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SUMMARY

Natural evolution encodes rich information about the
structure and function of biomolecules in the genetic
record. Previously, statistical analysis of co-variation
patterns in natural protein families has enabled the
accurate computation of 3D structures. Here, we
explored generating similar information by experi-
mental evolution, starting from a single gene and per-
forming multiple cycles of in vitro mutagenesis and
functional selection in Escherichia coli. We evolved
two antibiotic resistance proteins, b-lactamase
PSE1 and acetyltransferase AAC6, and obtained
hundreds of thousands of diverse functional se-
quences. Using evolutionary coupling analysis, we
inferred residue interaction constraints that were in
agreement with contacts in known 3D structures,
confirming genetic encoding of structural constraints
in the selected sequences. Computational protein
folding with interaction constraints then yielded 3D
structures with the same fold as natural relatives.
This work lays the foundation for a new experimental
method (3Dseq) for protein structure determination,
combining evolution experiments with inference of
residue interactions from sequence information. A
record of this paper’s Transparent Peer Review pro-
cess is included in the Supplemental Information.

INTRODUCTION

By continually generating random DNA sequence variation and

selecting for survival, evolution has accumulated a coded record

of the physicochemical constraints of themolecular components

in evolving organisms. With advances in high-throughput

sequencing technology, we now have access to extensive por-

tions of this record in the form of DNA and protein sequence da-

tabases. Detecting sequence patterns in homologous proteins

has allowed researchers to reconstruct phylogenetic trees and
Cell Syste
identify sets of functional amino-acid residues. A recent break-

through in the computational protein structure prediction prob-

lem uses maximum entropy statistical analysis of co-evolution

in protein and RNA families to enable the computation of impor-

tant interactions between residues or bases and, from those, cal-

culates accurate three-dimensional (3D) folds and complexes

(Marks et al., 2011, 2012).

Here, we asked if evolution performed in the laboratory, with

its simplified and controllable evolutionary dynamics, similarly

can encode information on structural interactions. In contrast

to experimental evolution, natural evolution is complex, occur-

ring over long time periods, with highly variable population sizes

(Wright, 1931), mutation rates (Itoh et al., 2002; Tanaka et al.,

2003), and fluctuating environmental conditions (Bell, 2010; Hal-

dane and Jayakar, 1963; Kawecki et al., 2012; Lande, 1976;

Mustonen and L€assig, 2008; Poelwijk et al., 2011). Each of these

factors may or may not be essential for deposition of structural

constraints in the evolved sequences. For example, it has been

suggested that co-evolutionary patterns arise by the continuous

degradation and restoration of protein function, i.e., compensa-

tory evolution (Bloom et al., 2006; DePristo et al., 2005; Tokuriki

and Tawfik, 2009), driven by fluctuations in population sizes (Gil-

lespie, 1999) or periods where functional selection is absent

(Bell, 2010). Additionally, natural protein family members may

vary in function, operate in various cellular environments, in

different temperature regimes, and have a broad sequence di-

versity that is so far unattainable by experimental evolution.

The motivation for this work is to use experimental evolution to

elucidate the evolutionary determinants that give rise to co-

evolutionary patterns and structural constraints of proteins.

RESULTS

We subjected two bacterial antibiotic resistance proteins—the

Pseudomonas b-lactamase PSE1 and aminoglycoside acetyl-

transferase AAC6—to experimental evolution by repeated

rounds of mutation and selection for preservation of function, a

procedure also known as ‘‘laboratory drift’’ or ‘‘neutral drift ex-

periments’’ (Bershtein et al., 2008; Gupta and Tawfik, 2008) (Fig-

ure 1, STAR Methods). To promote sequence divergence, we

applied a high mutation rate using error-prone polymerase chain
ms 10, 1–10, January 22, 2020 ª 2019 Published by Elsevier Inc. 1
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Figure 1. Approach: from Experimental Evolution to Residue Interactions and 3D Structures

The experiments involve repeated rounds of mutation and selection, starting from a single sequence (b-lactamase PSE1, 266 residues; or aminoglycoside

acetyltransferase AAC6, 148 residues). In each round, mutations are generated by error-prone PCR, followed by selection in E. coli for functional variants at

relatively low antibiotic concentration (6 mg/mL ampicillin [Amp] for PSE1 and 10 mg/mL kanamycin [Kan] for AAC6). A large number of full-length sequences at

various rounds are obtained by deep sequencing after selection; here, at rounds 10 and 20 for PSE1, and rounds 2, 4 and 8 for AAC6. Residue interactions are

inferred from co-evolution patterns in the selected sequences using the evolutionary couplings (EVcouplings (Marks et al., 2011)) maximum entropymodel, which

are then used as distance constraints to compute 3D structures using distance geometry and simulated annealing molecular dynamics (Brunger, 2007).
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reaction (epPCR; introducing approximately 3%–4% amino-

acid substitutions per round) and selected for functional proteins

under permissive selective conditions (6 mg/mL ampicillin for

PSE1 and 10 mg/mL kanamycin for AAC6—slightly above the

minimal inhibitory concentration, MIC, for E. coli lacking a resis-

tance gene). These conditions generally resulted in survival of

�1% of the initial population post-selection (approx. 5 3 104

cells for PSE1 and 2 3 105 for AAC6) in each round. Successive

rounds of mutation and selection were applied by using the

selected sequences in one round as the template for mutations

in the next round.Wedeep-sequenced the selected populations,

obtaining 104–106 high-quality unique reads, at rounds 10 and 20

for PSE1 and rounds 2, 4, and 8 for AAC6 (STAR Methods).

Sequencing revealed that the mutation count relative to the

ancestral sequence increases with the number of rounds of muta-

tion and selection (Figure 2A). In the final round, the evolved se-

quences have an average of 34.2 missense mutations (12.9% of

sequence length) in PSE1 and 8.7 missense mutations (5.9%) in

AAC6. Thus, of the 3%–4% amino acid mutations introduced

per round in each sequence, the functionally selected sequences

end up with an average of 1.7 (0.6%) and 1.2 (0.8%) amino acid

mutations for PSE1 and AAC6, respectively. In the later rounds,

there was a trend toward fewer tolerated mutations; e.g., for

PSE1, 1.9 mutations were added per round up to round 10, and

1.5 mutations were added per round between rounds 10 and 20.

