ACROSS THE BORDER:
LATE BRONZE-IRON AGE RELATIONS
BETWEEN SYRIA AND ANATOLIA

Proceedings of a Symposium held
at the Research Center of Anatolian Studies,
Koç University, Istanbul
May 31–June 1, 2010

Edited by
K. Aslıhan YENER
CONTENTS

Introduction: Imperial Demise and Forging Emergent Kingdoms
K. A. Yener

SECTION A: EXCAVATIONS IN LEVANTINE TURKEY AND LEVANTINE SYRIA

Chapter 1
New Excavations at Alalakh: The 14th–12th Centuries BC
K. A. Yener

Chapter 2
The Late Bronze Age Fortresses at Alalakh: Architecture and Identity in Mediterranean Exchange Systems
M. Akar

Chapter 3
Tayinat in the Early Iron Age
T. P. Harrison

Chapter 4
Chatal Höyük in the Amuq: Material Culture and Architecture during the Passage from the Late Bronze Age to the Early Iron Age
M. Pucci

Chapter 5
The Crisis of Qatna at the Beginning of the Late Bronze Age II and the Iron Age II Settlement Revival. A Regional Trajectory towards the Collapse of the Late Bronze Age Palace System in the Northern Levant
D. Morandi Bonacossi

Chapter 6
Shedding New Light on the Elusive Late Bronze and Early Iron Ages at Tell ‘Acharneh (Syria)
M. Fortin and L. Cooper
CONTENTS

Chapter 7
Sabuniye: A Late Bronze-Iron Age Port Settlement on the Northeastern
Mediterranean Coast ... 173
H. Pamir

Chapter 8
A Re-evaluation of the Late Bronze to Early Iron Age Transitional Period:
Stratigraphic Sequence and Plain Ware of Tarsus-Gözlükule 195
S. YALÇIN

Chapter 9
Exploring Sirkeli Höyük in the Late Bronze Age and its Interregional Con-
nections .. 213
E. KOZAL

Chapter 10
The Transition from the Late Bronze Age to the Early Iron Age at Tell Afis,
Syria (phases VII-III) ... 227
F. VENTURI

SECTION B:
EXCAVATIONS IN EASTERN TURKEY
AND EASTERN SYRIA

Chapter 11
Across Assyria’s Northern Frontier: Tell Fekheriye at the End of the Late
Bronze Age ... 263
P. V. BARTL and D. BONATZ

Chapter 12
Between the Mušku and the Aramaeans: The Early History of Guzana/Tell Halaf
M. NOVÁK

Chapter 13
Some Implications of Revised C14 and Dendrochronological Dating for the
“Late Bronze Levels” at Tille Höyük on the Euphrates 311
G. D. SUMMERS

Chapter 14
The Late Bronze Age to Early Iron Age Transition: A Perspective from the
Upper Tigris River .. 329
T. MATNEY
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Neo-Hittite Melid: Continuity or Discontinuity?</td>
<td>M. Frangipane and M. Liverani</td>
</tr>
<tr>
<td>16</td>
<td>Pottery as an Indicator of Changing Interregional Relations in the Upper Euphrates Valley. The Case of the Late Bronze-Iron Age Assemblages from Arslantepe/Malatya</td>
<td>F. Manuelli</td>
</tr>
<tr>
<td>17</td>
<td>New Excavations at the Late Bronze Age and Iron Age Site of Gre Amer on the Garzan River, Batman Province</td>
<td>G. Pulhan and S. R. Blaylock</td>
</tr>
<tr>
<td></td>
<td>SECTION C: Funerary Practices, Texts and the Arts</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Funerary Practices and Society at the Late Bronze-Iron Age Transition. A View from Tell Shiukh Fawqâni and Tell an-Nasriyah (Syria)</td>
<td>A. Tenu</td>
</tr>
<tr>
<td>19</td>
<td>Working Ivory in Syria and Anatolia during the Late Bronze-Iron Age</td>
<td>A. Aubet</td>
</tr>
<tr>
<td>20</td>
<td>Arts and Cross-Cultural Communication in the Early 1st Millennium: The Syro-Anatolian Contact</td>
<td>S. Mazzoni</td>
</tr>
<tr>
<td>21</td>
<td>The Luwian Inscriptions from the Temple of the Storm-God of Aleppo</td>
<td>J. D. Hawkins</td>
</tr>
<tr>
<td>22</td>
<td>Qadesh, Sea-Peoples, and Anatolian-Levantine Interactions.</td>
<td>K. Strobel</td>
</tr>
<tr>
<td>23</td>
<td>An Amulet with the Names of Ramesses II from the Roman Baths at Ankara</td>
<td>H. Peker</td>
</tr>
</tbody>
</table>
INTRODUCTION

