
FEBS Letters 586 (2012) 2631–2637
journal homepage: www.FEBSLetters .org
Review

Elucidation of the binding preferences of peptide recognition modules: SH3 and
PDZ domains

Joan Teyra a, Sachdev S. Sidhu a,b,c, Philip M. Kim a,b,c,d,⇑
a Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada ON M5S 3E1
b Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada ON M5S 3E1
c Department of Molecular Genetics, University of Toronto, Toronto, Canada ON M5S 3E1
d Department of Computer Science, University of Toronto, Toronto, Canada ON M5S 3E1

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 March 2012
Accepted 15 May 2012
Available online 9 June 2012

Edited by Marius Sudol, Gianni Cesareni,
Giulio Superti-Furga and Wilhelm Just

Keywords:
Domain–peptide interactions
Protein interaction networks
Protein interfaces
Peptide recognition modules
Machine learning
0014-5793/$36.00 � 2012 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.febslet.2012.05.043

⇑ Corresponding author at: Department of Comp
Toronto, Toronto, Canada ON M5S 3E1. Fax: +1 416 9

E-mail address: pi@kimlab.org (P.M. Kim).
Peptide-binding domains play a critical role in regulation of cellular processes by mediating protein
interactions involved in signalling. In recent years, the development of large-scale technologies has
enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding
domain families. These efforts have provided significant insights into the binding specificities of
these modular domains. Many research groups have taken advantage of this unprecedented volume
of specificity data and have developed a variety of new algorithms for the prediction of binding spec-
ificities of peptide-binding domains and for the prediction of their natural binding targets. This
knowledge has also been applied to the design of synthetic peptide-binding domains in order to
rewire protein–protein interaction networks. Here, we describe how these experimental technolo-
gies have impacted on our understanding of peptide-binding domain specificities and on the eluci-
dation of their natural ligands. We discuss SH3 and PDZ domains as well characterized examples,
and we explore the feasibility of expanding high-throughput experiments to other peptide-binding
domains.

� 2012 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Cellular processes are dynamically orchestrated by a precise
interplay of protein–protein interactions. Many proteins contain
peptide recognition domains that mediate the assembly of diverse
stable or transient biological complexes to coordinate specific bio-
chemical functions in a wide variety of processes. These modular
domains recognize relatively short peptide sequences containing
a core structural motif. For example, WW domains recognize pro-
line-rich peptides, EH domains bind to peptides containing the NPF
motif, and SH2 and PTB domains bind to peptides containing a
phosphorylated tyrosine [1]. Most domains within the same family
recognize distinct binding partners. These distinct specificities are
usually determined by key residues flanking the core binding motif
[2,3]. PSD95-Discs large_ZO1 (PDZ) and Src-homology-3 (SH3) do-
mains are two of the most extensively studied peptide recognition
modules (1657 and 2527 hits in PubMed, respectively).

PDZ domains assemble intracellular complexes principally by
recognizing certain C-terminal sequences. The specificity is
mediated by interactions between ligand side chains and the PDZ
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domain binding surface [4]. Early studies grouped PDZ domains
into two main specificity classes based on distinct ligand signa-
tures: Class I (X[T/S]X/COOH) and Class II (X/X/COOH), where X
is any residue and / is a hydrophobic amino acid [5,6]. In addition,
less common classes of PDZ domain binding specificities, such as
Class III recognizing the motif X[ED]X/COOH, were also identified
[7]. However, subsequent studies have shown that the PDZ binding
cleft can interact specifically with up to seven C-terminal ligand
residues, enabling differentiation between biologically diverse li-
gands [8].

SH3 domains bind to proline-rich sequences containing a core
PXXP motif flanked by a positively charged residue [9,10]. Class I
domains bind to ligands conforming to the consensus +XXPXXP
(where + is either Arg or Lys), while Class II domains recognize
PXXPX+ motifs and bind to ligands in the opposite orientation
[11,12]. More recently, a number of alternative SH3 domain bind-
ing motifs have also been identified, highlighting a wider breath of
SH3 specificities [13–16].