The mutational distance to the ancestor is not by itself a mea-

sure of diversity, as the libraries could potentially consist of sets

of very similar sequences. To assess diversity, we monitored the

all-against-all pairwise sequence differences in each population.

We observed an average of 19.8% and 10.9% pairwise

sequence differences in the final round of PSE1 and AAC6 evo-

lution, respectively (Figure 2B). This equates to an increase in

pairwise sequence difference of 1.0% per round for PSE1 and

1.4% for AAC6—close to the maximum possible increase if the

populations were freely expanding in sequence space; we

conclude that our approach effectively generates and preserves

a high level of sequence diversity. In contrast, the mean pairwise

sequence difference within the set of known natural homologs of

PSE1 or AAC6 is around 80% (Figure 2B), which is also evi-

denced by the higher level of mutational entropy at each

sequence position (Figure 3). Projected onto a two-dimensional

sequence space (STAR Methods), the experimentally evolved
2 Cell Systems 10, 1–10, January 22, 2020
sequences increasingly disperse with increasing rounds of mu-

tation and selection but otherwise occupy a small and dense

area relative to natural sequences (Figure 2C).

Information about evolutionary constraints in iso-functional

sequences increases both with sequence diversity and with

the total number of non-identical sequences (Marks et al.,

2011; Sheridan et al., 2015). Although the level of diversity and

positional entropy in the experimentally evolved sequences is

lower than in families of natural homologs (Figures 2C, 3C, and

3D), we have generated many more experimentally evolved se-

quences than are currently available for natural homologs (final

experimental evolution rounds have 1.6 3 105 unique functional

sequences derived from PSE1 and 1.3 3 106 for AAC6; the

PFAM database has 3.7 3 104 homologs for PSE1 [PFAM:

PF00144] and �1.2 3 105 for AAC6 [PFAM: PF00583]).

To quantify the extent to which evolution in the laboratory has

encoded co-variation patterns that are informative of interac-

tions between pairs of residue positions, we used a global prob-

ability model (EVcouplings) that has been successful in detecting

such patterns in natural sequences (Figure 1, STAR Methods)

(Lapedes et al., 1999; Marks et al., 2011; Sheridan et al., 2015;

Stein et al., 2015). We compared the inferred interactions to

actual contacts in published crystal structures closest in

sequence to each of the two ancestral proteins (PDB: 1G68 for

PSE1; PDB: 4EVY for AAC6). Comparison with crystal structures

tests whether functional selection (i.e., enzymatic deactivation of

antibiotic) conserves 3D structure—it is well established from

analysis of natural sequences and structures that there is a

high degree of structural conservation among iso-functional

homologs even with highly diverged sequences (Sander and

Schneider, 1991). However, in experimental evolution, there is

a possibility that we generate more structural variability

compared to natural evolution, as some aspects of protein

fitness, such as those related to aggregation or thermodynamic

stability (DePristo et al., 2005; Geiler-Samerotte et al., 2011),

may be under weaker selection in the laboratory than in nature,

given the much shorter timescales, smaller population sizes,

and homogeneous environments (Gillespie, 1994).

In practice, we defined contact agreement as the percentage

of top-ranked inferred interactions that are also contacts in the

crystal structure, typically for L/2 inferred pairwise interactions

where L is the length of the protein (STAR Methods). Agreement
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Figure 2. Divergence, Diversity, and

Sequence Space Landscape of Experimen-

tally Evolved Sequences

(A) Distributions of amino acid mutations relative to

the starting (ancestral) sequence, per unique

sequence obtained from experimental evolution of

PSE1 (top) and AAC6 (bottom).

(B) Distributions of pairwise sequence diversity

(percent positions with non-identical amino acids)

calculated for 25 3 106 randomly chosen pairs of

unique sequences for PSE1 (top) and AAC6 (bot-

tom). Sequence diversity among natural homologs

is substantially larger (inset at top right; see STAR

Methods).

(C) Two-dimensional representation of sequence

sets (each point is one protein sequence) in

sequence space projected down from the

N-dimensional space using a variational au-

toencoder (Riesselman et al., 2018) with two latent

variables (z1 and z2) (STAR Methods). Sequences

of natural homologs (current databases, colored

by taxonomy) occupy a much larger space than

those from our evolution experiments. The exper-

imentally evolved sequences increasingly sepa-

rate from the ancestral sequence with increasing

rounds of mutagenesis (point cloud on right).
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increases with successive rounds of mutation and selection (Fig-

ure 4A) as sequence diversity increases. For PSE1, agreement

increased from 34% in round 10 to 49% in round 20 (for a subset

of 43 104 unique sequences from each round). For AAC6 agree-

ment was 22% in round 2, 30% in round 4, and 42% in round 8

(for an equal size subset of 105 unique sequences). These per-

centages are well above the random expectation of 1.9% and

4.1% for PSE1 and AAC6 (approximated by the ratio of crystal

structure contacts over the total number of pairs), even at early

rounds (see AAC6 round 2, Figure 4A). Inclusion of additional se-
quences also led to a higher agreement

between inferred interactions and crystal

structure contacts: for the last rounds, we

obtained 1.6 3 105 unique functional se-

quences for PSE1 and 1.3 3 106 for

AAC6, leading to a contact agreement of

54% for PSE1and51% forAAC6 (Figure 4).

These results indicate that simplified

evolutionary dynamics in the laboratory

do generate functional sequences with

co-evolutionary patterns that reflect con-

straints imposed by protein 3D structure.

