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Development of inhibitors in the ubiquitination cascade
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The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein func-
tions. It is therefore a fundamentally important regulatory mechanism that impacts most if not
all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human dis-
eases such as neurodegenerative and immunological disorders and many cancers. The success of
proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination
cascade would be clinically important for therapeutic benefits. In this review, we summarize
advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent
work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that
may shed light on innovative drug discovery in the future.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Ubiquitination is a dynamic and reversible post-translational
process initially discovered in proteasome mediated protein degra-
dation [1]. Since then, it has become clear that ubiquitination plays
a critical role in many key cellular processes, by means of a variety
of mechanisms, from changing protein stability and modulating
protein activity to promoting or disrupting protein–protein inter-
actions [2,3]. The central player, ubiquitin (Ub), is a small
(8.5 kDa) but evolutionarily conserved protein. Several proteins re-
lated to Ub in sequence and three-dimensional structure have also
been identified as Ub-like proteins (UBLs), such as NEDD8 (neural
precursor cell expressed, developmentally downregulated 8),
SUMO (small ubiquitin modifier), and ISG15, which are important
for a diverse set of signaling pathways including nuclear transport,
autophagy, and antiviral pathways [4]. In a highly coordinated
multi-step enzymatic cascade, ubiquitination covalently attaches
one or more Ubs to internal lysine (Lys) residues or the N termini
(rarely) of target proteins through the sequential actions of ubiqui-
tin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2),
and ubiquitin ligases (E3) [5–8] (Fig. 1A). First, E1 employs ATP
to adenylate Ub to form a high-energy thioester bond between
the Ub C-terminal carboxyl group and the thiol group of the E1 ac-
tive site cysteine residue (E1�Ub). The activated ubiquitin is then
transferred to the cysteine residue of E2 enzymes through a similar
thioester linkage (E2�Ub). Finally, the E3 ligases recruit charged E2
enzymes and facilitate specific transfer of Ub to protein substrates
[9,10]. Importantly, a family of deubiquitinating enzymes (DUBs)
catalyzes the cleavage of Ub from polypeptides to make it a revers-
ible process and also contribute to Ub homeostasis [11].

E3 ligases can be further divided into the HECT (homologous to
E6-associated protein carboxy terminus) family, the RING (really
interesting new gene) family, and the U-box family [7]. The major
difference among them is that the HECT E3 ligases form an inter-
mediate thioester bond with Ub before linkage to substrate. In con-
trast, the RING and U-box E3 ligases facilitate Ub transfer from E2
enzymes by an allosteric mechanism [10,12]. E3 ligases can modify
proteins by attachment of a single Ub to one (monoubiquitination)
or more Lys residues (multi-monoubiquitination) in a substrate
[13,14], or by sequential attachment of multiple Ub moieties
(assembled through isopeptide bond formation between the C-ter-
minal Gly carboxylate and internal Lys side chains in Ub) to a Lys
residue in the substrate to form Ub chains (polyubiquitination)
[10]. Ub has seven Lys residues (K6, K11, K27, K29, K33, K48, and
K63), all of which can potentially participate in chain formation,
with K48 and K63 being the most common and intensively studied
residues involved in polyubiquitination [6,15]. Ub can also form
linear chains by linking to the amine of the N-terminal methionine
(M1) [16].
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Fig. 1. The UPS and its inhibitors. (A) Ubiquitination involves a three-step enzymatic cascade. First, E1 employs ATP to adenylate Ub to form a high-energy thioester bond
between the Ub C-terminal carboxyl group and the thiol group of the active site cysteine residue. The activated Ub is then transferred to the cysteine residue of an E2 enzyme
through a thioester linkage. Finally, an E3 ligase recruits a charged E2 and helps transfer Ub to specific protein substrates to form mono- (not shown) or poly-Ub chains, which
will lead to different cellular responses, including signaling events or protein degradation through the proteasome. Deubiquitinating enzymes (DUBs) catalyze the cleavage of
Ub from polypeptides to reverse the ubiquitination process and to maintain Ub homeostasis. (B) Inhibitors that block various steps in the ubiquitination pathway.
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Given the essential role of the ubiquitin proteasome system
(UPS) in regulating protein function, it was not surprising that dys-
function of UPS components is implicated in the occurrence of
many human pathological disorders, including numerous cancers,
cardiovascular diseases, viral diseases, and neurodegenerative dis-
orders [5]. For example, HUWE1 (encoding a HECT E3 ligase) is
highly expressed in lung, breast, and colorectal carcinomas
[17,18], mutational inactivation of E3 ligase BRCA1 causes breast
cancer predisposition [19], and overexpression of MDM2 was ob-
served in several types of cancer, as MDM2 promotes the degrada-
tion of p53 [20,21]. Therefore, developing inhibitors to target
specific components of the UPS is predicted to have significant
therapeutic potential. This has been demonstrated by the clinical
success of the proteasome inhibitor Bortezomib (PS341/Velcade,
Millennium Pharmaceuticals), the first drug targeting the UPS ap-
proved by the US Food and Drug Administration (FDA) in 2003
for treatment of relapsed or refractory multiple myeloma [22,23].
Bortezomib is a dipeptidyl boronic acid derivative (Fig. 2A) that
is a reversible inhibitor of the chymotrypsin-like activity of the
20S proteasome core particle [24]. It is also in clinical trials for fol-
licular non-Hodgkin’s lymphoma (Phase III), diffuse large B cell
lymphoma (Phase II), and many other cancers [9]. Although one
would assume that inhibition of the proteasome blocks a common
step of the UPS and is therefore non-specific, interestingly, Bort-
ezomib showed selective cytotoxicity to cancer cells compared
with normal cells, probably because cancer cells have much more
proteasome workload as they may generate higher concentrations
of aberrant proteins [25,26]. An irreversible proteasome inhibitor
structurally and mechanistically distinct from Bortezomib, Car-
filzomib (PR-171/Kyprolis, Onyx Pharmaceuticals, Fig. 2A), was ap-
proved by FDA in 2012 for patients previously treated with
Bortezomib and immunomodulatory compounds [27]. Carfilzomib
can induce cell cycle arrest and apoptosis in a variety of human
cancer cell lines and importantly, it is more potent and more selec-
tive than Bortezomib and therefore displays activity against Bort-
ezomib-resistant cancer cells and its cytotoxicity against RPMI
8226 multiple myeloma cells is higher that that of Bortezomib
[27–30]. Efforts are ongoing to develop second-generation protea-
some inhibitors, and hopefully these may yield drugs displaying
better potency and fewer side effects [5,24,27,31]. Detailed review
about proteasome inhibitors for their synthesis, pharmacology, and
clinical treatment of multiple myeloma and other types of cancer
have been published elsewhere and will not be discussed further
[27,29,32].
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Fig. 2. Chemical structures of small molecule inhibitors. (A) Proteasome inhibitors Bortezomib (top) and Carfilzomib (bottom) [27]. (B) E1Ub inhibitors PYR-41 (top) and JS-K
(bottom) [34,35]. (C) E1NEDD8 inhibitor MLN4924 [41,42]. (D) CDC34 inhibitor CC0651 [57]. (E) MDM2–p53 inhibitors Nutlin2 (top) and RITA (bottom) [66,67]. (F) SCFskp2
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With rapidly growing understanding of the fundamental impor-
tance of the UPS in cell signaling and disease, it was realized that
the system provides a rich source of attractive molecular targets
for pharmacological intervention [10]. Many groups and compa-
nies are gearing up to search for small molecule inhibitors that
selectively block certain steps of the UPS. The success of Bortezo-
mib and Carfilzomib in anti-cancer therapy suggests that the
development of such compounds would be clinically important
to target individual pathways and substrate proteins for therapeu-
tic benefits. Such drugs should increase the effectiveness of the
treatment and should also have fewer non-specific side effects
compared with general proteasome inhibitors. In this review, we
illustrate recent progress in finding specific inhibitors for UPS com-
ponents (Fig. 1B) that have been implicated in human diseases and
therefore represent potential therapeutic targets. We then
highlight the invention of Ub variant technology as a rapid means
for generating tools to modulate UPS enzymes.

