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Abstract
If the isolation, production, and clinical use of insulin marked the inception of
the age of biologics as therapeutics, the convergence of molecular biology and
combinatorial engineering techniques marked its coming of age. The first wave
of recombinant protein-based drugs in the 1980s demonstrated emphatically
that proteins could be engineered, formulated, and employed for clinical
advantage. Yet despite the successes of protein-based drugs such as
antibodies, enzymes, and cytokines, the druggable target space for biologics is
currently restricted to targets outside the cell. Insofar as estimates place the
number of proteins either secreted or with extracellular domains in the range of
8000 to 9000, this represents only one-third of the proteome and circumscribes
the pathways that can be targeted for therapeutic intervention. Clearly, a major
objective for this field to reach maturity is to access, interrogate, and modulate
the majority of proteins found inside the cell. However, owing to the large size,
complex architecture, and general cellular impermeability of existing
protein-based drugs, this poses a daunting challenge. In recent years, though,
advances on the two related fronts of protein engineering and drug delivery are
beginning to bring this goal within reach. First, prompted by the restrictions that
limit the applicability of antibodies, intense efforts have been applied to
identifying and engineering smaller alternative protein scaffolds for the
modulation of intracellular targets. In parallel, innovative solutions for delivering
proteins to the intracellular space while maintaining their stability and functional
activity have begun to yield successes. This review provides an overview of
bioactive intrabodies and alternative protein scaffolds amenable to engineering
for intracellular targeting and also outlines advances in protein engineering and
formulation for delivery of functional proteins to the interior of the cell to achieve
therapeutic action.
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Introduction
Proteins transmit signals that mediate cellular function and 
dysfunction in part via assembly into complexes with other 
proteins through binding interfaces responsible for transient or 
enduring interactions. These sites of protein-protein interaction 
represent a class of drug targets that allow cell signals to be modu-
lated. Interaction interfaces have been probed extensively and have 
been revealed to assume both gross planar or curved topologies 
with complex localized surfaces1. Their areas tend to range from 
about 1000 to 2000 Å2 (with some much larger) and tend to pos-
sess a higher proportion of hydrophobic residues than the exposed 
protein surface2–4. As a result of the large surfaces and number 
of weak bonds that collectively give rise to affinity between pro-
teins, small molecules have largely been less effective in disrupting  
protein complexes and tend rather to target hydrophobic pockets or 
clefts5. Estimates of the number of proteins that possess functional 
dependence on such structural features, or the small-molecule 
“druggable” portion of the proteome, suggest this to encompass 
only about 10% of the entire complement of human proteins6. As 
a result, protein-protein interactions thought to be undruggable 
or high-risk targets using conventional small molecules, through 
herculean efforts, have rendered some interactions druggable7. 
Nevertheless, owing to their small size and a relative paucity of 
interactions, targeting with small molecules can also lead to 
issues with specificity and off-target effects that undermine their 
pharmacological profile.

Alternately, owing to their increased size and propensity for 
electrostatic and geometric complementarity, protein-based drugs 
such as antibodies are generally better suited to disruption of the 
large, flatter but topologically complex surfaces that comprise 
sites of protein-protein interactions (although camelids and V

H
 

domains may expand the scope of accessible targets because of 
their observed ability to bind surface clefts8,9) and are less prone 
to off-target effects. In the extracellular space, antibodies have 
proven to be a versatile means for targeting and modifying the 
activities of proteins. They have consequently altered the thera-
peutic landscape and now constitute the dominant class of new 
pharmaceuticals10. Advances in display technologies, means of 
generating combinatorial libraries, and an expanding repertoire 
of non-antibody scaffolds continue to revolutionize the field of 
protein engineering and move towards the clinic in support of a  
burgeoning biologics-based pharmaceutical industry11,12. Currently, a 
broad variety of scaffold topologies are under development for drug 
applications and ensure that complementary binding agents should 
be available for the similarly broad array of target surfaces.