The residue interactions inferred from

experimental evolution include important

structural features of both proteins (Fig-

ure 4B). The b-lactamase fold, for example,

consists of two structural domains: an all-

a-helical domain and a mixed a/b domain

(Herzberg and Moult, 1987; Matagne

et al., 1998). The polypeptide chain is inter-

woven between the two domains, leading

to extremely sequence-distal contacts be-

tween the N- and C-terminal a-helices and
between the N- and C-terminal b-strands. Consistent with the

crystal structures, we likewise observe strongly co-evolving in-

teractions between these sequence-distal structural elements

in the PSE1 results (i.e., upper right and lower left corners of

the contact map in Figure 4B). Proteins from the same subfamily

of aminoglycoside acetyltransferases as AAC6 exist as homo-

dimers, with the C-terminal b-strand of one protein chain in-

serted between two strands of the other chain (Stogios et al.,

2017). We also discern these dimer interactions among the

top-ranked inferred residue-residue interactions (Figure 4B).
Cell Systems 10, 1–10, January 22, 2020 3
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Figure 4. Agreement between Residue Con-

tacts Inferred from Experimental Evolution

and Contacts in Crystal Structures

(A) Agreement versus number of inferred in-

teractions (as fraction of sequence length, L) during

experimental evolution of PSE1 (left) and AAC6

(right). PSE1 results evaluated for an equal number

(4 3 104) of randomly subsampled unique se-

quences from rounds 10 and 20 to illustrate change

in agreement with increased rounds of mutation and

selection, and all (1.5 3 105) unique sequences at

round 20 to illustrate change with increased number

of sequences. AAC6 similarly assessed for an equal

number (105) of randomly subsampled unique se-

quences at rounds 2, 4 and 8, and all (1.3 3 106)

unique sequences at round 8. Random is the

average result obtained with randomly chosen res-

idue pairs.

(B) Inferred interactions from PSE1 evolution at

round 20 (left) and AAC6 evolution at round 8 (right),

overlaid on contact maps of crystal structures. In-

ferred interactions either agree with monomer (red)

or dimer (blue) contacts in the crystal structure (gray

or light blue, respectively), or disagree (black).

For PSE1, sequence-distal residue interactions

between the N- and C-terminal a-helices and

b-strands (lower left corner of contact map and

indicated on crystal structure of PSE1) are particu-

larly crucial constraints for the correct 3D fold via

reduction of chain entropy. Dashed line in (A) and

results in (B) are at L/2 inferred interactions; agree-

ment of > 50% at L/2 often suffices to compute 3D

structures (Hopf et al., 2012; Marks et al., 2012). In

(A) and (B), residues in the known crystal structure

are defined to be in contact if at least one atom-

atom distance is < 5 Å; inferred residue-residue

interactions are limited to a primary sequence dis-

tance > 5 residues.

Please cite this article in press as: Stiffler et al., Protein Structure from Experimental Evolution, Cell Systems (2019), https://doi.org/10.1016/
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Similar to previous work on natural sequences (Hopf et al., 2014),

identification of these inter-protein contacts demonstrates that

experimental evolution can also be informative of protein-protein

interactions.

We next askedwhether the inferred contacts fromexperimental

evolution are sufficient to compute the 3D structure. For natural

protein families, inferred residue interactions in the range of agree-
Figure 3. Sequence Variation per Residue Position in the Selected Sequence Libraries

(A and B) Frequencies of amino acid substitutions per residue position in the set of experimentally evolved se

for AAC6. Columns: residue positions; rows: amino acids; gray dots: amino acids in the ancestral sequence;

frequency per position (i.e., the fraction of non-ancestral amino acid). Active site positions (arrows) general

right ofmatrices: substitution frequency of each amino acid averaged over all positions, indicating a broadly s

this figure are available at https://github.com/sanderlab/3Dseq.

(C and D) Positional variation, quantified as Shannon entropy using the substitution frequencies at each r

evolved and natural sequences. Results for natural sequences are blue bars in (C) and along x axis in (D); r

bars in (C) and along y axis in (D). The level of positional variation observed in the natural sequences is ge

sequences (empty upper left triangle (D)). Results for PSE1 at round 20 are at the top, and AAC6 at round
ment with crystal structures of 50%–60%

are typically sufficient to compute 3D folds

that agree with those observed by crystal-

lography or NMR (Hopf et al., 2012; Marks

et al., 2011). To assess whether experi-

mental evolution provides a similar level of
information,wecomputedsetsof structuresusing the inferred res-

idue interactions as distance constraints in molecular dynamics

with simulated annealing (Brunger, 2007; Hopf et al., 2012; Marks

et al., 2011). The constraints are updated in an iterative process

that filters the inferred interactions for geometric violations, i.e., in-

teractions that are inconsistentwith cooperatively folded3Dstruc-

tures (STAR Methods). For AAC6, we folded only the monomeric
quences from (A) round 20 for PSE1 and (B) round 8

horizontal bars below each matrix: total substitution

ly have a low substitution frequency. Vertical bars at

imilar spectra for both proteins. The data to generate

esidue position, compared between experimentally

esults for experimentally evolved sequences are red

nerally not exceeded in the experimentally evolved

8 at the bottom (C and D).
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Figure 5. 3D Structures Computed from

Experimental Evolution Compared to Those

from X-ray Crystallography

(A) Inferred interactions iteratively filtered for geo-

metric violations (STAR Methods); red interactions

agree with contacts in the crystal structure, black

ones disagree (results for 23 L inferred interactions,

where L is the length of the protein sequence).

(B) 3D structures computed using the filtered in-

ferred interactions as distance constraints (STAR

Methods). Red ribbons are structures with the

lowest Ca positional RMSD, evaluated over at least

90% of residues for either protein.

(C) 3Dseq computed structures (red ribbons)

compared to crystal structures (gray ribbons): left

for PSE1 (PDB: 1G68, Ca positional RMSD 4.5 Å

over 240/266 residues, TM-score = 0.65); right for

AAC6 (using a structural homolog of AAC6, PDB:

4EVY, Ca positional RMSD 3.8 Å over 122/130

residues, TM score = 0.59). For AAC6, the C-ter-

minal b-strand known to be involved in dimer con-

tact is excluded; we did not attempt to compute

dimer structures.
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unit consisting of residues 1–134, as residues 135–148 are directly

involved in dimer contacts and computation of a dimeric molecule

fromacompoundedcontactmap is beyond the scopeof thiswork

(STAR Methods). The removal of geometric violations led to

improved agreement between inferred interactions and crystal

structure contacts, from 54% to 65% for PSE1, and from 45%

to 59% for AAC6 (Figures 5A and S3).

The final set of structures, computed from the inferred interac-

tions after filtering for geometric violations, was assessed

for agreement with the known crystal structure of the most

sequence-similar homolog. Of the set of computed structures,

72% of PSE1 and 63% of AAC6 generated structures (of 690

models generated for PSE1 and 720 for AAC6 [STAR Methods])

have a template modeling score (TM score) of 0.5 or greater

(Figure 6A); TM scores in excess of 0.5 are generally considered
6 Cell Systems 10, 1–10, January 22, 2020
to indicate overall fold similarity (Xu and

Zhang, 2010; Zhang and Skolnick, 2004,

2005). The structures with the lowest Ca

positional root-mean-square deviation

(RMSD) over more than 90% of residues

and which do not contain knots (Kolesov

et al., 2007; Virnau et al., 2006) have

4.5 Å RMSD for PSE1 (240/266 residues

using PDB: 1G68) and 3.8 Å RMSD for

AAC6 (122/130 residues using PDB:

4EVY) (Figures 5B and 5C). Overall, we

conclude that the experimental evolution

process mimics natural evolution in

constraining residue interactions that

conserve the 3D fold.