2. Small-molecule inhibitors targeting steps in the
ubiquitination cascade

2.1. Ub activation

E1 Ub activating enzymes (two members in the human gen-
ome) catalyze the first step in the ubiquitination pathway in an
ATP-dependent manner [8]. E1 first binds ATP and adenylates the
C-terminal glycine of Ub, and then forms a covalent thioester bond
between its catalytic cysteine and Ub. Subsequently, E1 binds a
second ATP and Ub to form a ternary complex that is competent
to transfer thioester-bound Ub to a variety of E2 Ub conjugating
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enzymes [5]. Biochemically, there are three major points where Ub
activation can be targeted for inhibition. First, binding of ATP to the
E1 enzyme may be blocked, using an ATP-competitive small-mol-
ecule inhibitor analogous to those used to inhibit kinases [33]. Sec-
ond, formation of the covalent E1�Ub complex may be prevented
by targeting the active-site thiol. Third, the interaction between
the E1 and E2 enzymes may be blocked [5,25]. However, inhibition
of Ub activation is predicted to be non-specific in principle, as it is
required for ubiquitination of many substrates in cells. Indeed,
temperature-sensitive mutations in E1 arrest the cell cycle in late
S phase and G2, indicating that multiple pathways required for cell
proliferation in normal cells are affected by mutating E1. Below, we
summarize advances in developing inhibitors for Ub and NEDD8 E1
enzymes (Fig. 1B).
2.1.1. E1Ub inhibitor
PYR-41 (Fig. 2B), an irreversible pyrazone derivative inhibitor