The delivery of protein-based drugs directly to the cell interior 
represents perhaps the last major hurdle in accessing the vast array 
of protein-protein interactions inside the cell that are not cur-
rently amenable to targeting by small-molecule drugs. Historically, 
protein modulation inside the cell has been accomplished indi-
rectly by expressing ectopic proteins encoded by DNA delivered 
into the cell or through disruption of protein expression by using 
RNA interference. Despite the utility of these approaches, a host 
of drawbacks largely preclude their use as a means of therapeutic 
intervention (discussed below). Alternately, direct protein trans-
duction could replace dysfunctional proteins without the need for 
expression, enable the use of non-canonical amino acid residues 

in therapeutics, and make possible direct modulation of target 
proteins, post-translationally modified proteins, and conformational 
variants that, though potentially targeted by genetic methods (that 
is, via direct expression from encoding constructs), could further 
enhance control over intracellular therapeutic concentrations.

Proteins engineered to target and modulate 
intracellular proteins
There are many examples in which intracellular protein function 
(that is, nuclear, cytoplasmic, mitochondrial, lysosomal, endo-
plasmic reticulum, and so on) is at the root of disorders, including 
oncogenic, autoimmune, and degenerative diseases13–15. These 
proteins include modulators of gene expression, cell cycle progres-
sion, protein folding and apoptosis, novel chimeric products of 
gene translocations, oncogenic proteins, and many more, and 
they offer a rich and vast trove of potential targets for therapeutic 
intervention.

Antibodies have been highly effective in targeting cell surface 
proteins involved in disease development. Though it is generally 
believed that their large size, complex architecture, and structural 
reliance on disulfide bonds preclude intracellular application, a 
number of examples of both in situ-expressed16 and exogenously 
supplied whole antibodies15–20 shown to maintain functional 
intracellular activity exist in the literature. Attempts to use smaller, 
less complex binding proteins such as antigen-binding fragments 
(Fabs) and single-chain variable fragments (scFvs) for intracel-
lular application have similarly shown success in their ability to 
bind and modulate cytoplasmic protein function18–21. However, they 
can be susceptible to disulfide bond reduction, and aggregation of 
in situ-expressed antibody fragments is a common occurrence in 
the reducing environment of the cytoplasm23–26. To circumvent 
these issues, investigators have developed novel engineering 
and selection strategies that seek to (a) identify minimal binding 
frameworks22,23, (b) increase stability24–27, (c) eliminate reliance on 
disulfide bonds22,23, and (d) identify validated functional binding 
intrabodies28–30. These efforts have been complemented by additional 
studies confirming the delivery and retention of in situ-expressed 
intrabodies in specific subcellular compartments (nuclear, cyto-
plasmic, endoplasmic reticular, and peroxisomal) by fusing them 
to signal sequences to promote interaction with sequestered target 
proteins31–33. In addition, the growing number of proteins effectively 
targeted by intrabodies suggests ongoing interest in their future 
role as potential therapeutic agents for mitigation of disease33–37.

The number of novel, domain-sized proteins demonstrated as 
affinity agents that can be engineered for specificity is also grow-
ing. These scaffolds are finding increasing application because of 
their small size, lack of cysteines, and stable folding, and the wide 
array of topologies shown to be amenable to engineering ensures 
the availability of potentially complementary binding agents to 
virtually any target12,38. Most of these are currently under devel-
opment for extracellular applications; however, several notable 
intracellular applications under development warrant discussion.

A general approach has recently been described to develop rea-
gents, probes, and potential therapeutics against the enzymes of the 
ubiquitin system39. Post-translational ubiquitination of proteins is 
a mode of signal transduction used pervasively inside the cell to 
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regulate numerous critical cellular functions41,42. The large, solvent- 
accessible surface of ubiquitin that mediates low-affinity interac-
tions with a variety of proteins was recognized as being amenable  
to engineering, and the surface was randomized in combinato-
rial libraries to isolate high-affinity variants with selectivity for 
enzymes of the ubiquitin cascade. In a series of studies, novel 
variants based on the ubiquitin scaffold were developed as tools to 
probe the various ubiquitinating (E1, E2, and E3) ligases, deu-
biquitinases (DUBs), and ubiquitin-binding domains39–41. By 
isolating a series of high-affinity ubiquitin variants (Ubvs) to 
numerous DUBs32, HECT E3 ligases39,41, and SCF E3 ligases40 that 
were capable of either antagonizing or agonizing the activity of 
its target both in vitro and in a cellular milieu, a path for address-
ing the knowledge lag on ubiquitination signaling versus other 
major pathways (for example, phosphorylation/dephosphorylation) 
has been established. To underscore the utility of Ubvs in prob-
ing enzyme cascades, investigators confirmed Ubv expression and 
interactions with intracellular targets by co-immunoprecipitation, 
observed expected changes in the ubiquitination and stability 
of ligase or DUB targets, and characterized downstream signals 
modulated by variants39–41. Taken together, these studies not only 
provide a foundation for continued inquiry into and characteriza-
tion of ubiquitin signaling pathways but also lay the groundwork 
for therapeutic intervention in which dysfunction of ubiquitin 
cascades is at the root of disease.