DISCUSSION

Here, we show for two genes that experi-

mental evolution in the laboratory can

generate an amount and type of genetic

variation that informs about amino acid
residue interactions in 3D protein structures, leading to an accu-

rate determination of these protein structures via evolutionary

coupling analysis and restrained molecular dynamics. For either

gene, the experiments started out with a single DNA sequence,

which makes the approach particularly useful to explore residue

interactions in genes with few known homologs, such as so-

called orphan genes (Tautz and Domazet-Lo�so, 2011)—situa-

tions that preclude homology-based approaches (Marks

et al., 2011).

The type of experimental evolution employed here, also known

as neutral genetic drift or laboratory drift (Bershtein et al., 2008;

Bloom et al., 2007a), has been employed before but with a

different scientific intent: either to measure protein mutational

tolerance and robustness (Bloom et al., 2007b; Rockah-Shmuel

et al., 2015) or to diversify libraries prior to directed evolution



Figure 6. Variation among Computed 3D

Structure Models

(A) Template modeling scores (TM-scores [Zhang

and Skolnick, 2005]) for all computed models

during geometric violation filtering iterations.

Computed models are sorted along the x axis by

TM-score within each iteration. Overall, structures

computed with interactions inferred from experi-

mentally evolved sequences have the same gen-

eral fold as the crystal structure, with TM-scores

of > 0.5 for 72%of PSE1models (690 total models)

and for 63% of AAC6 models (720 total models) in

the final iteration for both proteins.

(B) Structural variation between computed

models. The color and radius of each residue is

monotonically related to the RMSD of Ca-Ca dis-

tances computed from all-versus-all pairwise su-

perposition of models in the largest cluster

(MaxCluster [Herbert and Sternberg, 2008]) from

the final filtering iteration (STAR Methods).
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(Bershtein et al., 2008; Bloom et al., 2007a). These studies found

evidence for global suppressormutations—singlemutations that

broadly compensate for the deleterious effects of a substantial

number of other mutations (Bershtein et al., 2008)—but not for

residue-residue interactions that are local in the protein struc-

ture. The fact that we do find evidence for contact interactions

could be either due to differences in the experimental implemen-

tation—such as the number of applied mutations per round—or

due to the fact that we reached a higher level of genetic diversity

in combination with a larger number of gene variants sequenced

over their full-length than previously attained.

This study lays the foundation for a new ab initio experi-

mental method of determining protein structure, which we

call 3Dseq. Using experimental evolution for structure determi-

nation is complementary to established methods such as X-ray

crystallography, NMR, and cryo-electron microscopy—with

several advantages and disadvantages. A major advantage is

that determination of a structure by 3Dseq does not require

biochemical purification of the protein. Similarly, beyond single

proteins, inter-molecular interactions can be elucidated without

purification and/or crystallization of complexes (see dimer con-

tacts in AAC6, Figure 4B) using protein-protein interaction as-

says to select variant sequences, such as two-hybrid (Dove

et al., 1997; Fields and Song, 1989; McLaughlin et al., 2012)

or phage or yeast display assays (Boder and Wittrup, 1997;

Sidhu and Geyer, 2015). Further, by controlling external condi-

tions, one can directly infer which constrained interactions or

structural variants are of functional importance under a given

selection condition. A potential disadvantage arises from the

fact that the distance constraints inferred from co-variation pat-

terns in 3Dseq are an average property of the set of selected

sequences and that single-sequence specificity is only imple-

mented by constrained molecular dynamics. Thus, one would

expect the precision of atomic positions to typically be less
than that from, e.g., single-sequence,

single-conformation crystallography. In

the future, this difference in precision is

likely to be reduced by improvements
in the constrained molecular dynamics part of the 3Dseq

method. One could use 3Dseq to fully explore structural varia-

tion within a set of sequences by computing single-sequence

structures for all sequences in the experimentally selected

libraries—rather than just the ancestral sequence as done

here; however, executing many thousands constrained molec-

ular dynamics runs is beyond the scope of this work. In any

case, high precision of 3D coordinates for a single sequence

does not necessarily imply a tight conformational ensemble of

structures in physiological conditions. As in NMR spectros-

copy, explicit data on conformational ensembles inferred from

3Dseq may provide detailed insight regarding structure-func-

tion relationships.

Future generalization of 3Dseq experimental technology

would benefit from assays that directly select or screen for

protein structural integrity (Cabantous et al., 2005; Foit et al.,

2009; Waldo et al., 1999) and do not depend directly on selec-

tion for a particular cellular function (e.g., antibiotic resis-

tance). A major efficiency gain would come from automated

evolution systems, which combine mutation and selection in

single cells and rely on proliferative advantage in pooled

experiments (Badran and Liu, 2015; Esvelt et al., 2011;

Ravikumar et al., 2018; Takahashi et al., 2015; Toprak

et al., 2011).

In using experimental evolution to elucidate co-variation

constraints one can be agnostic as to the detailed mechanism

by which the constraints are encoded in the genetic se-

quences. Our recent work (Rollins et al., 2019) and related

work (Schmiedel and Lehner, 2019) showed that two-way

epistasis between amino acid mutations, derived from com-

plete pairwise ‘‘deep’’ mutational scans with quantitative

(non-binary) measurement of fitness, can reflect structural

constraints sufficient for the computation of 3D structures, at

least for small proteins. In general, with increasing ability to
Cell Systems 10, 1–10, January 22, 2020 7
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control sequence diversity, external conditions, depth of

sequencing and quantitation of fitness, future evolution exper-

iments will provide further opportunities to unravel details of

evolutionary pathways, to determine the level of cooperativity

in sets of mutations, and to refine the discovery of sets of con-

straints essential for the implementation of particular

functions.