was identified in a screen for inhibitors of MDM2-dependent p53
ubiquitination, and it was found that the nitrogen dioxide group
on the furan ring of PYR-41 likely blocked the catalytic cysteine
of E1Ub [34]. Importantly, the compound did not demonstrate
inhibitory activity against other thiol-dependent enzymes, includ-
ing several E2 enzymes [34]. However, PYR-41 can partially inhibit
HECT E3 ligase activity in vitro, raising specificity concerns. The ef-
fects in cells treated with PYR-41 included inhibition of cytokine-
induced nuclear factor jB (NF-jB) activation, stabilization of p53
protein levels, induction of p53-dependent transcription, and pref-
erential killing of transformed cells with wild-type (wt) p53 [34].
Interestingly, PYR-41 treatment causes increase of cellular sumoy-
lation but neddylation levels stay the same [34]. The potential
therapeutic value of targeting E1Ub is further underscored by the
unexpected finding that the nitric oxide (NO)-producing prodrug
JS-K (Fig. 2B) inhibited E1�Ub thioester formation through an
interaction between NO and the E1Ub active-site thiol [35]. Consis-
tent with other E1Ub inhibitors, the downstream effects of JS-K
treatment included decreased levels of total ubiquitinated proteins
and increased p53 expression.
2.1.2. NEDD8 activating enzyme inhibitor
Interestingly, the UBL protein NEDD8 was found to be required

for activation of a large subfamily of more than 100 E3 ligases, the
cullin-RING ligases (CRLs) [36–38]. The NEDD8 protein shares
�60% sequence identity with Ub, and it also can be conjugated to
proteins through a process initiated by a specific E1, NAE (NEDD8
activating enzyme). Therefore, inhibiting NAE would be more spe-
cific than inhibiting E1Ub, and many CRL substrates are important
regulators for cancer cell growth and survival, including the cell cy-
cle inhibitor p27 [39]. Inhibition of the NEDD8 pathway was re-
cently demonstrated using a small-molecule inhibitor, MLN4924
[40,41]. MLN4924 (Fig. 2C) is an adenosine sulfamate analog that
binds to the nucleotide-binding pocket of the NEDD8 thioester of
NAE and forms a covalent adduct that effectively depletes all ned-
dlyation activity through substrate-assisted inhibition, thereby
driving all CRLs into inactive non-neddylated forms [42]. As shown
in mouse cancer models, MLN4924 appears to exert its effect by
stabilizing CDT1, a DNA replication licensing factor and a substrate
of the SCFskp2 and CRL4Cdt2 ligases, leading to DNA synthesis misre-
gulation and apoptosis and senescence of proliferating cancer cells
[43]. Preclinical data show high efficacy of MLN4924 in diffuse
large B cell lymphoma and acute myeloid leukemia (AML)
[44,45], and the compound has entered phase I/II clinical trials
for the treatment of multiple myeloma and non-Hodgkins
lymphoma. Notably, analogues of MLN4924 form similar adducts
with other UBL proteins and inhibit their cognate E1 enzymes,
including Ub and SUMO-activating enzyme, indicating that
‘‘substrate-assisted’’ inhibition may prove useful for targeting
other UBL pathways [42].

2.2. Ub conjugation

The second step of the ubiquitination cascade is controlled by E2
Ub conjugating enzymes (�30 members in the human genome).
Other UBL proteins also have their specific E2 enzymes, such as
UBE2I for SUMO and UBE2M/F for NEDD8 (reviewed in [46]). E2 en-
zymes have been linked to cancer and other diseases, including
UBE2Q2 in head and neck carcinoma [47], UBE2T in lung cancer
[48] and UBE2C in chromosomal instability and tumor formation
[49]. An E2 enzyme accepts the activated Ub from E1 through a thi-
oester bond with its catalytic cysteine and then transfers Ub to sub-
strate proteins with assistance from E3 ligases [46,50]. E2 enzymes
catalyze both Ub chain initiation and elongation and, in some cases,
also govern the type and extent of Ub linkage [46,50,51]. However,
some E2 enzymes only function in a specific step, as demonstrated
by UBE2W and UBE2E for chain initiation of BRCA1 substrates and
UBE2N-UBE2V1 and UBE2K for chain elongation [46,52], and some
can mediate both processes, such as yeast Cdc34 [53]. The catalytic
properties of E2 enzymes, and the binding of E1, E3 and Ub, are
mediated by a highly conserved 150–200 amino acid Ub-conjugat-
ing catalytic domain (UBC) [46,50,51]. E2 enzymes can be further
classified based on the presence of N- or C-terminal extensions to
the catalytic core, which have important functional implications
[54]. Each E2 enzyme can interact with multiple E3 ligases, as for
example, UBE2R1 recognizes several SCF complexes [55]. This is
also further shown in a network interaction study of E2-RING E3
pairs [56]. Therefore, targeting Ub conjugation for inhibition at
E2-E3 interaction interfaces may provide better specificity than tar-
geting the interfaces of E1–E2 and E2–Ub.

2.2.1. CDC34 inhibitor
CDC34, or UBE2R1, is the dedicated E2 enzyme for CRL E3 li-

gases in promoting K48-linked polyubiquitination and degradation
of cell cycle regulatory proteins including the cell cycle inhibitor
p27, which functions to prevent G1/S progression [39]. In a high-
throughput screen for inhibition of p27 ubiquitination, the Sicheri
group found a small molecule named CC0651 [57]. CC0651
(Fig. 2D) turns out to be a specific inhibitor for human CDC34
(Fig. 1B) but not for its homolog UBE2R2 or its yeast counterpart
Cdc34. The inhibitor acts allosterically by binding to a pocket that
is 19 Å away from the active site and induces a number of translo-
cations of secondary structural elements in the enzyme (Fig. 3A).
CC0651 and its closely related derivatives caused accumulation
of p27 and cyclin E in cells and inhibited proliferation of human
cancer cells. These findings suggest that it may be feasible to devel-
op highly selective inhibitors for other E2 enzymes in a similar
manner.