Monobodies derived from the tenth type III domain of human 
fibronectin (FN3) have been widely used for a variety of 
extracellular applications42, and some variants are under clinical 
evaluation43. Their appeal stems in part from a lack of disulfide 
bonds and a stable structure resembling an immunoglobulin fold 
with six loops (three at either end of the molecule), five of which 
can be randomized without excessive destabilization. Selections 
against the SH3 domain of Fyn using phage-displayed combina-
torial libraries based on the FN3 scaffold yielded a variant that 
binds to several family members (but not to closely related kinases) 
in a neutral fashion (that is, does not modify enzyme activity or 
interactions) but bears sensitivity to the conformational state of 
the target. Activation of Src is known to relieve intramolecular 
bonds within the SH3 domain that enables auto-phosphorylation.  
Though selected variants did not influence the kinase activity 
of Src, they did appear to exhibit selectivity for an active, open 
conformation in immunoprecipitation assays conducted in the 
presence or absence of the Src kinase activator ciglitazone. This 
enabled the use of fluorogenically tagged analogs of the bind-
ing variant to image SFK activation at the leading edges of cells 
as an increase in fluorescence upon target binding following  
microinjection into cells. This provides a prescient example that 
could illuminate the engineering of therapeutic biological agents 
that target disease-associated protein conformations to provide 
enhanced specificity44.

Another valuable demonstration of the utility of non-antibody 
affinity scaffolds against intracellular proteins involved selective  
targeting of post-translational phosphor-modifications on the 
mitogen-activated protein kinase (MAPK) family member extra-
cellular signal-regulated kinase 2 (ERK2). The designed ankyrin 
repeat protein (DARPin) scaffold was used to isolate binders to the  
phosphorylated and non-phosphorylated forms of ERK245. The 

DARPin framework is composed of a series of repeating 3.5 kDa 
modules with both invariant framework regions and potential  
binding surface residues amenable to randomization. Four- 
module DARPins (14 kDa) targeting either of the two forms of 
ERK2 were used in a bioluminescence resonance energy transfer  
(BRET) assay to provide evidence of intracellular target bind-
ing. Serum stimulation of cells resulted in a loss of signal for the 
unphosphorylated ERK2 and an increase in signal for the phosphor-
ylated form. Alternately, treatment with the ERK pathway inhibitor 
PD98509 resulted in an increase in signal for native ERK2 and a 
loss in the phosphor-signal despite no overall changes in ERK2 lev-
els. Though the investigators did not explore the consequences of  
binding on downstream elements of the signaling cascade, these 
results suggest that DARPins could modify ERK2 signals in a  
manner that could offer therapeutic value given their role in inflam-
mation, apoptosis, and oncogenic transformation.

In addition to binders against a variety of extracellular targets, 
affibodies, based on a tri-helical bundle derived from the Z 
domain of Staphylococcus aureus, have been selected against two  
intracellular members of the MAPK pathway: H-Ras and Raf-146. 
Binding variants with high-nanomolar to low-micromolar affin-
ity were either indirectly expressed from encoding constructs or 
directly transduced using a cell-penetrating peptide (CPP) trans-
fection reagent. With either approach, partial inhibition of tumor 
necrosis factor-alpha in a synovial cell line induced secretion of 
the inflammatory mediators interleukin-6 and prostaglandin E

2
47. 