PDZ and SH3 domains are widespread. In the human proteome
alone, 364 PDZ domains and 536 SH3 domains have been identi-
fied, and these domains mediate diverse cellular functions and
compete for thousands of potential ligands [17]. The understand-
ing of selective ligand recognition requires the discovery and com-
parative analysis of binding motifs for a comprehensive set of these
pean Biochemical Societies.
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recognition modules. Here, we review the advances in our under-
standing of peptide-binding specificities of modular domains, with
special emphasis on PDZ and SH3 domains. We also introduce
methods for binding specificity and natural ligand prediction,
and show the improvements achieved by including the peptide-
binding domain specificity motifs. Finally, we highlight examples
for practical usage of domain–peptide interactions for rewiring
networks and protein inhibition by synthetic design.

2. Technological advances in the study of peptide-binding
specificities

The analysis of peptide-binding domain specificities on a large
scale has been enabled by the development of high-throughput
strategies to complement microarray and phage display technol-
ogy. These techniques can work in two directions, either fixing
the peptides to the plate to be interrogated with solution-phase
proteins, or the opposite. Microarrays can explore hundreds of nat-
ural peptidic sequences at once, and give semi-quantitative read-
outs [18]. Alternatively, phage display can explore a much larger
diversity of sequences using bacteriophages to display libraries of
up to 10 billion random peptides as genetic fusions to phage coat
proteins. In this section, we will highlight the most relevant re-
search that has taken advantage of these two powerful techniques
to study the peptide-binding specificities of PDZ and SH3 domains.

Microarrays provide a multiplexed approach for the parallel
examination of peptide substrates of large numbers of proteins.
Originally, this technique was developed with the aim of identify-
ing binding partners. For example, Hall and coworkers developed a
proteomic array of 96 putative Class I PDZ domains derived from
cytoplasmatic proteins to identify those domains that recognize
the C-terminal PDZ binding motifs of GPCR proteins [19]. The posi-
tive PDZ-mediated protein–protein interactions were subse-
quently confirmed by co-immunoprecipitation and
inmunofluorescence co-localization. In a later study, MacBeath
and coworkers developed a strategy for constructing a multido-
main selectivity model for mouse PDZ domains [20]. They prepared
microarrays of 157 mouse PDZ domains and used them to survey
interactions with over 200 fluorescently labeled synthetic peptides
representing C-terminal sequences of mouse proteins. The positive
hits were retested and quantified by fluorescence polarization as-
says, thereby correcting array false positives. The resulting data
were used to train a predictive model of PDZ domain selectivity.
The model highlighted putative array false negatives, which were
tested by fluorescence polarization, and the corrected data were
used to retrain the model. After three cycles of prediction, testing,
and retraining, the refined model was used to predict PDZ domain–
protein interactions across the mouse proteome.

As an alternative approach, microarrays of short peptides can be
prepared and interrogated with solution-phase proteins. Standard-
ized methods now exist to synthesize in parallel thousands of pep-
tides bound to a cellulose membrane in a microarray format, such
as ‘SPOT’ synthesis [21]. Peptide microarrays are particularly useful
when the objective is to screen one or a few proteins against a large
number of potential binding peptides. In an interesting variation of
SPOT synthesis, Boisguerin et al. developed an efficient way to pre-
pare microarrays of inverted peptides displaying their C-termini
[22]. This method permitted them to study interactions mediated
by the PDZ domains of AF6, SNA1 and ERBIN protein against a pep-
tide library comprising 6223 C-termini of human proteins [23]. On
the basis of the ligand preferences detected for these PDZ domains,
they quantified the binding affinity contribution of each amino
acid position, and they predicted their putative natural binding
partners. SPOT synthesis has also been applied in combination
with phage display to discover all peptides in the yeast proteome
that had the potential to bind to eight SH3 domains [24]. Five clas-
ses with partially overlapping specificities were identified, where
domains bind to a large number of common targets with compara-
ble affinity [25].