It is now widely acknowledged that the Early Iron Age (ca. 1200–900 BCE) constituted a fundamentally formative era in the development of the Syro-Hittite states of the first millennium BCE. While it may be true that this era, the ‘Dark Age’ of Homeric lore, was characterized by cultural devolution, political fragmentation and ethnic strife, there is also growing evidence of cultural and political continuity. As now chronicled by numerous scholars, ongoing archaeological excavations and an ever-expanding corpus of epigraphic discoveries portray a complex historical experience.

In this paper, I will review the evidence from the North Orontes Valley during this formative period. The evidence indicates the emergence of a powerful regional state, possibly an appanage survival of the Hittite Empire’s collapse, centered at Tell Tayinat, and comprised of an intriguing amalgam of Aegean, Anatolian (or Luwian) and Bronze Age West Syrian cultural traditions. As I will attempt to demonstrate, the archaeological record points to the foundation of a new settlement at Tayinat in the Early Iron Age, either co-terminus with, or immediately following, the destruction or abandonment of nearby Tell Atchana (ancient Alalakh). Although our investigations are still ongoing, and the results presented here therefore preliminary, when combined with the mounting epigraphic record, the emerging picture of this formative ‘Dark Age’ is of a considerably more complex historical process than previously imagined, marked by both continuity and change.

THE EARLY IRON AGE EPIGRAPHIC RECORD

The discovery of the Temple of the Storm-God on the Aleppo citadel has played a pivotal role in transforming our understanding of the historical developments of the
Early Iron Age in the region. In the course of restoring the citadel’s standing medieval monuments, the German-Syrian expedition uncovered the north wall of a large building, comprised of twenty-six stunning, carved-stone reliefs. This discovery, in turn, led to the excavation of the east wall of the complex, revealing in the center the magnificently carved representation of the Storm-God of Aleppo facing a human figure, with both flanked by alternating false windows and bull-men. Most importantly, an intact, 11-line Hieroglyphic Luwian inscription (ALEPPO 6) emerges from the human figure’s mouth. The inscription begins with the figure’s name, followed by his titles, placed between his raised right arm and face, with the remainder running on behind him and continuing across the doubly rebated slab behind him. In content, the inscription is a relatively conventional temple dedication; its unique importance is found in the name, titles and country of the human figure:

I (am) King Taita, the Hero, the Ruler of [the land of] Palistin
For my lord the Halabean Storm-God I honoured the image…

Subsequent excavations unearthed the south entrance of the temple, revealing the relief figures of a fish-man and lion, and broken figures of a sphinx and a second lion, the latter two bearing parts of a second, fragmentary inscription (ALEPPO 7) that also references Taita, but also — most intriguingly — Karkamiš and Egypt.

These dramatic epigraphic discoveries in the Temple of the Storm-God on the Aleppo citadel preserve virtually the entire historical record we have for Taita. Yet, it has become increasingly clear that he was an important historical figure during the formative centuries of the Early Iron Age (ca. 1200–900 BCE), and in some ways he has come to symbolize the revolution underway in our understanding of this period.

