supplementary Figure S6). This clearly exceeds the
size of the motif itself. However, we stress that MUSI
works optimally with sequences that are relatively short
to enable the motifs to be accurately detected.

Human SH3 domain multiple specificity

The novel phage display data obtained for Src SH3
domain reveal how several interesting features can be
detected with MUSI (Figure 4A). SH3 domains have
long been classified into two main specificity classes
summarized with the motifs [R/K]xxPxxP (Class I) and
PxxPx[R/K] (Class II) (6). From biochemical and crystal-
lographic studies, SRC SH3 domain is known to accom-
modate ligands of both classes. This can also be seen in the
multiple specificity profiles of Figure 4A. Interestingly,
SRC SH3 domain binds ASAP1 and this interaction is
critical for the ASAP1 phosphorylation and membrane
trafficking role (39). Although ASAP1 contains several
proline rich regions, only two of them are known to
bind SRC SH3 domains (39). The sequences of these
two regions [(UniProt identifier: Q9ULH1) 791–797:
PPLPPRN and 892–898: RVLPKLP] match exactly the
two specificity profiles predicted by MUSI (see Figure 4a)
and correspond to the two best hits of the multiple PWMs
model along the ASAP1 sequence, while the single
PWM failed to identify the first binding site. This
further highlights how careful distinction between differ-
ent specificities can improve biological insights.

Transcription factor multiple specificity

MUSI can also detect multiple binding specificity from
protein binding microarray data on transcription factors
(Figure 4B). For example, Smad3 (Mothers against
decapentaplegic homolog3) is a well-known transcription
factor, which is one of the modulators in the TGF-b sig-
naling pathway (40). The Smad protein family plays an
essential role in the intracellular signaling of transforming
growth factor-b (TGF-b), which initiates various cellular
responses (41). In particular, Smad3 is known to bind
CAGA box [AG(C/A)CAGACA] within the human
PAI-1 promoter as its binding sites, which mediates
TGF-b-transcriptional induction and other down-stream
stimulations (41). Furthermore, its other known binding
motif is a GC-rich motif (42,43). MUSI is able to detect
the two previously reported motifs.

DISCUSSION

Efficient analysis and visualization of large-scale experi-
mental data is a crucial way of gaining novel insights into
biological systems. For large data sets of peptides or nu-
cleotides interacting with proteins, sequence logos enable
very useful and intuitive visualization. Multiple logos,
such as the ones used in (24) and (16) provide a natural

Figure 3. Performance comparison. CPU time for MUSI, MEME and
the method of (24) (blue, red, magenta, respectively) measured on the
standard UNIX system. Genomic data sets (305 in total) from
UniPROBE are used as inputs. Other unpublished proteomic data
sets obtained from phage display (451 different domains) were used
as inputs for MUSI (inset, green points). The number of sequences in
the proteomic data sets varies from 1 (0.59 s) to 12 323 (301 s). The
black curve in the inset represents logged linear curve fitted to MUSI
runtimes for proteomic data sets.
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extension to the widely used single logos that can be
applied in many instances to better describe the specificity
of peptide recognition or DNA-binding domains.
With MUSI, we aim to provide a standalone system
for rapidly processing this kind of data. The algorithm
takes standard sequence files as input and generates
multiple PWMs together with the corresponding graphical
sequence logos. For the use case of mapping peptide
recognition specificity, MUSI supports a full input pre-
processing stage for standard 96-well plate data labeled
by barcodes. As phage-display technology combined
with next-generation sequencing is currently one of the
most powerful techniques for identifying peptide-binding
motifs, we believe that this tool will be very useful for
researchers in the field.
The high efficiency and speed of MUSI derives from

new development and optimization of the method initially
proposed in (24). In particular, the replacement of the
clustering step used to identify multiple specificity with a
mixture model based method to determine the optimal
number of PWMs allowed us to reduce the complexity
of the algorithm from O(N2MK2) to O(NMK2), where N
is the number of sequences, M their length and K the
number of PWMs. This enables MUSI to rapidly
process tens of thousands of sequences.
Compared with existing motif discovery tools, such as

YMF (44), and Weeder Web (45), MUSI is optimized for
short ligands and, consequently, it can handle much larger
data sets. As such, it is not designed to identify over-
represented motifs spread out in long sequences, as this is
for instance the case when looking for a motif within long
upstream regions of co-expressed genes. Questions like this
would require more involved and computationally more
expensive strategies, such as Gibbs sampling (46), which
does not easily scale with the current data set size.

This limitation in sequence lengths might prevent straight-
forward application of MUSI on data generated from
ChIP-Seq experiments (47), unless peaks can be defined
at a resolution of 40–50 bp or shorter. So, it would be rec-
ommended to pre-process the ChIP-Seq data with peak
finding algorithms such as QuEST (48) to obtain as short
peaks as possible. However, our tests on different bench-
marks indicate that MUSI can accommodate sequences
that are significantly longer than the motif itself. The
observed limit in sequence length (around 40) might also
depend on the motif length. Indeed longer motifs convey
more information and thus are more likely to be correctly
recognized in both the alignment and the mixture model
steps. Yet, since most biologically relevant motifs are quite
short, it is clear that MUSI is particularly suited for experi-
mental data consisting of relatively short sequences, such as
the ones coming from phage display or protein binding
microarrays.