Finally, phage display technology provides an accurate way of
studying the specificity of peptide-binding domains [26,27]. This
technology uses bacteriophages to display libraries of up to 10 bil-
lion random peptides as genetic fusions to phage coat proteins
[28]. After repeatedly incubating the phage particles with a domain,
and washing away non-interacting phages, a specificity profile con-
sisting of a set of strongly interacting peptides can be retrieved by
sequencing the phage-encapsulated DNA. The sequences of the
binding clones are then aligned to create a position weight matrix
(PWM) that describes the domain binding specificity. Each matrix
column captures the amino acid binding preference of a domain at
a ligand position as a probability distribution. Residues are usually
assumed to contribute independently to binding, simplifying our
understanding of domain–peptide interactions. However, peptides
interacting at one specific binding region may display many corre-
lated positions, where an amino acid at one position can influence
another one [29]. While all the above efforts were aimed at predict-
ing single specificities usually expressed as PWM, recent work has
showed that many domains exhibit multiple specificities that can
be expressed as mixture models of several PWMs [30] (Fig. 1a).

The possibility of using large-scale phage-displayed libraries
has increased the throughput of phage display by several orders
of magnitude [28]. In addition, recent advances in next-generation
sequencing has drastically extended the number of different ligand
sequences obtained, improving the generation of high resolution
binding profiles [31,32]. In consequence, these technological
improvements have permitted the possibility to catalog and derive
specificity maps for many of the SH3 domains and PDZ domains
from different proteomes: Saccharomyces cerevisiae [26,33], Caeno-
rhabditis elegans [27], mouse [20] or human [27,33]. These maps
have revealed the versatility and highly specific nature of these
modules and their interactions. Moreover, these high resolution
analyses have revealed that each domain exhibits specificity across
multiple ligand positions, including not only the core motif but
also flanking positions. Accordingly, Sidhu and coworkers found
that approx. 90% of PDZ domains fit into 16 distinct specificity clas-
ses, and the remainder represent unique specificities. Similarly,
MacBeath and coworkers had proposed that the domains lie on a
functional continuum and it appears that their binding selectivity
has been optimized across the proteome in order to minimize
cross-reactivity [20]. Tonikian et al. also revealed that essentially
all PDZ domains recognize the last three ligand positions (0, �1,
�2), the majority recognize positions �3 and �4 and some recog-
nize positions �5 and �6 [27]. In the case of SH3 domains, Toniki-
an et al. have found that most of yeast SH3 domains fall into the
canonical classes I and II [33]. However, they also uncovered sev-
eral SH3 domains with specificity profiles that clearly deviate from
the two canonical classes. These Class III binders show a preference
for poly-proline ligands, without the requirement for flanking
charged residues (Fig. 1b). Finally, they identified other domains
that show class promiscuity such that they cannot be simply clas-
sified because they exhibit unique specificity profiles that differ
from the canonical binding motifs [33].

3. Binding specificity predictions: machine learning and
biophysics

Thousands of PDZ and SH3 domains are spread across eukary-
otic and eubacterial genomes [17,34]. Obtaining experimental
binding specificities for all domains in a family is unfeasible due
to common cloning, expression, solubility or phage-related



Fig. 1. Specificity maps obtained for (a) PDZ domains and (b) SH3 domains. PDZ signatures are obtained from Gfeller et al. [30] and the SH3 ones from Tonikian et al. [33].
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problems. Therefore, the development of good computational pre-
dictors of peptide-binding preferences for domains without bind-
ing data is indispensable. Large scale experiments have revealed
a relationship between binding site identity and specificity for
PDZ and SH3 domain members [27,33]. Domain pairs with binding
site sequence identities greater than roughly 70% have specificity
profiles with equivalent similarity to those within a specificity
map class, whereas the relationship is unclear for pairs with lower
sequence identity. These observations suggest that, given a repre-
sentative set of domain binding specificities, a large set of the fam-
ily interaction space could be inferred. Although this might be a
general feature for positive amino acid selection, the underlying
basis for selectivity is not only the ability of domains to recognize
permissive amino acids but also non-permissive ones that oppose
binding in the vicinity of the core motif. Therefore, single amino
acid changes in a binding site may also change the specificity
map [35].