Although excavations of the Aleppo temple are ongoing, Hawkins has made a number of observations with potentially significant historical implications, based on the epigraphic finds, in particular regarding the prospect of an Early Iron Age polity associated with the ‘Land of Palistin’. Hawkins dates the inscriptions to ca. 1100–1000 BCE, based on the paleography of the script and the iconography of the associated reliefs, and he has drawn attention to the similarity between the name and title of its author and three previously known fragmentary Hieroglyphic Luwian inscriptions. Two of these inscriptions were found on stelae discovered in secondary contexts in the villages of Meharde and Sheizar, located near Qal‘at al-Mudiq, northwest of Hama. The former bears a female figure on its obverse, identified as the “Divine Queen of the Land,” and the second is a funerary stela for a certain Kupapiyas, the wife of

1 For preliminary reports, see Kohlmeyer 2009; also Kohlmeyer 2000; and Gonnella et al. 2005.
2 For translation, see Hawkins 2011; and broader historical context, Hawkins 2009, pp. 169–172.
3 Hawkins 2011, pp. 48–49.
Taita. Both inscriptions refer to Taita as ‘Hero, of the land of WaDAsatini,’ which Hawkins argues represents a variant of the PaDAsatini/Palistin renderings on the Aleppo inscriptions. Most recently, he has raised the possibility that there existed two Taitas: the first associated with the Aleppo inscriptions, and their ‘Palistin’ rendering, and the second corresponding to the Meharde and Sheizar references to ‘Walistein’, with both rulers covering a time span sometime in the eleventh to early tenth centuries BCE.6

The third reference was recorded on a fragmentary Hieroglyphic Luwian inscription recovered during the Syrian-Hittite Expedition’s excavations in the 1930s at Tell Tayinat (specifically Tell Tayinat Inscription 1, fragments 3–5, 1.1).7 Unfortunately, the surviving hieroglyphic fragments do not actually mention Taita, but instead refer to a certain Halparuntiyas, who also appears to have ruled ‘the land of WaDAsatini.’ Hawkins, following Gelb,8 has noted the similarity to Qalparunda, and has raised the possibility that he may be the same Patinean ruler said to have paid tribute to Shalmaneser III in 857 and 853 BCE.9

In addition, two Hieroglyphic Luwian stelae were recently discovered near the resort town of Arsuz, south of Iskenderun and west of the Amanus Mountains.10 The Arsuz inscriptions preserve an autobiographical statement from a certain Suppiluliuma, ‘the Hero, ruler of WaDAsatini, and son of King Manana.’ They also make reference to the city/land of Adana, and to a campaign against the ‘land of Hiyawa’ (ancient Cilicia). Suppiluliuma and his father Manana must predate the earliest previously known Palistinean king, Lubarnas, encountered by Ashurnasirpal II during his raid through the region in 870 BCE, placing their rule in the early 9th or 10 centuries BCE, at the very latest, and the two possible Taitas, presumably, still earlier in the 10th, or the 11th century, as Hawkins has proposed.

In this context, mention should be made of Steitler’s recent suggestion that the biblical Toi, King of Hamath (II Samuel 8: 9–10; I Chronicles 18: 9–10), whose son, Joram, is said to have formed an alliance with the Israelite King David, was in fact Taita, based on the etymology of the two names.11 According to Steitler, Taita, or Toi, installed his son as ruler (or viceroy) of the Hamath district within his larger Palistinean kingdom, a Luwian practice dating back to the Hittite Empire period. If Steitler’s linguistic arguments are accepted, they would provide an independent source dating the reign of at least one of the Taitas to the late 11th–early 10th centuries BCE.

5 For translation, see Hawkins 2000, pp. 415–419.
6 Hawkins 2011, p. 51.
8 Gelb 1939, p. 39.
10 Dinçol 2010.
11 Steitler 2010.
Finally, and perhaps most intriguingly, Hawkins has proposed that the ‘Palistin’ ethnicon shares an etymology with the *Peleset* mentioned in the Medinet Habu reliefs of Sea Peoples fame,\(^{12}\) and thus presumably also shares a common ethnical, if not historical, association. As has been noted by others,\(^{13}\) the *Peleset* are the only Sea Peoples named in the Medinet Habu reliefs who receive a geographical designation, specifically the “Land of the Peleset,” a reference which occurs in several of the accounts of Ramesses III’s battles against the Sea Peoples, including his repulsion of their attempted invasion of Egypt in his eighth regnal year (ca. 1175 BCE).