2.3. Ub ligation

The final step of ubiquitination is controlled by E3 Ub ligases
(more than 600 members in the human genome), which determine
the selectivity of ubiquitination by interacting with both E2�Ub
and the substrates to which Ub is transferred. Inhibitors of E3–E2
or E3–substrate interactions may thus enable specific targeting of
a limited number of proteins, which may translate into a better
therapeutic ratio and fewer side effects. To this end, structural
studies of E3 ligase substrate-binding surfaces or sites mediating
ubiquitination activity and assembly of E3 complexes not only
reveal molecular mechanisms, but also facilitate the discovery of
small-molecule inhibitors. As discussed above, E3 ligases function
by one of two general mechanisms: they either form covalent Ub
adducts on their active sites (HECT) or serve as non-covalent
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adaptors that facilitate the transfer of Ub from E2�Ub to substrate
(RING and U-box). The three classes of E3 ligases have different
protein interaction domains (HECT, RING, and U-box) that bind
to E2 enzymes, and other domains recruit substrates [58–60].
The HECT domain is a �350-residue polypeptide, which adopts a
bilobal structure [61]; the N-terminal lobe contains the E2-binding
site and the C-terminal lobe harbors the catalytic cysteine. The
lobes are separated by a small linker stretch, forming a cleft with
the active site [46]. However, these surfaces are quite shallow
and are not well adapted for targeting by small molecules. On
the other hand, the RING finger domain is formed by conserved
patterns of cysteine and histidine residues that hold two Zn2+ ions
in a conformation referred to as a ‘‘cross-brace’’ motif that bind E2
enzymes [62]. Finally, the RING-like U-box family adopts a similar
structure but without employing Zn2+ coordination. One might
think that inhibition of a canonical catalytic site (HECT) would be
easier than targeting protein–protein interaction domains (RING
or U-box), but all reported small molecule inhibitors of E3 ligases
target RING-type enzymes (Fig. 1B).

2.3.1. MDM2–p53 inhibitor
Stabilization of the tumor suppressor p53 is critical for cells to

respond to stress and limit cancer development. MDM2 is a RING
E3 ligase that has a crucial role in regulating the abundance of
p53. Many tumors that retain wild type p53 show evidence of
MDM2 overexpression [63,64]. Thus, targeting MDM2 in these can-
cer cells is an attractive strategy for cancer therapy [65]. Nutlins
(imidazoline derivatives developed by Roche) are the first group
of small molecules that can interfere with the ability of MDM2 to
mediate p53 ubiquitination [66]. Nutlin-2 (Fig. 2E) disrupts the
interaction between MDM2 and p53 by binding directly to the
p53-binding site of MDM2 and thereby stabilize p53. Indeed, Nut-
lins induce p53-dependent cell-cycle arrest, apoptosis, and cellular
senescence in cancer cell lines. Importantly, Nutlins have a signif-
icant anti-tumor effect as shown by growth inhibition of human
tumor xenografts in mice, with no obvious toxicity to healthy tis-
sues [66]. Nutlin 3A/R7112 (Fig. 3B) has advanced to clinical trials
for solid tumors and leukemia given its favorable preclinical char-
acteristics in terms of pharmacological properties and toxicity [9].
RITA (Fig. 2E) is another small molecule that was shown to regulate
the interaction between MDM2 and p53 in a chemical screen de-
signed to find compounds that specifically arrested growth of a
p53-positive cancer cell line [67]. Instead of binding MDM2, RITA
probably binds the N-terminus of p53, thereby inducing a confor-
mational change that stabilizes the N-terminal a-helix and pre-
vents the recognition of p53 by MDM2 [67]. Interestingly, RITA
does not affect the transcriptional activity of p53, but rather, pre-
vents p53 from interacting with other regulatory proteins, such
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as PARC (p53-Associated Parkin-like cytoplasmic protein) and
p300, which can promote p53 polyubiquitination by MDM2 [68].
As with Nutlins, RITA induces apoptosis in human tumor cells with
little effect on normal cells, and it slows down the growth of tu-
mour xenografts in mice [67]. It will be interesting to test whether
RITA and Nutlins can act synergistically to induce apoptosis in can-
cer cells [25]. Inhibitors of MDM2 E3 ligase activity were also re-
ported to be able to promote p53 stabilization and activation
[69,70]. Further studies are required to determine whether these
molecules will be useful in the treatment of human cancer.

2.3.2. IAP inhibitors
Another class of RING E3 ligases actively targeted in the field is

the IAPs (inhibitor-of-apoptosis proteins), and several antagonists
of IAPs (Fig. 1B) have already entered clinical trials [9]. In a variety
of cell lines, IAPs effectively suppress the enzymatic activity of
caspases and therefore inhibit apoptosis mediated by both intrinsic
and extrinsic pathways, including death receptor activation, ioniz-
ing radiation and viral infection [71]. The E3 ligase activity of IAPs
is a key regulatory component in the apoptotic program since it
mediates both autoubiquitination and degradation, and also, that
of their substrates [71,72]. Smac is a protein that interacts with
the surface groove of the BIR3 domain of IAPs and prevents IAP
inhibition of both initiator and effector caspases [73]. A small mol-
ecule mimic of Smac was found to bind to cellular IAPs and po-
tently induce caspase activation and apoptosis in human cancer
cells [74]. Further studies of Smac mimetic small molecules re-
vealed that they induce the autoubiquitination and degradation
of the IAPs, which then leads to the death of cancer cells by stim-
ulating the tumor necrosis factor a (TNF-a) pathway [75].