In contrast to natural evolution, experimental evolution is typi-

cally performed in less diverse environments, over much shorter

timescales, and with simpler population dynamics (Gillespie,

1994; Kawecki et al., 2012). Nonetheless, our results indicate

that laboratory-based experimental evolution consisting of

repeated cycles of random mutation and uniform selection can

generate large and diverse sets of sequences with rich co-evolu-

tionary interaction patterns. Experimental evolution approaches

of this type can contribute to a better understanding of the com-

plexities of natural evolution, to the design of useful proteins, and

to the development of quantitativemodels, in molecular detail, of

both retrospective and prospective evolutionary dynamics.
KEY CHANGES PROMPTED BY REVIEWER COMMENTS

In response to the reviewers, we clarified several points in the

text—such as the scope of the project—and mentioned ongoing

developments. We added references to laboratory drift studies

and discussion of contrasts with our approach. We moved a

figure from Supplemental Information into the Main Text (now

Figure 3) and added a new figure about the variation between

calculated structural models (Figure 6). We clarified some pro-

cedures, such as the evaluation of contact agreement. For

context, the complete Transparent Peer Review Record is

included within the Supplemental Information.
Note Added in Revision
Related work aiming to infer residue-residue interactions from

laboratory evolved sequences has recently been reported (Fan-

tini et al., 2019), though sufficiency for determining 3D structure

was not reported.
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Rockah-Shmuel, L., Tóth-Petróczy, Á., and Tawfik, D.S. (2015). Systematic

Mapping of Protein Mutational Space by Prolonged Drift Reveals the

Deleterious Effects of Seemingly Neutral Mutations. PLoS Comput. Biol. 11,

e1004421.

Rollins, N.J., Brock, K.P., Poelwijk, F.J., Stiffler, M.A., Gauthier, N.P., Sander,

C., and Marks, D.S. (2019). Inferring protein 3D structure from deep mutation

scans. Nat. Genet. 51, 1170–1176.

Sander, C., and Schneider, R. (1991). Database of homology-derived protein

structures and the structural meaning of sequence alignment. Proteins

9, 56–68.

Schmiedel, J.M., and Lehner, B. (2019). Determining protein structures using

deep mutagenesis. Nat. Genet. 51, 1177–1186.

Sheridan, R., Fieldhouse, R.J., Hayat, S., Sun, Y., Antipin, Y., Yang, L., Hopf,

T., Marks, D.S., and Sander, C. (2015). EVfold.org: Evolutionary Couplings

and Protein 3D Structure Prediction. bioRxiv ddd, 021022.

Sidhu, S.S., and Geyer, C.R. (2015). Phage Display. In Biotechnology and Drug

Discovery (CRC Press).

Stein, R.R., Marks, D.S., and Sander, C. (2015). Inferring Pairwise Interactions

from Biological Data Using Maximum-Entropy Probability Models. PLoS

Comput. Biol. 11, e1004182.

Stogios, P.J., Kuhn, M.L., Evdokimova, E., Law, M., Courvalin, P., and

Savchenko, A. (2017). Structural and Biochemical Characterization of

Acinetobacter spp. Aminoglycoside Acetyltransferases Highlights Functional

and Evolutionary Variation among Antibiotic Resistance Enzymes. ACS

Infect. Dis. 3, 132–143.

Takahashi, C.N., Miller, A.W., Ekness, F., Dunham,M.J., and Klavins, E. (2015).

A low cost, customizable turbidostat for use in synthetic circuit characteriza-

tion. ACS Synth. Biol. 4, 32–38.

Tanaka, M.M., Bergstrom, C.T., and Levin, B.R. (2003). The evolution of muta-

tor genes in bacterial populations: the roles of environmental change and

timing. Genetics 164, 843–854.

Tautz, D., and Domazet-Lo�so, T. (2011). The evolutionary origin of orphan

genes. Nat. Rev. Genet. 12, 692–702.

Tokuriki, N., and Tawfik, D.S. (2009). Stability effects of mutations and protein

evolvability. Curr. Opin. Struct. Biol. 19, 596–604.

Toprak, E., Veres, A., Michel, J.-B., Chait, R., Hartl, D.L., and Kishony, R.

(2011). Evolutionary paths to antibiotic resistance under dynamically sustained

drug selection. Nat. Genet. 44, 101–105.
Cell Systems 10, 1–10, January 22, 2020 9

http://refhub.elsevier.com/S2405-4712(19)30428-4/sref11
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref11
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref11
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref12
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref12
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref13
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref13
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref14
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref14
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref15
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref15
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref16
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref17
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref18
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref19
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref19
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref20
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref20
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref21
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref21
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref22
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref24
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref24
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref24
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref25
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref25
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref25
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref26
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref26
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref26
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref26
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref27
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref27
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref27
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref28
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref28
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref28
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref29
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref29
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref30
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref30
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref31
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref32
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref32
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref33
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref33
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref33
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref34
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref34
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref34
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref34
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref35
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref35
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref35
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref36
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref36
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref36
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref37
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref37
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref37
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref38
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref38
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref39
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref39
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref39
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref40
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref40
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref40
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref41
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref41
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref41
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref42
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref42
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref43
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref43
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref44
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref44
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref45
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref45
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref45
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref46
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref46
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref46
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref46
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref47
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref47
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref47
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref48
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref48
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref49
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref49
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref50
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref51
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref52
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref52
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref52
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref53
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref53
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref53
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref53
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref53
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref54
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref54
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref54
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref55
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref55
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref55
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref56
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref56
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref56
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref57
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref57
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref58
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref58
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref58


Please cite this article in press as: Stiffler et al., Protein Structure from Experimental Evolution, Cell Systems (2019), https://doi.org/10.1016/
j.cels.2019.11.008
Virnau, P., Mirny, L.A., and Kardar, M. (2006). Intricate knots in proteins:

Function and evolution. PLoS Comput. Biol. 2, e122.

Waldo, G.S., Standish, B.M., Berendzen, J., and Terwilliger, T.C. (1999). Rapid

protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17,

691–695.