However, inhibition of proliferation was observed only with directly 
transduced protein and in general produced a greater degree of 
inhibition of inflammatory mediators than the ectopically expressed 
variants, suggesting that more protein is delivered via transduc-
tion than transfection. Although neither form resulted in potent 
inhibition, this may be more related to their modest affinities rather 
than a mechanistic limitation. These examples not only serve as 
state-of-the-art demonstrations of engineering for intracellular  
protein targeting but also lay the foundations for future efforts aimed 
at using engineered proteins in therapeutic applications (Figure 1).

Intracellular delivery of proteins
To date, the vast majority of therapeutics targeting intracellular 
proteins are small molecules, which, owing to their small size 
and amphiphilic properties, can partition into and pass through 
cell membranes. In stark contrast, the most daunting challenge to 
the use of protein-based therapeutics for targeting of intracellular  
macromolecules is the fact that most proteins do not cross  
hydrophobic membranes efficiently.

For research, the delivery of proteins intended to modulate the 
function of intracellular protein activity is most often accomplished 
by transfection of DNA encoding either native or engineered 
proteins, which enables endogenous transcriptional and transla-
tional machinery to express them ectopically48. Though the deliv-
ery of proteins can be effective in vitro, challenges with systemic 
delivery, poor efficiency of delivery, toxicity49, and additional layers  
of transcriptional and translational regulation make the goal of 
controlled protein expression for therapeutic application highly 
challenging. Viruses have been extensively explored for gene 
therapy, and ways of co-opting their ability to inject genetic cargo 
inside the cell have been devised for protein delivery50. However, 
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issues associated with viral delivery—including immunogenic-
ity, inflammation and cytotoxicity, a lack of precise control over  
expression levels (and thus dosing), and complications associated 
with genetic integration during stable transfection (for example, 
gene disruption and proto-oncogene activation)—have slowed 
progress and limited clinical success51.

Alternately, novel ways of interrupting protein expression based  
on RNA interference technologies have also been developed in 
order to disrupt protein function at the level of transcription by 
binding to mRNA transcripts and marking them for degradation. 
Despite their enormous utility, RNA interference techniques suffer 
from the inability to target post-translational modifications, insta-
bility, and off-target effects as well as issues associated with viral 
delivery as discussed above. Conversely, transfection with mRNA 
transcripts can bypass transcriptional controls and does not require 
entry into the nucleus, thus permitting direct expression of encoded 
proteins even in non-dividing cells. Despite these advantages 
over transfection with DNA and utility for transient expression 
of proteins, studies have continued to note variation in expressed 
protein levels52 that will need to be addressed for realization of its 
therapeutic potential.

As a result of these limitations, a variety of means of direct intro-
duction of proteins into cells have been explored. Numerous 
transfection technologies employed for polynucleotides are facili-
tated by the relative uniformity of their physicochemical proper-
ties and overall negative charge arising from their phosphate-sugar 
backbone. In contrast, proteins lack uniform charge density and 
possess a broader chemical make-up that makes a single, widely 

applicable approach to transduction challenging. Accordingly, a 
number of in vitro approaches have emerged for the general aim of 
‘profection’ or protein transduction into cells, some of which have 
only just begun to address the possibility of in vivo delivery.

Physical methods of protein delivery
Electroporation is the transient permeabilization of cells with short 
bursts of high voltage to allow uptake of biomolecules. Though 
widely used for DNA delivery, it has also been explored for pro-
tein transduction in which uptake and observation of activity are 
rapid in comparison with indirect expression from DNA54,55. Elec-
troporation is useful because it avoids endosomal trapping by  
bypassing the endocytic machinery, but it can be used only on small 
numbers of cells and may cause excessive cell death or aggrega-
tion of the protein to be delivered53. Similar approaches have been 
explored by using sound54, physical deformation caused by passage 
through a microfluidic device55, or reversible permeabilization with 
cholesterol-binding agents56.