2.3.3. SCF inhibitors
Small molecule inhibitors of several SCF family members of CRL

E3 ligases have also been identified. The SCF complex is composed
of a modular E3 core containing scaffold CUL1 and RING domain
containing protein RBX1, and an ubiquitination substrate specific-
ity module composed of SKP1 and a member of the F-box family of
proteins, many of which are overexpressed in many cancers and
correlate with poor prognosis [55,76,77]. In the case of SCF com-
plexes, inhibition of either the F-box protein–substrate interface
or the recruitment of the F-box protein to the SCF core are attrac-
tive strategies to selectively inhibit ubiquitination events [78].
SCFskp2 ubiquitinates p27 and targets it for proteasomal destruc-
tion, and decreased levels of p27 are a poor prognosis factor in
many malignancies [79]. Researchers have identified a small mol-
ecule CpdA (Fig. 2F) that prevents the incorporation of Skp2 into
the SCFskp2 complex, and thus induces G1/S cell cycle arrest by sta-
bilizing p27 and other substrates. Importantly, CpdA sensitized
multiple myeloma cells to Bortezomib and was active against both
myeloid and lymphoblastoid leukemia cells derived from patients
[80]. In addition, a recent study screened for inhibitors that selec-
tively target the p27-binding interface formed by Skp2-Cks1. This
approach yielded four compounds that stabilize the expression of
p27 in different cancer cell lines and induce cell cycle arrest in
G1 [81]. SCFbTrCP1 is a CRL E3 ligase that triggers the degradation
of IkBa, the inhibitory component of the transcription factor NF-
kB, and inhibitors of SCFbTrCP1 may therefore have potential to pre-
vent the polyubiquitination and degradation of IkBa [82].

Researchers have also identified a small-molecule inhibitor of
Cdc4, the yeast ortholog of the mammalian F-box protein Fbw7
(F box and WD repeat domain-containing 7). Structural studies re-
vealed that the inhibitor named SCF-I2 (Fig. 2G) inserts between
the b-strands of the WD40 domain of Cdc4, which are remote from
the substrate-binding site (Fig. 3C). Binding of SCF-I2 induces a ser-
ies of conformational changes that distort the substrate-binding
pocket and impair binding and ubiquitination of its substrates,
phosphorylated Cdk1 inhibitor Sic1 and Far1 [83]. Thus, SCF-I2 is
one of the first allosteric inhibitors of an E3 ligase identified thus
far and its discovery raises the possibility of a similar strategy for
allosteric modulation of the WD40-repeat class of proteins [84].
A small molecule that inhibits the SCFMet30, but not the closely re-
lated SCFCdc4, was recently identified in a chemical genetics screen
in yeast for enhancers of rapamycin [85]. The compound SMER3
(Fig. 2H) bound to the F-box protein Met30 and diminished its
binding to Skp1 in vivo and thereby disrupted the assembly of a
functional SCF complex and stabilized substrates such as Met4
[85]. Finally, the drug thalidomide, a sedative that causes birth ef-
fects, was identified as an inhibitor for cereblon (CRBN), a compo-
nent of the CRL4DDB1 complex important for limb outgrowth and
the expression of a fibroblast growth factor (FGF8) during embry-
onic development [86]. Collectively, these proof-of-principle stud-
ies demonstrate the feasibility of obtaining selective
pharmacological inhibitors of SCF ligases, which will offer highly
specific therapeutic approaches for a wide variety of malignancies.

2.4. Ub chains

In general, Ub chains are homogenous as the same residue is
modified during elongation, although mixed linkage chains have
been observed [6,87]. Mass spectrometry studies revealed that all
seven Lys residues and the N-terminal Met residue can participate
in the formation of Ub linkages [88,89]. Interestingly, the different
linkages result in different chain topologies as shown by the struc-
tures of di-Ub molecules [6]. Ub chains adopt either compact con-
formations, where adjacent moieties interact with each other (e.g.,
K6, K11 and K48 linkages), or open conformations, where no inter-
faces are present except for the linkage site (e.g., M1 and K63 link-
ages) [6,90–92]. The differences in the chain topologies likely
determine the fate of ubiquitinated proteins [10]. For instance, pro-
teins tagged with K48-linked poly-Ub chains are generally labeled
for 26S proteasome-mediated recognition and protein degradation.
In contrast, K63-linked poly-Ub chains have been implicated in a
variety of non-proteolytic functions, including DNA repair, protein
trafficking, and ribosomal protein synthesis [3]. The roles of other
types of Ub chains have not been studied in as great detail as K48-
and K63-linked chains, but their specific roles are starting to
emerge [2]. For example, K11-linked chains are highly abundant
in mitotic cells when the anaphase-promoting complex cyclosome
(APC/C), a key cell cycle regulator, degrades its substrates [93,94].
K11-linked chains also play an important role in endoplasmic retic-
ulum-associated degradation and NF-jB essential modulator
(NEMO)-dependent activation of NF-jB [95,96]. Both K27 and
K33 linkages can be assembled by U-box E3 ligases during the
stress response [58], and K29-linked chains play a role in Ub fusion
degradation [97], while K6-linked chains are not likely to have a
proteolytic role [98]. Linear chains are assembled by the linear
ubiquitin chain assembly complex and play a crucial role in NF-
jB signaling [99].