Wright, S. (1931). Evolution in Mendelian Populations. Genetics 16, 97–159.
10 Cell Systems 10, 1–10, January 22, 2020
Xu, J., and Zhang, Y. (2010). How significant is a protein structure similarity

with TM-score = 0.5? Bioinformatics 26, 889–895.

Zhang, Y., and Skolnick, J. (2004). Scoring function for automated assessment

of protein structure template quality. Proteins 57, 702–710.

Zhang, Y., and Skolnick, J. (2005). TM-align: a protein structure alignment al-

gorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309.

http://refhub.elsevier.com/S2405-4712(19)30428-4/sref59
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref59
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref60
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref60
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref60
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref61
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref62
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref62
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref63
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref63
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref64
http://refhub.elsevier.com/S2405-4712(19)30428-4/sref64


Please cite this article in press as: Stiffler et al., Protein Structure from Experimental Evolution, Cell Systems (2019), https://doi.org/10.1016/
j.cels.2019.11.008
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

NEB 10-beta NEB C3019I

MC1061 Avidity Inc AVB100

Critical Commercial Assays

Genemorph II random mutagenesis kit Agilent 200550

MiSeq Reagent Kit v3 (600-cycle) Illumina Inc. MS-102-3003

PacBio SMRTbell preparation kits Pacific Biosciences 100-465-800, 100-465-900,

100-466-100

Deposited Data

Sequencing Reads (FASTQ files) This paper Sequence Read Archive BioProject

PRJNA578762

Sequences This paper https://github.com/sanderlab/3Dse

Sequence alignments This paper https://github.com/sanderlab/3Dseq

3D structure model files This paper https://github.com/sanderlab/3Dseq

Ca-Ca distances for all pairs of superposed models This paper https://github.com/sanderlab/3Dseq

Recombinant DNA

pBR322_KanR_AgeI_AvrII_PSE1 This paper Addgene 135229

pBR322_ZA_ampR_PSEAB_2A This paper Addgene 135230

Software and Algorithms

EVcouplings: generates a global probability model from a multiple

sequence alignment via maximum entropy reduction with pseudo-

likelihood maximization (plm) or mean field approximation. We used

this algorithm extensively to extract informative interactions between

pairs of residue positions, called evolutionary couplinges, as well

as to compute 3D structures via restrained molecular dynamics with

the CNS software system (Brunger, 2007)

https://evcouplings.org/

Deepsequence: scripts to generate a latent variable model on

biological sequences. This software was used to project natural

homologs and experimentally evolved sequences into a

two-dimensional sequence space.

Riesselman et al., 2018 https://github.com/debbiemarkslab/

DeepSequence

MaxCluster: this tool compares a set of proteins structures. We

applied this program to cluster computed models for comparison

of structural variability.

Herbert and Sternberg

2008

http://www.sbg.bio.ic.ac.uk/

�maxcluster/

Custom code was used to analyze PacBio and Illumina sequencing

reads, generate substitution and mutation and entropy statistics,

perform dimensionality reduction, and calculate and visualize variation

between 3D structure. Code is available at github.

This paper https://github.com/sanderlab/

3Dseq
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris

Sander (3Dseq.research@gmail.com).

Plasmids generated in this study that contain ancestral PSE1 and AAC6 sequences have been deposited at Addgene: 135229 and

Addgene: 135230, respectively. This study did not generate other unique reagents. Requests for further information, resources, and

reagents should be sent to 3Dseq.research@gmail.com, which will reach all principal authors (M.S., F.P., N.G., C.S.), with the Lead

Contact (C.S.) responsible for fulfillment of the requests.
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METHOD DETAILS

General
The two proteins used in this work, aminoglycoside acetyltransferase AAC6 and b-lactamase PSE1 are substantially different in

length, and we therefore used different selection strategies and sequencing methods. The larger protein (PSE1) was selected on

plates and sequenced using PacBio. The smaller protein (AAC6) allowed sequencing by the shorter read length, higher throughput

Illumina method, and larger library sizes and was therefore selected in liquid media. Below, details of the procedures followed are

given separately for the two proteins as needed.

Plasmid Construction
AAC6

Starting with pBR322 (Bolivar et al., 1977), we replaced the tetracycline resistance gene by the ampicillin resistance gene bla,

and replaced the native bla gene by the pZA promoter (Lutz and Bujard, 1997) driving the expression of the aminoglycoside

antibiotic resistance protein 6’-N-acetyltransferase AAC(6’)-I from Pseudomonas sp. ABAC61 (UniProt sequence identifier

A0A0W0NPD4_9PSED). The plasmid map is shown in Figure S1A, the sequence in GenBank format is given in the Supporting Infor-

mation. The relevant X-ray crystal structure is PDB: 4EVY (Stogios et al., 2017), a homolog of the AAC6 used here with 50% sequence

identity (74/148 identical residues).

PSE1

The pBR322 plasmid was modified by replacing the tetracycline resistance gene with a kanamycin resistance gene. An AgeI restric-

tion site was created by making two synonymous mutations at amino acid positions within the periplasmic signal peptide region of

the existing TEM-1 bla gene, and an AvrII restriction site was created directly downstream of the existing bla gene. The existing

TEM-1 bla gene was replaced by that for Pseudomonas aeruginosa PSE1 (Uniprot sequence identifier Q03170), retaining the

periplasmic signal peptide sequence of TEM-1 (i.e., only the mature b-lactamase sequences were interchanged). The sequence

in GenBank format is provided in the Supporting Information (Figure S1B). The corresponding X-ray crystal structure is PDB:

1G68 (Lim et al., 2001), a homolog of PSE1 (PSE4) that differs by a single amino acid.

Mutagenesis
Random mutagenesis was performed by error-prone PCR (epPCR) using the Genemorph II Random Mutagenesis Kit (Agilent)

following the manufacturer’s protocol.

AAC6

The input concentration for the epPCR reaction, which determines the rate ofmutagenesis, is set at 0.8 ng plasmid DNA, correspond-

ing to 0.1 ng per reaction of the aac6 coding sequence. The PCR product is gel purified and digested with restriction enzymeBsaI in a

single reaction together with gel-purified non-mutated PCR product of the vector backbone, followed by ligation of the fragments to

form a circular plasmid.