Although there remains some uncertainty regarding the provenance and dating of this growing corpus of Luwian inscriptions, as Hawkins has observed,\(^{14}\) they collectively infer the existence of an Early Iron Age kingdom of considerable size and influence, apparently encompassing an area that extended east as far as Aleppo, west across the Amanus Mountains to the bay of Iskenderun, and south as far as the Middle Orontes Valley northwest of Hama. It is worth noting the close correspondence between this territorial extent and the combined territories of the Late Bronze Age vassal kingdoms of Mukiš, Niya and Nuhaššu, which were consolidated under the control of Aleppo during Suppiluliuma I’s administrative reorganization of the region in the late 14\(^{th}\) century.\(^{15}\)

EARLY IRON AGE TAYINAT

Tell Tayinat is located at the northern bend of the Orontes River, some 700 m northwest of Tell Atchana (ancient Alalakh), its Bronze Age sister settlement. Tayinat was the scene of large-scale excavations between 1935 and 1938, conducted by the University of Chicago’s Syrian-Hittite Expedition. The Chicago excavations focused primarily on the Iron II and III levels at Tayinat, which they delineated into five discrete architectural phases, or Building Periods.\(^{16}\) However, traces of the Early Iron Age (their Amuq Phase N), primarily in the form of residual pottery, were encountered in virtually all of their trenches on the site’s upper mound (Fig. 1).

Following preliminary surface surveys conducted between 1999 and 2002,\(^{17}\) the Tayinat Archaeological Project (TAP) reinitiated excavations at Tell Tayinat with a brief two-week exploratory season in 2004. These investigations were expanded to full-scale excavations in 2005, and have continued on an annual basis since.\(^{18}\) As with the Syrian-Hittite Expedition’s investigations, Early Iron Age remains have been

[^15]: See further in Harrison 2009b, p. 174.
[^16]: For a summary of the Chicago excavations, see Haines 1971.
[^17]: See further in Batiuk et al. 2005.
[^18]: For yearly reports, see Harrison 2006; 2007; 2008; 2009a; 2010; 2011.
encountered in all the TAP excavation areas, or fields, that have reached pre-Iron II levels. The most substantive exposures have been achieved in Fields 1, 2 and 4 (see Fig. 2). What follows represents a summary of the excavated results achieved to date in these three respective areas.

Field 1

Field 1 is located in the center of the upper mound, on the southern edge of the Syrian-Hittite Expedition’s West Central Area excavations (Fig. 2). The Field 1 excavations were initiated in order to link the renewed TAP investigations with their earlier work. The Field 1 excavations were launched as part of a two-week exploratory sounding in 2004, and in 2005 expanded to the current four 10x10 m squares. To date, the excavations have succeeded in delineating nine superimposed architectural phases, or Field Phases (FP), with the primary sequence dating to the 12th–11th centuries BCE, or the Iron IA period (FPs 3–6), and the late third millennium BCE, or EB IVB (FPs 7–9).19

The earliest Iron Age settlement excavated to date (FP 6) was comprised primarily of a series of large storage ‘silos,’ and lay directly atop remains dating to the late third millennium BCE (specifically Amuq Phase J; Fig. 3). Smaller pits interspersed between these larger installations contained concentrations of non-perforated, cylindrical clay loom weights and other artifacts associated with textile production.

A number of poorly preserved wall segments and storage silos were assigned to the subsequent FP 5 (Fig. 3). The FP 5 remains were unfortunately disturbed by later activities associated with a number of phases, including construction activities during FP 4 (Iron I) and FP 2 (Iron II), and pitting activity during FP 3 (Iron I). Nevertheless, the surfaces and soil layers associated with FP 5, and in particular the ashy deposits removed from the silo-like storage pits, produced a wealth of faunal and botanical evidence. In addition, a carbon sample from a sealed context in this field phase has produced a radiocarbon date of 2910 ± 50 BP (or a calibrated date of 1115 BCE).

FP 5 was sealed by a substantial cultural layer, FP 4, which included the best preserved architectural remains found in the Iron I sequence (Fig. 3), most notably a small rectilinear structure in the northern part of the field. The walls from this phase were built using a distinctive ‘header and stretcher’ construction technique. Deep foundation trenches were excavated into the surrounding soil matrix, and packed with mud bricks to support the free-standing superstructure. Although generally well-preserved, the remains of FP 4 appeared to have been heavily damaged by the leveling that occurred during construction of the foundations and sub-structures of

19 For a more thorough presentation of the Iron IA sequence in Field 1, see Harrison et al. forthcoming.
the later Iron Age temple (or Building II) associated with FP 2, and by extensive pitting activity during the intermediate FP 3.