2.4.1. Ubistatins
Unexpectedly, a recent large-scale chemical genetics screen

identified small molecules known as ubistatins (Fig. 2I for ubistatin
A) that specifically bind to K48-linked ubiquitin chains [100]. In a
reconstituted in vitro system, ubistatins can stabilize both cyclin B
and Sic1, substrates of APC/C and SCFCdc4, respectively. NMR and
in vitro binding assays showed that ubistatins bind interfaces be-
tween K48-linked Ub molecules and thereby change the conforma-
tion of the Ub chains and impair binding and recognition by poly-
Ub receptors of the proteasome [100]. These molecules have strong
negative charges and therefore are not cell permeable, but they
provide evidence for a new therapeutic approach for blocking pro-
tein degradation by modification of poly-Ub chains [25].
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2.5. Deubiquitination

In recent years, reversible ubiquitination has attracted increas-
ing attention as it is a crucial mediator within intracellular signal-
ing such as p53 and NF-jB pathways [101]. This reversibility is
accomplished through deubiquitinating enzymes (DUBs), which
can remove Ub moieties from substrates to prevent protein deg-
radation or signaling. DUBs also contribute to Ub homeostasis and
can edit the form of modification by trimming Ub chains
[101,102]. Therefore, it is not surprising that misregulation of
DUBs is implicated in a growing number of diseases, including
neurological disorders, viral infections and cancer. In humans,
there are approximately 100 DUBs belonging to five different
structural families: approximately 60 ubiquitin specific proteases
(USPs), four ubiquitin C-terminal hydrolases (UCHs), four Josephin
domain (Machado–Joseph disease protein domain) proteases, 16
ovarian tumor (OTU) proteases and eight JAB1/MPN+/Mov34 do-
main (JAMM) metallo-enzyme proteases [103,104]. It is well ac-
cepted that the DUB family of enzymes are ‘‘druggable’’,
because they demonstrate a high degree of substrate specificity
and contain well defined catalytic pockets that makes them ame-
nable to screening with libraries of small molecules [103]. Indeed,
Inhibitors of the UCH family of DUBs have been reported with
modest selectivity and affinity [105–107]. More encouragingly,
there has been good progress in developing small molecule inhib-
itors targeting the SARS CoV (severe acute respiratory syndrome
coronavirus) DUB PLpro (papain-like protease) [107,108], con-
firming the potential of the DUB family as one of the most drug-
gable families in the UPS. Novartis has patented compounds that
inhibit USP2 and UCH-L3, which are implicated in the MDM2–p53
pathway or neurodegenerative disorders, respectively [9]. Here
we summarize recent advances in the development of inhibitors
for USPs (Fig. 1B), the most intensively studied sub-family of
DUBs.
2.5.1. USP1 inhibitor
USP1 was recently found to deubiquitinate inhibitor of DNA

binding (ID) 1-3 proteins and, consequently, to promote stem cell
characteristics in osteosarcoma [109]. USP1 mRNA and protein
levels were also increased in a subset of human osteosarcoma
biopsy samples. Finally, USP1 knockdown in osteosarcoma cells
causes cell-cycle arrest and osteogenic differentiation. Interest-
ingly, USP1 also deubiquitinates FANCD2, a central player in the
Fanconi Anemia (FA) pathway, and is required for FANCD2 foci
formation, release from chromatin, and essential function in
DNA repair [110,111]. USP1 is therefore a promising target for
pharmacological intervention, as inhibiting its protease activity
in malignant osteosarcoma should lead to reduced proliferative
capacity, the potential to reverse its transformed phenotype,
and defective DNA repair to sensitize cells to chemotherapeutic
agents. It should be noted that USP1 forms a stable complex with
UAF1, which stimulates the catalytic activity of USP1 [112]. Re-
cently cell active small-molecule reversible inhibitors against
USP1/UAF1 were identified (pimozide and GW7647, Fig. 2J) and
they displayed selectivity against a number of DUBs, deSUMOy-
lase, and cysteine proteases [113]. Further studies of the USP1/
UAF1 inhibitors suggested that pimozide and GW7647 inhibit
USP1/UAF1 by a non-competitive mechanism and bind at a site
other than the active site of USP1/UAF1 [113]. Importantly, the
USP1 inhibitors act synergistically with the chemotherapy drug
cisplatin to inhibit the proliferation of cisplatin-resistant non-
small cell lung cancer (NSCLC) cells [113]. However, further bio-
chemical and genetic studies in osteosarcoma cells treated with
USP1 inhibitors will be critical to assess their therapeutic poten-
tial [114].
2.5.2. USP7 inhibitor
USP7 is a key regulator of p53, as well as many other substrates