Computational methods for peptide-binding specificity predic-
tion fall on a spectrum spanning from statistical and machine-
learning approaches to biophysical and computational chemistry
methods. Computational machine learning methods rely on the
previously observed behavior of a molecular system, which is then
described in a predictive mathematical model. In order to predict
binding partners, data from actual peptide-binding experiments
are used to train a classification algorithm to discriminate between
binding and non-binding peptides. The models are trained using a
set of known binding sequences, where the domain contact resi-
dues involved in binding have to be determined. This is achieved
by sequence alignment of the query domains with a reference
structure of a domain–peptide complex with a well understood
binding mode.

One of the first studies developed a variant of the PWM that
contained weights describing the relative preference for amino
acids at positions in the ligand compared to the other domains they
modeled [36]. Later, they used a naive Bayesian model that in-
cluded several biological features to predict binding partners of
83 PDZ domains in the mouse proteome [37]. The features used
in this work comprise weighted scoring matrices for all combina-
tions of the possible PDZ and ligand residues, binding affinity data,
and other binary information. They were able to identify genuine
ligands for PDZ domains lower than 33% sequence similarity to
the training data. However, the method did not perform well at
predicting the binding energies of the interactions. Another group
used a machine learning method called a support vector machine
to predict PDZ domain interactions and achieved an accuracy of
80% with a false positive rate of only 39% [38], highlighting the suc-
cess of these approaches. Finally, Hawkins et al. generated struc-
tural models for a dataset of PDZ–peptide complexes using
threading techniques in order to infer the contact residues struc-
turally. They showed that PDZ binding predictions improved, spe-
cially for low sequence similarity domains [39].

In the last DREAM4 competition, Zaslavsky et al. were able to
predict the most accurate PWMs for five PDZ domains with un-
known specificity profiles [40]. They combined linear regression-
based prediction for ligand positions whose specificity is known
to be determined by relatively few PDZ domain positions, and sin-
gle-mutant PWM averaging for all other ligand columns. However,
more sophisticated machine learning-based specificity predictors
are still needed that allow for modeling pair-wise or even higher
order positional dependencies for the ligand and the domain. To in-
crease the accuracy of these predictive models, a set of non-bind-
ing peptides may be required in the process of model generation.
The necessity for a good negative training set has been shown to
be especially important for the prediction of relative binding affin-
ities. A recent study of PDZ domains has shown that a set of known
non-binding peptides is required to train the models since it im-
proves the prediction of relative binding affinities [41]. However,
it is difficult to accurately identify non-binders by using large-scale
techniques, and more stringent and tedious experimental tech-
niques, such as fluorescence polarization affinity assays, are re-
quired [20].

Machine learning methods have the advantage of being fast and
sometimes extremely accurate; however, they typically require
large amounts of experimental training data, and thus may fail
for systems that have not been well characterized experimentally.
By contrast, physical/structural methods rely on basic principles of
chemistry and physics to predict the relative binding affinities of
different peptide ligands from the precise three-dimensional struc-
ture of the protein–peptide complexes. Prediction of binding affin-
ity is often based on ab initio free energy calculations as per
classical molecular mechanics or semi-empirical force fields
[42,43]. These ab initio methods can be accurate even in the ab-
sence of experimental binding data or when the binding mode is
unknown. However, they require large computational resources,
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rendering the exploration of a large number of peptide sequences a
challenge.

Many methods for peptide specificity prediction fall somewhere
between these two approaches. For instance, Hou et al. used a com-
bination of homology modeling, molecular dynamics, binding
energies based on semi-empirical force fields, and machine learn-
ing to characterize interactions and to predict first the substrates
for SH3 [42], and later for PDZ domains [43]. They trained a sup-
port-vector machine on such molecular interaction energy compo-
nents (MIEC) to effectively predict binding partners of SH3
domains that bind to Class I peptides and 11 PDZ domains that
bind to C-terminal peptides. In another approach, Serrano and
coworkers combined structure homology modeling of SH3–pep-
tide complexes and in silico mutagenesis scanning to construct
PWMs that were used to predict the binding specificities of S. cere-
visiae SH3 domains [44]. They were able to achieve high accuracy
in predicting the binding specificities by using the FoldX empirical
forcefield [45]. A similar methodology has been recently applied to
PDZ domains using the Rosetta energy function to score interac-
tions in order to predict changes in binding specificities in a set
of point mutants [46]. They were able to predict binding prefer-
ences for a large set of natural PDZ domains as well as single and
multiple Erbin–PDZ domains obtained from phage display experi-
ments. Interestingly, they demonstrated that incorporation of
backbone flexibility in the Rosetta module increased prediction
accuracy. Although far from perfect, the results from both methods
show great promise for the potential of structure-based ap-
proaches for predicting binding specificity.