Protein-based biosensors or signaling modulators have also been 
introduced into cells by microinjection, and these highlight the 
advantages of high transduction efficiencies (even in difficult- 
to-transduce cells)58–62, spatial and temporal control (thus  
circumventing endosomal trapping issues), and precisely control-
led dosing57. Novel, photo-sensitive nanocarrier protein complexes 
coupled with light-based activation techniques are similar to  
microinjection and may offer increased spatial and temporal control  
over sites and the frequency of protein delivery58. Nevertheless, 
all of these techniques are limited to small numbers of cells and  
are likely difficult to adapt for therapeutic delivery.

Figure 1. Alternative scaffolds used for the modulation of intracellular protein targets. The main chains of non-antibody scaffolds used 
to generate variants against intracellular targets are rendered in purple, and residues of the binding surface known to tolerate randomization 
are depicted as blue spheres. Structures in complex with intracellular target proteins (grey ribbons) are shown below. No structures exist for 
affibodies bound to intracellular targets and thus the structure of an affibody bound to the extracellular domain of HER2 is shown.
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Protein delivery with cationic lipids, liposomes, and 
polymerosomes
Lipid vesicles and polymeric encapsulation of oligonucleotides are 
widely used methods for the delivery of DNA and RNA into cells. 
Similar approaches to protein delivery, though useful for protecting 
proteins from serum degradation or neutralization, can encounter 
challenges for encapsulation because of the variable stability and 
greater chemical and structural diversity of proteins. Conventional 
liposome preparation methods often employ conditions (that is, 
solvents, sonication, detergents, and so on) that can lead to protein 
denaturation and loss of activity59. Alternatively, polycationic lipids, 
similar to those used for transfection of DNA, have been explored 
and shown to be effective for intracellular delivery of functionally 
active proteins in vitro using a variety of formulations66,67. Recent 
studies using lipid complexes of supercharged anionic GFP-Cre 
protein and Cas9:single guide RNA complex injected into the inner 
ear of live mice confirm delivery, functional protein activity, and 
recombinational events in a restricted in vivo milieu60. Though 
cationic lipid preparations have been used systemically for the 
experimental delivery of genes in vivo61, investigations of the 
distribution and effective protein transduction for systemically 
administered polycationic lipid:protein complexes have not, to our 
knowledge, been reported.

Additional liposome and polymer-based platforms for protein 
delivery have been described using labile particles that are stable 
outside the cell but decompose upon exposure to either low pH62–65 
or reducing environments66 in a manner that facilitates protein 
release and exit from endosomes. These studies confirm the entry, 
distribution, and functional ability of intact antibodies to block 
the biological role of target proteins inside cells62,63. Mechanis-
tic insights into ‘polymerosome’ uptake suggest a role for recep-
tor-mediated uptake via class B scavenger receptors (that is, 
CD36 and SR-BI/II) rather than direct entry, suggesting a particle 
structure similar to endogenous scavenger receptor ligands (for 
example, high- and low-density lipoproteins)67 and that alternate 
formulations of the polymer may enable targeting of other recep-
tors for uptake. Additional studies showed that polymerosomes  
conjugated with a low-density lipoprotein receptor-related protein-1  
(LRP1) ligand and loaded with IgG mediated both transcyto-
sis across the blood-brain barrier and uptake by cells of the cen-
tral nervous system when injected intravenously into mice68.  
Additional studies support the use of receptors that mediate  
transcytosis for the delivery of antibodies69.

Protein transduction domains
Numerous studies have been published describing the use of 
designed CPPs or small protein transduction domains (PTDs) as 
agents capable of delivering proteins into cells. Although the terms 
CPP and PTD are often used interchangeably in the literature, we 
employ the terms in a more strict sense in which peptide-based 
reagents are referred to as CPPs and autonomously folding 
domains—for example, CH2-His2 zinc-finger domains—are 
referred to as PTDs. They are numerous but can be broadly clas-
sified as cationic peptides, including human immunodeficiency 
virus type I (HIV) Tat peptides70, Drosophila Antennapedia 
homeoprotein (Antp 43-58)/penetratin71,72, poly arginine73, amphip-
athic peptides such as transportan74, MPG75,76, MAP77, and Pep-178, 

and hydrophobic peptides79. Various CPPs, including TAT80–82, 
rabies virus glycoprotein83, a fibroblast growth factor four-derived 
peptide84, and annexin-derived peptides48, have been used to inves-
tigate the in vivo distribution of CPP-tagged cargo proteins. In 
addition to revealing widespread tissue distribution with no appar-
ent cell-type dependence81,84,85, studies appear to confirm sufficient 
delivery across the blood-brain barrier to achieve a neuroprotective 
effect in models of brain insult80,82,83,86.