that are involved in various cellular pathways [115]. As discussed
above, the E3 ligase MDM2 binds and ubiquitinates p53 to regulate
its cellular protein level and activity [116]. USP7 is a critical com-
ponent of this pathway as it deubiquitinates and stabilizes both
p53 and MDM2. As shown by the Gu group, partial reduction of
USP7 levels in several human cell lines promotes decreased levels
of both MDM2 and p53, yet total abolition of USP7 stabilizes p53
levels by decreasing MDM2 [117,118]. This observation suggests
that the absence of USP7 promotes MDM2 downregulation, which
in turn eliminates the activity of MDM2 as the Ub ligase for p53.
Hybrigenics has developed a cyano-indenopyrazine derivative
small molecule compound (HBX41, 108, Fig. 2K) that can inhibit
USP7 activity in the submicromolar range but is not quite selective
against a panel of cysteine proteases [119]. Further kinetics data
indicate that HBX 41,108 is an uncompetitive reversible inhibitor
and it allosterically modulates the catalytic reaction of USP7
[119]. Similar to RNAi-mediated USP7 silencing in cancer cells,
HBX41,108 treatments stabilized p53, activated transcription of a
p53 target gene without inducing genotoxic stress, and inhibited
cancer cell growth [119]. Very recently, other USP7 inhibitors have
been developed and they will likely help characterize the potential
for USP7 inhibitors in preclinical settings [120,121]. For instance,
Hybrigenics developed second-generation irreversible USP7 inhib-
itors (Fig. 2K), which are capable of regulating USP7 substrates in
cancer cells and recapitulate the USP7 knockdown phenotype
[121]. Indeed, incubation of exponentially growing HCT116 cells
with HBX 19,818 led to an increase in the levels of p53 and its tar-
get protein cyclin-dependent kinase inhibitor p21. Most impor-
tantly, HBX19,818 binds selectively to the active site of USP7 and
is much more specific than HBX41,108 [121]. Another selective
USP7 inhibitor, P5091 (Fig. 2L), was able to induce apoptosis in
multiple myeloma cells resistant to conventional and Bortezomib
therapies [120].

2.5.3. USP14 inhibitor
As we discussed above, the proteasome is the major regulator of

Ub-mediated protein degradation. USP14 is one of three human
DUBs, along with UCH37 and RPN11, which associate with the
19S regulatory particle of the multi-subunit 26S proteasome
[103]. The N-terminal UBL domain of USP14 is required for its asso-
ciation with the proteasome and this association can stimulate its
catalytic activity [122,123]. USP14 is shown to inhibit the degrada-
tion of Ub–protein conjugates both in vitro and in cells by trim-
ming Ub chains on substrates [122]. Recently, a high-throughput
screen identified a selective reversible small-molecule inhibitor
of the deubiquitinating activity of human USP14. The compound
IU1 (Fig. 2M) binds specifically to the activated form of USP14 (pro-
teasome bound) and enhances the degradation of several protea-
some substrates in cells, including some implicated in
neurodegenerative disease (i.e., Tau and ataxin-3), suggesting a po-
tential strategy to reduce the levels of misfolded and aggregated
proteins in cells under proteotoxic stress [5,122].

3. Ubiquitin variants as modulators of UPS components

3.1. Rationale and strategy

We devised an inhibitor design strategy based on the fact that
most enzymes and proteins that interact with Ub recognize a com-
mon surface with low affinity but high specificity. For example,
although catalytic domains of USPs often share low sequence
homology, crystal structures have revealed a common Ub-binding
site [124–126]. In different USPs, Ub is bound in the same
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orientation and the isopeptide linkage is aligned in the active site.
Interestingly, the interaction surface on each side is very large but
binding is generally weak [127]. However, despite the common
fold, the Ub-binding sites of USP family members differ in se-
quence, and consequently exhibit significant topological variation.
Importantly, this paradigm of weak interactions through large, di-
verse surfaces also extends to other Ub-binding proteins in the
UPS, including E2 enzymes [128], E3 ligases [129,130] and Ub-
binding domains (UBDs) [131].

Based on these observations, we reasoned that it should be pos-
sible to use Ub as a scaffold to engineer high affinity binders to vir-
tually any Ub-interacting protein. This would be accomplished by
introducing mutations in the Ub surface that would enhance bind-
ing towards a particular protein. Since Ub-binding sites are large
and variable, this strategy should produce Ub variants (Ubvs) that
bind tightly and specifically. Importantly, these Ubvs should act as
potent modulators of UPS proteins by blocking the binding of low
affinity Ub substrates at natural binding sites.