4. Identification of motifs in the proteome: models and
expressions

Complex signalling networks are normally mediated by the
interactions of modular domains with short linear sequence mo-
tifs. The detection of these motifs is of crucial importance for
enhancing our understanding of the molecular and cellular func-
tion of these proteins. These regions can be predicted by scanning
the specificity profiles of peptide-binding domains across proteo-
mes in order to identify putative natural binders. However, in most
cases, the motifs are described by regular expressions that define
important residues based on a combination of experimental, struc-
tural and evolutionary evidences (Fig. 2). Unlike consensus models,
regular expressions are less accurate for describing a linear motif.
Fig. 2. Work-flow of the motif scanning of a proteome. High-throughput technologies pro
sequences, a proteome can be scanned either by a simple regular expression or by position
relevant biological features.
Nevertheless, consensus models and expressions alone are often
insufficient for ligand prediction because they tend to be short
and degenerate, and matches are expected to occur frequently by
chance in random sequences. Thus, it is required to narrow down
the proteome search space in order to reduce the number of false
positive hits by using local biological information. General discrim-
inatory features are accessibility, disorder and conservation. Motif
search is normally restricted in globular domains and enhanced in
intrinsically disordered regions with a lack of tertiary structure. In
addition, evolutionary conservation of a motif correlates strongly
with functionality and many experimental motifs are seen as is-
lands of strong constraint in regions of weak conservation.

Computational methods can identify putative domain binding
partners by scanning the motif along the protein sequence in
search of optimal hits. Scansite, developed by Yaffe and co-work-
ers, was the first algorithm that predicts binding sites within pro-
tein sequences. Their approach used a sliding window method
based on a normalized position weight matrix (PWM) that evalu-
ated the residue conservation at each position [47,48]. More re-
cently, the MOTIPS algorithm has incorporated conservation and
structural features in conjunction with domain specificity informa-
tion in a Bayesian framework to predict binding partners for SH3
domains [49]. The MOTIPS algorithm improves the domain binding
predictions compared to using only profile-matching scan.

Linear motifs can also be inferred by mining the proteome
alone. In this case, they are recognized as motifs, but cannot be
immediately linked to a binding domain, which is assumed to ex-
ist. The SliM (short linear motif) approach searches for evolution-
arily conserved motifs in biologically related proteins [50].
Unstructured protein regions have also been prioritized to improve
prediction performance, since it has been observed that sequential
motifs are more enriched in unfolded regions than in globular do-
mains [51,52]. As a related concept, a database of molecular recog-
nition features (MoRFs) has been created [53]. Such MoRFs are
regions in disordered stretches that undergo disorder-to-order
transition upon binding and largely coincide with linear motifs.
In addition, evolutionary and disordered features have also been
combined to distinguish functional binding sites by measuring
the conservation of the motifs [54] and their flanking regions
[55]. A related approach searches for local ‘‘islands’’ of evolutionary
conservation in stretches of fast evolving disordered regions [56].
The largest collection of manually curated linear motifs in eukary-
otic proteins is eukaryotic linear motif (ELM) that uses patterns
vide a long list of sequences that can recognize a specific domain. After aligning the
weight matrix (PWM). The proteome to be scanned can be previously filtered using
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with context-based rules and logical filters [57]. The ELM in-
stances, together with structural, biophysical, and biochemical fea-
tures derived from the protein primary sequence are used by
SLiMPred (short linear motif predictor) to predict new motifs in
the proteome, using a hybrid approach based on machine learning
techniques [58]. Recently, Moses and coworkers developed a new
comparative genomic approach to identify short linear motifs
within structurally disordered regions. Based on a phylogenetic
hidden Markov model, they have been able to detect evolutionarily
conserved regions that matched to known motifs and discovered
other new ones, some of which were validated experimentally
[59].