PSE1

Error-prone PCRwas performed using 1 ng of the plasmid vector (corresponding to 0.2 ng of the PSE1 gene) as template. In order to

reduce the possibility of amplifying contaminating b-lactamases, primers specific to the mature PSE1 protein region were created

which overlap with the N-terminal four and C-terminal two amino acids of the mature PSE1 protein sequence. Specific primers

were used in generating libraries at all rounds, except in those prior to sequencing in which primers annealing outside the mature

PSE1 protein sequence were used to allow some variation at these amino acid positions. PCR products were gel-purified, digested

with restriction enzymes AgeI and AvrII, and ligated into themodified pBR322 plasmid vector previously digested with AgeI and AvrII.

Selection
AAC6

Mutant libraries were transformed by electroporation into E. coli strain MC1061. After recovery in 1 mL LB for one h at 37�C, a small

aliquot (typically 5 mL) was taken out for determination of the transformation and selection efficiencies, and the remainder is grown

overnight under selective conditions at 37�C in 100 mL LB and 10 mg/mL kanamycin, under vigorous shaking. A plasmid miniprep is

prepared from 6 mL of this culture, and is used for epPCR of the next round. Typical population size pre-selection is 107, of which

about 1% survives the kanamycin selective conditions.

PSE1

Mutation libraries were transformed by electroporation into NEB 10-beta DH10B E. coli cells. After one h recovery in 1 mL of

outgrowth medium, a small aliquot was taken for determination of transformation efficiency on LB-agar Petri dishes containing

30 mg/mL kanamycin. The remaining recovery culture was plated onto large Petri plates containing LB-agar and 6 mg/mL ampicillin

as the sodium salt; at rounds prior to sequencing, plates contained 10 mg/mL ampicillin to better ensure non-functional sequences

are eliminated. Plates were incubated at 37�C overnight (approximately 15 h). Ampicillin selection plates were scraped of colonies

using approximately 40 mL of water, cells pelleted by centrifugation, then resuspended in 10 mL of water by vortexing. Plasmid DNA

was purified by miniprep for use in another round of epPCR or for deep-sequencing. Typical population size pre-selection was

approximately 5 3 106, of which about 1% survive the ampicillin selection conditions.
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Sequencing
The platforms for high-throughput sequencing used in this study are different for PSE1 and AAC6, because of the difference in length

of their coding regions (798 and 444 nucleotides, respectively) and the requirement of co-evolutionary analysis to observe pairs of

amino acid mutations across the entire gene. For PSE1 we exploited the greater read length of the PacBio platform, achieving about

300,000 raw reads of about 10,000 bases, while for AAC6 we were able to make use of Illumina’s higher throughput, with up to

30million raw reads of length 600. Note that the very long length of individual reads in the PacBio platform allows a large improvement

in read quality scores by circular consensus sequencing (see also below).

AAC6

Libraries were prepared by two consecutive PCR reactions, adding the adapters for Illumina sequencing. In order to increase the

sample heterogeneity necessary for Illumina sequencing, both forward and reverse primers are of staggered length, as a result of

a small random base section of variable length (N4-N10). In later sequencing procedures the gene is incorporated both in forward

and in reverse direction, to increase sample heterogeneity even more. Sequencing was performed using Illumina MiSeq with a

paired-end 300 kit at the Dana-Farber Molecular Biology Core Facilities.

PSE1

Miniprep plasmid DNA from selection libraries was digested with AgeI and AvrII and the fragment at the size of the PSE1 gene

(approximately 800 bp) gel-purified. Samples for PacBio Sequel SMRT sequencing were prepared according to the manufacturer’s

protocol for end-repair and ligation of multiplex barcode adapters, DNA damage repair, exonuclease digestion, and purification of

SMRTbell templates. Annealing of primer and polymerase binding to templates, and PacBio Sequel SMRT sequencing, was per-

formed by the Genomics Core Facility at the Icahn Institute, Mt. Sinai; or by the MIT BioMicro Center with assistance from the

Dana-Farber Molecular Biology Core Facilities.

Sequence Analysis
AAC6

The resulting forward and reverse read fastq files were stitched together using the FLASHprogram (Mago�c and Salzberg, 2011). After

this, sequences were quality filtered: first, the minimum Q score of each base has to be at least Q15, and second, the compound Q

score, which is an expression for the overall quality of a read, Qcomp = � 10,log10

0
@1 �

YL
i

0
@1 � 10

�
Qi

10

1
A
1
A, where i is the sequence

position and L the sequence length, is required to be at least 10, implying that for each read there is a 90% probability it contains no

read errors. After this, sequences are translated and only full-length sequences are retained.

PSE1

Barcode demultiplexing and generation of fastq files of circular consensus sequences were performed by the Icahn Institute Geno-

mics Core Facility at Mount Sinai, or by theMIT BioMicro Center. Reads from fastq files were first filtered for containing upstream and

downstream nucleotides corresponding to those used in the mutagenesis primers which anneal outside the PSE1 gene, then filtered

for a minimum Q score of at least 30. Resulting sequences were then translated; only full-length sequences of 271 amino acids are

retained, which are then truncated to the length of that in the crystal structure 1G68, 266 amino acids (removing two N-terminal and

three C-terminal amino acids).

Alignment Conditioning
AAC6

Since we observed that the selected pools contain a small fraction of contaminant sequences that correspond to a homolog of aac6

that has been used in the same laboratory (not uncommon in long-term evolution experiments with antibiotic resistance genes), we

applied a filtering procedure that effectively removes all sequences that contain stretches larger than three amino acids that aremore

similar to the contaminant than to the gene under consideration (MATLAB script in Supporting Information). Eventually this procedure

only removes a very small fraction of sequences (typically 0.1%–0.2%).

PSE1

The selected libraries contain a small fraction of contaminant sequences corresponding to those of b-lactamases used in the labo-

ratory. We applied a filtering procedure that removes all sequences containing more than six adjacent amino acid mutations from the

ancestor PSE1 sequence. This procedure removes a very small fraction of sequences (approximately 0.1%).

AAC6 and PSE1

We subsampled the alignment to only contain sequences with more than the mean number of mutations. This is done in order to

remove lowlymutated sequences that would cause the standard filtering step in EVcouplings (see immediately below) to downweight

informative sequences. Note that removing sequences at the lower end of themutational distribution only removes a small fraction of

the total number ofmutations from the pool.Moreover, as the number of pairs ofmutations in a sequence is drastically higher formore

highly mutated sequences, this procedure removes a negligible fraction of pair information from the library.
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EVcouplings Analysis
EVcouplings analysis (evolutionary couplings) is performed according to (Marks et al., 2011; Sheridan et al., 2015) (implementation on

https://www.evcouplings.org, source code and sample config file available at https://github.com/debbiemarkslab/EVcouplings).