We displayed Ub on bacteriophage and identified �30 residues
that make contact with USP surfaces and constitute the USP-bind-
ing site [132] (Fig. 4A). We constructed a library by simultaneously
targeting the entire USP-binding site for combinatorial mutagene-
sis, using three mutagenic oligonucleotides (each covering a con-
tiguous region of primary sequence). By using a ‘‘soft’’
randomization strategy, the library was biased in favor of the wt
sequence but allowed for significant diversity across the entire
USP-binding surface. We reasoned that this would enable the
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3.2. Ubvs as modulators of DUBs and ligases

3.2.1. DUB inhibitors
USP8 has been implicated in ubiquitin remodeling, clathrin-

mediated internalization, endosomal sorting and regulation of
receptor tyrosine kinases, including the epidermal growth factor
receptor (EGFR) [133–135]. We identified a Ubv (Ubv.8.2) that
bound specifically to the Ub-binding site of USP8 (Fig. 3D) and
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USP21 (Fig. 3E) and USP2a (Fig. 3F) and others have identified
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TNF-a-induced NF-jB activation by deubiquitinating RIP1 [138].
We identified a Ubv (Ubv.21.4) that inhibited USP21 with single-
digit nanomolar potency [132]. Ubv.21.4 blocked the deubiquitina-
tion of RIP1 by USP21 and restored NF-jB activation, showing that
it acts as an inhibitor of USP21 in cells. Finally, in both USP21 and
USP2a complex structures, the Ubv binds in a manner similar to
that of wild type Ub and the mutations lead to improved hydro-
phobic contacts and a rewiring of hydrogen bond networks [132].

Extending beyond USPs, the Ubv library also yielded an inhibi-
tor of OTUB1, a member of the OTU DUB family that is required for
the clearance of Ub conjugates after DNA damage [139]. Ubv.B1.1
efficiently inhibited OTUB1 catalyzed cleavage of K48-linked di-
Ub [132]. OTUB1 also binds to the activated E2-conjugating en-
zyme Ub�UbcH5b, and the binding is enhanced by the presence
of Ub [140]. Although Ubv.B1.1 binds to OTUB1 much more tightly
than wt Ub, it showed a compromised ability to promote complex
formation, suggesting an alteration in the binding mode. Indeed,
the structure of OTUB1 in complex with Ubv.B1.1 revealed that
the inhibitor binds to the distal Ub binding site of OTUB1 and en-
ables a rationalization of its altered binding and allosteric proper-
ties (Fig. 3G).

3.2.2. NEDD4 activator
Although HECT E3 ligases play critical roles in cancer and pos-

sess intrinsic catalytic activity, which makes them potential targets
for drug development [10,61,141], no small molecule inhibitors
have yet been identified for any family member. Using the Ubv li-
brary we successfully generated specific binders for NEDD4 and
ITCH. Surprisingly, a NEDD4 binder (Ubv.N4.02) acted as an activa-
tor and increased auto-ubiquitination in vitro [132]. This activator
activity was also observed in cells, where Ubv.N4.02 increased the
ubiquitination of the yin-yang protein 1 (YY1), a known substrate
of NEDD4 [142]. These unexpected results underscore the need for
ligands that act directly on discrete Ub-binding sites to confirm or
refine effects observed with RNAi approaches that work by reduc-
ing levels of the entire protein. Moreover, the results demonstrate
that the engineered Ub variants can also be utilized as activators of
proteins in the UPS and, together with the already established inhi-
bition of DUBs, represent a general strategy that could be used to
develop enzyme modulators to study the UPS on a system-wide
scale.

4. Conclusions and perspectives

Over the past decade, Ub has taken center stage in cell signaling.
It is now clear that this humble protein plays a leading role in the
control of numerous signaling pathways. Consequently, the en-
zymes that drive ubiquitination and deubiquitination have at-
tracted considerable interest as potential targets for the
treatment of cancer and other diseases. Just as research into pro-
tein phosphorylation has driven targeted cancer therapies in the
last decade, hopes are high that basic discoveries in Ub biology will
yield a new class of therapies in the upcoming decade. Unfortu-
nately, these hopes have thus far been stymied by a paucity of spe-
cific inhibitors of the ubiquitination and deubiquitination
pathways. Nonetheless, recent developments in both small-mole-
cule chemistry and protein engineering provide hope that inhibitor
design for proteins in the UPS may be entering an accelerated
phase.

Following the development of clinically successful proteasome
inhibitors [22,23], significant progress has been made to identify
small molecules targeting specific UPS components (Fig. 1B) for
the potential treatment of diseases such as cancer and neurode-
generative diseases [5,143]. Most of these compounds have not
yet entered clinical trials, where they will face the ultimate test
of therapeutic efficacy in humans. Nevertheless, these proofs-of-
principle show that it is feasible to selectively inhibit many steps
of the ubiquitination pathway. It is noteworthy that, unlike ATP-
competitive inhibitors for kinases [33], no general small-molecule
approaches are available for the inhibition of E2, E3, or DUBs.
Therefore, custom designed high-throughput screening strategies
remain crucial for small-molecule inhibitor discovery.

In parallel with small molecule development, Ubvs derived by
protein engineering have been shown to be ideal tools for conven-
tional cell biology experiments to elucidate the molecular mecha-
nisms and biological functions of Ub ligases and DUBs. The
recombinant nature of Ubvs enables facile manipulations at the ge-
netic level to adapt the proteins for different assays and applica-
tions. Ubvs directly target functional sites and act as potent and
specific inhibitors or activators of catalytic function. Consequently,
they can be used to assess directly the effects of active site inhibi-
tion for validation of UPS enzymes as drug targets for therapy of
cancer and other diseases. Moreover, insights from structural stud-
ies may be applicable to the design of mechanism-based therapeu-
tic small molecule inhibitors.
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