5. Network perturbations by synthetic design or targeted
peptides

Nature has exploited loops and binding sites of protein interac-
tion domains to evolve a wide spectrum of specificities. Although
an enormous repertoire of specificities have been created by the
combinatorial evolution of these regions, nature might only have
sampled a fraction of this potential domain specificity space [27].
Therefore, it is possible to obtain a wide range of synthetic domain
and peptide variants with desired specificities and affinities for
biochemical, cellular, prognostic, diagnostic, or therapeutic appli-
cations. An interesting application of synthetic engineering is to re-
wire protein networks to experimentally change the links and
parameters of the network with the final aim of identifying prop-
erties that are crucial for function. In this regard, peptide-binding
domains are a useful system to perturb protein–protein interaction
networks by synthetic design of either the domain or peptide site,
as explained in this section.

Several studies have focused on investigating how the diverse
specificities exhibited by different members of the PDZ and SH3
families are encoded in a common scaffold [60]. Experiments using
phage-displayed libraries of SH3 domains have demonstrated that
the binding properties of an SH3 domain could be profoundly
changed by modifications in the non-conserved sequence in the
RT loop [61]. The human Erbin PDZ domain was also subjected to
combinatorial mutagenesis within 10 core positions that make
contact with the peptide [62]. Screening of phages that displayed
two of such combinatorial libraries yielded 288 structurally stable
Erbin PDZ variants. Subsequent screening of phage-displayed pep-
tide libraries using 237 purified Erbin PDZ variants revealed that
many of these PDZ variants recognize C-terminal peptides and
are as specific as natural domains. Thus the family of synthetic Er-
bin PDZ variants is as diverse as the natural PDZ family [62]. The
diversity of residue types that could be accommodated at each of
these 10 positions suggests that the PDZ fold is extremely robust
and that co-evolution of ligand-binding residues might provide a
rapid and effective means to generate the diverse specificities of
natural PDZ domains. Loop engineering presents an attractive ap-
proach for creating domain variants with tailor-made specificities
for research or therapeutic applications. For instance, loop ran-
domization studies have been carried out on the RT and n-Src loops
of several SH3 domains, and modifications of these loops have al-
tered ligand preferences of the ABL1 and hemopoietic cell kinase
(HCK) SH3 domains [63,61]. Moreover, loop randomization of the
Fyn SH3 domain has yielded a high-affinity fibronectin-binding
protein that could be used as an in vivo marker of angiogenesis
[64].

Several groups exploited the possibility to engineer domain–
peptide pairs that are simultaneously optimized to interact with
their correct partner while avoiding cross-interaction with other
members of the family [65,66]. In this regard, Lim and coworkers
recombined the output domain of an N-WASP mammalian protein
with an auto-inhibitory PDZ–peptide motif [67]. In this way, the N-
WASP protein became a switch that could be activated by an exter-
nal signal sequestering the PDZ domain from the peptide. The addi-
tion of another auto-inhibitory domain (SH3–peptide) ‘‘evolved’’
the synthetic switch into an AND gate. In more recent work, they
also showed that by placing multiple copies of the only SH3–pep-
tide motif on the N-WASP output domain, the activation response
became much faster and the switch showed ultrasensitivity [68].
Finally, they also applied the same construction principle to a
GEF protein and rendered it activatable [69]. To this aim, they used
a modified PDZ–peptide motif, where the peptide had been mu-
tated in order to be activated by a protein kinase. Hence, they were
able to use this protein modularity to engineer an artificial signal-
ing cascade that coupled the filopodial (Cdc42) and lamellipodial
(Rac1) regulating GTPases in series.