To summarize, MUSI addresses a need in high-
throughput and high-resolution data analysis capability
thus far missing. By mapping all instances of multiple spe-
cificity, it is not only useful for predicting better protein
interactions, but reveals some of the fundamental mech-
anisms of encoding specificity in biological interaction
networks. Moreover its speed and accuracy ensures
that it can be used for new data that will be generated in
future projects relying on high-throughput sequencing.
Applications may range from synthetic data, such as the
one produced with phage display technology, to in vivo
data such as extensive sequencing of variable regions
found on viral proteins, antibodies or T-cell receptors.
We expect MUSI to become increasingly useful as
DNA sequencing and microarray technology continues
to improve and be applied to identify new protein or
DNA binding motifs.

A

B

Figure 4. Example sequence logos. The logo on the left is generated from a single PWM and the logos on the right are generated from multiple
PWMs using MUSI. (A) MUSI output for SH3 domain (Src). Even though a single logo can visualize certain binding specificity of SH3 domain
(Class I), multiple PWMs using MUSI reveal both class I and class II binding specificities. (B) MUSI output for Smad3 transcription factor. MUSI
detects two motifs that are already reported in UniPROBE (PWM1 and PWM3) as well as their reverse complements (PWM2 and PWM4).
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–6.
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James,K., Foisy,S., Dräger,A., Yates,A., Heuer,M. et al. (2008)
BioJava: an open-source framework for bioinformatics.
Bioinformatics, 24, 2096–2097.

32. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new
way to display consensus sequences. Nucleic Acids Res., 18,
6097–6100.

Nucleic Acids Research, 2011 7

 by guest on M
arch 6, 2012

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/cgi/content/full/gkr1294/DC1
http://nar.oxfordjournals.org/


33. Cock,P.J.A., Fields,C.J., Goto,N., Heuer,M.L. and Rice,P.M.
(2010) The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants.
Nucleic Acids Res., 38, 1767–1771.

34. Wei,G.-H., Badis,G., Berger,M.F., Kivioja,T., Palin,K., Enge,M.,
Bonke,M., Jolma,A., Varjosalo,M., Gehrke,A.R. et al. (2010)
Genome-wide analysis of ETS-family DNA-binding in vitro and
in vivo. EMBO J., 29, 2147–2160.

35. Berger,M.F., Badis,G., Gehrke,A.R., Talukder,S.,
Philippakis,A.A., Pena-Castillo,L., Alleyne,T.M., Mnaimneh,S.,
Botvinnik,O.B., Chan,E.T. et al. (2008) Variation in
homeodomain DNA binding revealed by high-resolution analysis
of sequence preferences. Cell, 133, 1266–1276.

36. Newburger,D.E. and Bulyk,M.L. (2009) UniPROBE: an online
database of protein binding microarray data on protein-DNA
interactions. Nucleic Acids Res., 37, D77–D82.

37. Zhao,Y., Granas,D. and Stormo,G.D. (2009) Inferring binding
energies from selected binding sites. PLoS Comput. Biol., 5,
e1000590.

38. Elkan,T. (1994) Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. In Proceedings of
the Second International Conference on Intelligent Systems for
Molecular Biology. AAAI Press, pp. 28–36.

39. Brown,M.T., Andrade,J., Radhakrishna,H., Donaldson,J.G.,
Cooper,J.A. and Randazzo,P.A. (1998) ASAP1, a
phospholipid-dependent arf GTPase-activating protein that
associates with and is phosphorylated by Src. Mol. Cell. Biol., 18,
7038–7051.

40. Hua,X., Miller,Z.A., Wu,G., Shi,Y. and Lodish,H.F. (1999)
Specificity in transforming growth factor beta-induced
transcription of the plasminogen activator inhibitor-1
gene: interactions of promoter DNA, transcription factor

muE3, and Smad proteins. Proc. Natl Acad. Sci. USA, 96,
13130–13135.

41. Dennler,S., Itoh,S., Vivien,D., ten Dijke,P., Huet,S. and
Gauthier,J.M. (1998) Direct binding of Smad3 and Smad4 to
critical TGF beta-inducible elements in the promoter of human
plasminogen activator inhibitor-type 1 gene. EMBO J., 17,
3091–3100.

42. Frederick,J.P., Liberati,N.T., Waddell,D.S., Shi,Y. and Wang,X.-
F. (2004) Transforming growth factor beta-mediated
transcriptional repression of c-myc is dependent on direct binding
of Smad3 to a novel repressive Smad binding element.
Mol. Cell. Biol., 24, 2546–2559.

43. Feng,X.-H. and Derynck,R. (2005) Specificity and versatility in
tgf-beta signaling through Smads. Annu. Rev. Cell Dev. Biol., 21,
659–693.

44. Sinha,S. and Tompa,M. (2003) YMF: a program for discovery of
novel transcription factor binding sites by statistical
overrepresentation. Nucleic Acids Res., 31, 3586–3588.

45. Pavesi,G., Mereghetti,P., Mauri,G. and Pesole,G. (2004) Weeder
Web: discovery of transcription factor binding sites in a set of
sequences from co-regulated genes. Nucleic Acids Res., 32,
W199–W203.

46. Thijs,G., Marchal,K., Lescot,M., Rombauts,S., De Moor,B.,
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