However, initial claims of a temperature- and energy-independent 
(that is, non-endocytic) mechanism71 were met with skepticism 
and triggered a deeper investigation of the means of translocation 
that ultimately revealed previously unrecognized issues with cell-
surface adhesion87, artifacts of fixation88, and endosomal trapping89. 
Though further studies have confirmed the role that one or more 
endocytic pathways play in uptake (including macropinocyto-
sis and clathrin-, caveolin-, and receptor-mediated uptake)89–92, in 
addition to a potential contribution by direct entry93, it is appar-
ent that cytosolic delivery of protein cargo is not guaranteed in 
all applications and that the mechanism and degree of endosomal 
release are ongoing challenges that need to be addressed to real-
ize the therapeutic potential of CPPs94. The field also suffers from 
the general lack of an objective comparison of the transduction 
efficiency, distribution, and cellular fate of more than one CPP. 
Though studies of this type would be both informative and helpful 
in dispelling some of the controversy and confusion, the observed 
dependence of delivery on factors, including the length and 
specific properties of the CPP, cargo type, CPP-cargo linkers, 
and cell type95,96, complicates a clear and quantitative comparison 
of transduction efficiencies of various CPPs in vitro, and only a 
handful of studies even attempt such a description79,97–99.

In addition, despite the many successes of both natural and  
designed CPPs to effectively deliver protein cargo, their ability  
to broadly transduce cells and tissues in vivo may actually be 
an impediment to therapeutic applications without additional  
targeting efforts to ensure delivery to desired tissues. Alternately, 
novel approaches based on natural mechanisms of tissue specifi-
city and cellular entry may offer solutions to delivering bioactive  
proteins to target tissues in an in vivo setting.

Virus-like particles
Virus-like particles (VLPs) are self-assembling particles composed 
of viral capsid proteins that, though lacking the genetic compo-
nents required for infective virus assembly, nevertheless resemble  
native viruses and enter cells in a similar fashion100–102. During  
self-assembly, their ability to encapsidate a variety of non-viral  
biomolecules, including DNA103,104, RNA105, small-molecule 
drugs105, and proteins106,107, has piqued substantial interest in their 
development as drug and vaccine delivery agents108. To this end, 
VLPs can be engineered to express and display heterologous  
proteins109,110 and have been exploited primarily as vaccine carriers 
for their immunogenic and adjuvant properties and ability to carry 
cargo into the cell interior111,112.

The advantages of direct over indirect protein transduction are 
being recognized, and the potential of VLPs to act as protein trans-
duction agents for the delivery of bioactive proteins to cells is being 
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explored. A growing number of VLP systems have been shown to 
be amenable to the packaging and intracellular delivery of proteins: 
polyomavirus113, murine leukemia virus114, hepatitis B virus115, 
lentivirus116,117, retrovirus118, Sendai virus119, and Sesbania mosaic 
plant virus109. Most notably, the delivery of bioactive proteins such 
as antibodies109,119, transcription factors114,118, and enzymes110,116,117 
has been confirmed both in vitro110,114,116 and in vivo117.

As therapeutic administration requires targeting of diseased cells 
and tissues in vivo, particle distribution is a key consideration in 
the development of any protein delivery platform. Though some 
viruses possess natural cell and tissue tropism120, the broad cell 
specificity exhibited by many of the viruses currently used for 
delivery would hamper their development as therapeutic agents. It 
is the opportunity to re-direct or focus broad tropisms for thera-
peutic advantage that is particularly appealing. Illustrative studies 
employing different approaches to incorporating antibody scFvs 
into VLPs have been described by binding to a capsid fusion of 
the Staphylococcal aureus A protein Z domain121, incorporation 
of polyionic fusion peptides with an engineered disulfide bond122, 
or tagging with the hemagglutinin transmembrane domain123 or 
a glycosylphosphatidylinositol (GPI) anchor124. Although these 
studies provide evidence of in vitro cell selectivity, a recent study 
using peptides obtained from selection against surface antigens on 
human hepatocellular carcinoma cells offers a preliminary example 
of engineered in vivo cell selectivity125 and suggests that this may 
be a potentially viable approach for tailoring VLPs for therapeutic 
targeting (Figure 2).