In an increasing number of cases, proteins that contain peptide-
binding domains have been found to be direct targets for regula-
tion. In these cases, pathways can be turned on or off by inputs that
modify the modular protein rather than the actual signaling en-
zymes [70–72]. These domains could be targeted by engineering
peptide binders specifically optimized to interact with their correct
partner while avoiding cross-interaction with other members of
the family. For instance, Sidhu and coworkers designed high affin-
ity and specificity peptide inhibitors against the Dishevelled-PDZ
domain, which belongs to an unusual recognition class within
the PDZ family. By targeting this domain, they were able to block
Wnt/beta-catenin signaling in cells [73]. To increase binding affin-
ity and specificity, Imperiali and coworkers chemically designed a
bivalent peptide made of two natural C-terminal regions that was
able to bind simultaneously to the two neighboring PDZ domains
of PSD-95 protein. They used this biomimetic peptide to disrupt
PSD-95 native interaction to AMPAR–Stargazin complex mediated
by multiple class I PDZ domain-binding motifs, and studied the
perturbation effects to excitatory synaptic transmission in the
mammalian central nervous system [74]. Stromgaard and cowor-
ker have recently been able to develop an improved bivalent pep-
tide inhibitor of PSD-95 PDZ1–2 that increased affinity from 25 to
400-fold relative to the monomeric ligand [75].

These examples show the potential of peptides as inhibitors of
protein interactions. In fact, peptides have a long history as thera-
peutic molecules, and there are currently a total of over 60 pep-
tides as approved drugs on the market [76]. Therapeutic peptides
have seen resurgence in interest, partly because of the under-utili-
zation of potential cytosolic targets [77,78]. Novel drugs developed
in the past decade have almost solely focused on G protein-couple
receptors (GPCRs) and protein kinases, presumably because of the
high cost and risk associated with novel drug development [79].

6. Future perspectives

Large-scale analyses using phage-displayed random peptide li-
braries and other techniques have established specificity maps
and comprehensive classification system for modular domain fam-
ilies, expanding significantly the canonical PDZ and SH3 domain
classification. This massive information has permitted a significant
improvement of computational methods for the prediction of novel
peptide-binding domains for which no binding data is known, and
for ligand prediction through an accurate scanning of the binding
motifs in the proteomes.

Most of what is currently known about protein–peptide interac-
tions is compiled in the ELM database. Currently, there are anno-
tated 179 classes of literature-curated motifs that are interacting
to 87 distinct Pfam domains. However, analysis of the PDB reposi-
tory has shown that the peptide-binding domain families are much
more abundant [80,81]. For example, PepX database currently



Fig. 3. Distribution of the number of putative peptide-binding domains based on
predicted binding energies. This information has been computed for all the PDB
using the PeptideDeriver program [82]. A pie graph shows the number of families
distributed between natural, structurally-known and predicted peptide-binding
domain families applying a �10 REU binding energy cutoff.
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contains 119 Pfam domains structurally solved in complex to pep-
tides, suggesting that the biologically relevant peptide-binding do-
mains might be larger. Interestingly, a recent computational study
suggest that a significant percentage of the structurally known
globular protein–protein interactions are dominated by one short
interfacial linear segment that can be used to derive self-inhibitory
peptides [82]. These results imply that the number of peptide-
binding domains could be much higher. For this reason, we have
run their Rosetta-based program for all the protein–protein inter-
actions in the PDB repository in order to estimate the number of
putative peptide-binding domain families. Setting up the domain
cut length to 16 amino acids, and applying a �10 REU binding en-
ergy cutoff, we identified putative peptide-binding domains for
689 new families, which represent almost 80% peptide-binding do-
main increase relative to the known families (Fig. 3). Although
these numbers await experimental validation, previous success
stories show that this strategy works for the design of peptide
inhibitors [83–85]. In fact, the decline in productivity of drug dis-
covery in the last years has produced an increased interest in phar-
macological peptide-based inhibitors [77,78].

The current high-throughput technologies have evolved to a
point that the generation of specificity profiles for all or most pep-
tide-binding domains within several proteomes is conceivable. It is
very likely that the concept ideas used for SH3 and PDZ domain
families will be extended to study the other known peptide-bind-
ing modules [86]. In fact, several efforts have already been made in
order to explore the specificities of WW domains (Sidhu et al.,
unpublished results). Such information may provide insights into
the specificities of each module, and into the general principles
governing protein–peptide recognition. It may also prove instru-
mental in deciphering the complex processes mediated by the
numerous protein–protein interactions within the different
proteomes.
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