FP 3, the final phase in the Iron IA sequence, formed a somewhat enigmatic phase, inserted between FPs 2 and 4. It was represented primarily by substantial pitting activity, best exemplified by two large ashy pits in the northwestern part of the field, the former of which was sealed in turn by a slightly concave-shaped plastered installation. No walls or other free-standing structures were assigned to this phase.

The four-phase Iron IA sequence delineated in Field 1 appears to correlate well with the Early Iron Age sequences uncovered at other sites in the region. In the Amuq Plain, for example, the Syrian-Hittite Expedition’s excavations at Chatal Höyük identified four architectural phases dating to the Iron I (collectively, their Phase IV, or Amuq Phase N), while the excavations at Tell Judaidah identified three discrete phases (Levels 11–9, or collectively Phase V). Elsewhere in the region, the Tell Afis excavations have also produced four Early Iron I levels, their Phases Va [=Levels 9c–b], IVc [=Level 9a], IVb [=Level 8b], and IVa [=Level 8a]. In contrast to the Tayinat sequence, however, the Early Iron I levels at Afis form part of a longer sequence that spans the Late Bronze II/Early Iron Age transition. Stratified sequences spanning the LB II/Early Iron I have also been excavated at Ras el-Bassit and Ras Ibn Hani, and at Tell Kazel, with the Early Iron I levels at the latter two sites producing significant quantities of Late Helladic IIIC pottery.

Late Helladic III Pottery

The Iron I levels in Field 1 have produced large quantities of LH IIIC pottery. Although analysis of this material is still in its early stages, it is clear that LH IIIC wares formed the dominant potting tradition during FPs 6 through 3. The assemblage includes a wide spectrum of forms, motifs and fabrics, and is characterized by non-standardized production. Shallow rounded bowls and deeper bell-shaped bowls, or skyphoi, are the most common vessel types in the assemblage (see Fig. 4). The deep bowls are equipped typically with close-set horizontal handles, usually with a painted band applied along the handle, a ring base, and are decorated with horizontal, painted bands and linear motifs on the exterior, and only rarely bear monochrome (solidly painted) interiors. Two fabric color combinations predominate: red painted decorations on a pinkish fabric (RoP), and black painted decorations on a buff, white fabric (BoW). Deep bowls were also well-represented at Chatal Höyük and Tell Judaidah, with thirty-five examples recorded by the Syrian-Hittite Expedition, and grouped

23 Capet 2008.
24 This section summarizes the analysis of the LH IIIC pottery conducted by B. Janeway.
according to three decorative schemes.25 More recently, decorated deep bowls have been found at nearby Tell Gindaris26 and Tell Atchana.27 The assemblage also includes other Aegean bowl types, such as shallow angular bowls and one-handed conical bowls. Other painted wares commonly found in the Field 1 assemblage include carinated kraters, amphoroid kraters, possibly bell kraters, and neck-handled amphorae, their handles typically decorated with dangling hooks, and spouted jars,28 referred to as feeding bottles in the southern Levantine tradition.29

The LH IIIC tradition appears to have enjoyed widespread distribution in the North Orontes Valley. In addition to its predominance at Tell Tayinat, LH IIIC pottery has been reported by the AVRP survey at eighteen other sites in the valley,30 and according to Swift was overwhelmingly dominant in the Phase N assemblages excavated by the Syrian-Hittite Expedition.31 Largely (though not exclusively) the product of local manufacture,32 the unique formal and stylistic features of the LH IIIC pottery preserved in the Early Iron Age levels at Tell Tayinat, and in the North Orontes Valley more generally, reflect the local, idiosyncratic character of this distinctive potting tradition, and reinforce the regionalized and heterogeneous nature of its development throughout the eastern Mediterranean. As a result, not surprisingly, there is as yet no clear consensus regarding its chronological development, although there have been numerous attempts to do so.33 Nevertheless, over the course of the Iron I, the developmental trajectory experienced in the North Orontes Valley clearly witnessed the gradual eclipse of LH IIIC, and its eventual replacement in the Late Iron I/Early Iron II by the Red Slipped Burnished Ware tradition, a trend that has also been observed elsewhere in the region.34