The inputs are the conditioned alignments as described above and a small number of parameters, mainly regarding filtering, weight-

ing of sequences, and regularization for the calculation of fields and coupling terms (Marks et al., 2011). In the current study, param-

eters remained unchanged from their default values used in the application of EVcouplings to alignments of natural homologous pro-

teins (Marks et al., 2011), except for a single parameter, q, that specifies the stringency at which similar sequences (with pairwise

sequence identity R q) are down-weighted. The downweighting prevents spurious evolutionary signals due to uneven clusters of

very similar sequences in the alignment (Marks et al., 2011). As the sequence-space distribution of natural and laboratory-generated

alignments is different, the optimal values for the parameter q typically differ for these two cases (see below for the numerical choices

of q used here).

AAC6

Results are fairly robust to choices of q around themean pairwise identity of the analyzed populations of sequences (Figure S2B). The

optimum, with respect to recovering contacts also seen in crystal structure, is slightly above this value. Too low q will reduce the

effective number of sequences in the alignment, at which point the inference of interactions is of lower quality.

PSE1

The results depend slightly more on the choice of q than they do for AAC6 (Figure S2A). The optimal value, with respect to agreement

with residue contacts in the crystal structure, is above that of themean pairwise identity of the analyzed sequences and slightly below

the mean fractional sequence identity to wild-type PSE1.

Compute Structures from Inferred Interactions
A set of computed structures is generated using the distance geometry and simulated annealing protocol in the Crystallography and

NMR System package (CNS) (Brunger, 2007), using up to 1.53 L top-ranked inferred interactions as distance constraints, following

the detailed procedure in ref (Marks et al., 2011).

Filtering Inferred Contacts for Geometric Violations

One reasonwe can compute well-folded structures at the level of agreement with contacts in related crystal structures as low as 50%

is that a set of interactions in a folded protein structure has to be mutually consistent, given the connectivity of the polypeptide chain.

We make use of the consistency requirement by an iterative algorithm that removes residue interactions that are not satisfied in a

subset of folded structures.

Since a fraction of inferred interactions are incompatible with 3D protein fold, which in general decreases the fold accuracy, we

developed an iterative filtering approach using additional constraints from 3D geometry to remove incompatible inferred interactions

(‘geometric violations’). This both improves the correspondence between inferred interactions and X-ray structure contacts (Figures

5A and S3), and also improves the computation of 3D structure using CNS (Figures 5B and 6), which can be frustrated by a too large

number of incorrect constraints (Marks et al., 2011). The procedure: (i) A set of computed structures is generated with CNS, using up

to 1.5 3 L top-ranked inferred residue interactions as distance constraints, plus constraints from secondary structure prediction

(Jones, 1999). (ii) Inferred interactions not present in at least 3%–5% of the thus computed structures are considered geometric

violations and masked out from the set of inferred interactions. (iii) Steps i and ii are repeated 5-6 times. The procedure is robust

to choice of parameters in these ranges. The structures presented in Figure 5B are those with the lowest Ca positional RMSD

over more than 90% of residues and which do not contain knots (Kolesov et al., 2007; Virnau et al., 2006).

Dimer Interactions in AAC6

The statistical approach used in EVcouplings is able to identify coevolving amino acid residues agnostic to whether these residues

involve two positions within a single protein, or two positions between separate proteins, i.e., protein-protein interactions. For the

obligate dimer AAC6 we obtain inter-monomer inferred interactions with roughly equal strengths as intra-monomer inferred interac-

tions. This also means that in order to compute an ab-initio structure, the need arises to disentangle inferred monomer and dimer

interactions. Solving this problem is not trivial and is left for future work. In the current manuscript, inferred interactions are identified

for bothmonomer and dimer contacts in AAC6 (Figure 4), but the computed folded structure only considers a singlemonomer without

the dimerization tail (residues 135-148).

Structural Variability

To examine structural variability among the computed models, we first clustered the set of models computed using the inferred con-

tacts from the final iteration of filtering for geometric violations (MaxCluster; (Herbert and Sternberg, 2008)). To remove outliers, only

those models in the largest cluster were subsequently analyzed (516 of 690 models for PSE1 and 717 of 720 for AAC6). Both of these

clusters contained the highest TM-score computed structure. Structural variability is computed at each residue position as the root-

mean-square deviation (RMSD) of Ca-Ca distances for all pairs of superposed models; models were superposed using the MATLAB

pdbsuperpose function. Structural variability is visualized in ‘‘sausage’’ representation (Figure 6B) by changing the B-factors in the

computed structure PDB file to the RMSD values using the loadBfacts.py pymol script (Gatti-Lafranconi, 2014).

Visualization of Sequence Space
To visualize sequence space, we used the DeepSequence software package (Riesselman et al., 2018) to generate a nonlinear latent-

variable model of natural homologs, and then projected all sequences (experimentally evolved and natural) into 2-dimensional latent
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space (z1 and z2). For both proteins, an alignment was generatedwith a jackhmmer search (Potter et al., 2018) by EVcouplings using a

bitscore of 0.4. These alignments were conditioned by removing sequences that were more than 15% gapped and filtered to only

retain sequences with less than 95% pairwise identity. A random subsampling of 5000 natural sequences from these alignments

was used to generate the model. Parameters for model training:

batch_size = 100

num_updates = 300000

encoder_architecture = [1500,1500]

decoder_architecture = [100,500]

n_latent = 2

n_patterns = 4

Taxonomy ids for individual sequences were downloaded from uniprot and uniref. The NCBITaxa module in the ETE Toolkit python

package (Huerta-Cepas et al., 2016) was used to translate taxonomy ids into class labels.

DATA AND CODE AVAILABILITY

Code and scripts are available on GitHub: https://github.com/sanderlab/3Dseq. The accession number for the sequencing reads

(FASTQ files) is [Sequence Read Archive]: [BioProject PRJNA578762]. Alignments, model files, including 3D all-atom structures,

and the all-versus-all positional distances are linked to on Github: https://github.com/sanderlab/3Dseq; backup: http://www.

3dseq.org
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