Future perspectives
As the field of protein engineering advances the development of 
novel protein scaffolds targeting an increasingly broad segment of 
the proteome, techniques for protein delivery into cells will likely 
progress apace. The pioneering examples of non-antibody scaf-
folds with the ability to modulate intracellular proteins, signaling 
outcomes, and cell biology provide increasing confidence that 
they possess therapeutic value and provide incentive for develop-
ing innovative and reliable techniques for intracellular protein 
delivery both in vitro and in vivo. Current studies provide proof 
of principle that these aims are within reach, but few examples 
provide detailed comparisons of delivery mechanisms or analy-
sis of the distribution and fate of delivered proteins. Despite this, 
new approaches to delivering proteins to the cell interior con-
tinue to be advanced. In addition to novel PTD mimics126, other  
platforms, including supercharged proteins127, bacterial toxins128, 
and zinc-finger domains129, have been described. Chemical modifica-
tions have also been extensively explored for targeted delivery of 
protein- and RNA-based drugs and may also offer valuable solu-
tions for in vivo targeting130,131. However, in the absence of com-
prehensive comparisons of uptake, intracellular distribution, and 
degradation, it is difficult to assess which approach to intracellular 
delivery is best. From a pharmacological standpoint, these features 
(that is, the path, destination(s), and lifetime of a delivered agent) 
will determine whether a delivered protein drug interacts with its 
target in its native cellular compartment, for how long it interacts 
and modifies the activity of the target protein, and how the pro-
tein drug is ultimately neutralized or degraded. These are features 

Figure 2. Methods for the direct delivery of proteins into cells. A variety of methods have been described for delivering functional protein 
to the cell interior and are illustrated along with potential mechanisms of uptake and endosomal release. CPP, cell-penetrating peptide; PTD, 
protein transduction domain; VLP, virus-like particle.
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that undoubtedly underlie the effectiveness of a protein drug whose  
target is found inside the cell and must be characterized to develop 
effective formulation and dosing regimens that ensure efficacy  
and avoid toxicity.

Many of the approaches described thus far have relied on endo-
somal uptake and may suffer from reduced therapeutic efficacy 
due to entrapment. Though problematic, efforts toward developing 
platforms that address this challenge62–65 as well as toward devel-
oping additional means of escape34,132 may offer viable solutions. 
Although a preliminary aim of intracellular delivery is to access 
the cytosol, numerous targets of therapeutic interest are seques-
tered in other compartments133. Intracellular targeting efforts using 
signal sequences to localize delivered proteins to subcellular com-
partments offer potential means of ensuring co-localization of 
transduced protein drugs and their targets outside of the 
cytoplasm134. Degradation of proteins delivered by using these 
approaches will also exert substantial influence over protein activ-
ity, lifetime, and cost. With the potential to extend the lifetime  
of virtually any protein-based therapeutic, novel D protein- 
binding scaffolds constructed from synthetic D amino acids have 
been introduced and have the potential to obviate concerns about 

the susceptibility of natural proteins to proteolytic degradation and 
immunogenicity135,136. Furthermore, the small size and high ther-
mostability of many of the non-antibody scaffolds make chemical 
synthesis and efficient refolding possible, thus reducing cost and 
avoiding many of the pitfalls associated with production in cellular 
systems.

These and yet unforeseen approaches and technological innova-
tions will continue to be developed, and it is hoped that they will 
converge with a primary focus on in vivo-targeted delivery of active 
therapeutic proteins. Consequently, what is now only a lofty goal 
of using therapeutic proteins inside cells may soon morph into an 
attainable approach for the treatment of complex pathologies that 
resist current therapeutic approaches.
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