Local Plain Ware35

The Local Plain Wares, or Hittite Monochrome Ware (HMW), are wheelmade and tempered with sand and lime inclusions, and occasionally with mica or chaff. Their color ranges from pink to pale brown and a smaller number of vessels have a reddish tinge. The surface treatment is minimal, in most cases restricted to a simple

25 Swift 1958, pp. 66, figs. 19–21; see also Pucci in this issue.

26 Sürenhagen 1999.

27 Yener in this issue.

28 Eight spouted jars are reported to have been recovered by the Syrian-Hittite Expedition; see Swift 1958, p. 68, fig. 25.

29 Dothan and Zuckerman 2004, pp. 24, 26, 28, fig. 30; Dothan et al. 2006, p. 87, fig. 3.25:13.

30 Verstraete and Wilkinson 2000, pp. 188–189.

31 Swift 1958, p. 64.

32 The Iron I levels in Field 1 have also produced a few isolated sherds of imported Myc IIIB and Cypriot White Slipped Ware.

33 Summarized conveniently in Dothan and Zuckerman 2004, pp. 2–3.

34 See Venturi 2007, pp. 297–300; Janeway 2008, pp. 136–137; Pucci this issue.

35 The following descriptions of the Tayinat local wares summarize analysis conducted by E. Ünlü.
smoothing of the surface. Most vessels are well fired with no dark cores. The typical vessel types in this ware category are plates and shallow bowls, deep bowls, kraters and jars (Fig. 5).

The HMW tradition is best represented in FP 6, and then continues in diminishing quantities into FP 5 and the later phases of the Iron I in Field 1. In the earliest levels of FP 6, the LB II Plain Ware tradition dominates the pottery assemblage, while the LH IIIC, although extant, is not the dominant potting tradition. This trend is reversed in FP 5, with LH IIIC pottery becoming the dominant ware.

Since FPs 6–5 are the earliest Iron I occupational phases thus far attested at Tayinat, this suggests that the LB II HMW potting tradition continued even after the settlement shift had occurred between Atchana and Tayinat. This continuity also strengthens the possibility that both settlements were occupied contemporaneously for at least part of the transition. The persistence of the HMW potting tradition, following the collapse of the Hittite political and administrative center at Hattuša, has also been reported at other sites in the region, including the capital Hattuša itself,36 Kilise Tepe,37 Mersin-Yumuktepe,38 Tarsus-Gözlükule,39 Norşuntepe,40 and Lidar Höyük.41

Local Painted Wares

In the terminal stages of the Late Bronze Age, specifically the LB IIB, local potting industries in the Syro-Anatolian region revived a painted decorative tradition common during the Middle Bronze and Late Bronze I, and reported at sites ranging from Cilicia to northwest Syria and the northern Levant. In central Anatolia, a painted tradition, but in an exclusively handmade ware, appears already in the late 13th–early 12th centuries BCE.42

The Tayinat Local Painted Ware shares the same fabric texture as the Plain Ware and it also exhibits similar surface treatment, although lightly burnished external surfaces are encountered more frequently due to the painted application, which required a smooth vessel surface. The paint ranges in color from red to brown, and the decorative design is restricted to geometric motifs, with the most frequent patterns comprised of hatched triangles, parallel straight lines, and wavy lines framed by parallel lines. Some of the Local Painted Ware forms, such as the krater, find parallels in the Anatolian Late Bronze Age repertoire.

37 Hansen and Postgate 2007, p. 344.
39 Goldman 1956, p. 203; Hanfmann 1963, p. 70; Yalçın this issue.
42 Genz 2003.
The Tayinat Local Painted Wares seem to continue the earlier LB I painted tradition of the region, as represented at Tarsus-Gözlükule43 and Sirkeli Höyük,44 but also encountered during the LB II at neighboring Tell Atchana.45 Genz has more recently proposed that this painted tradition appeared in central Anatolia following the collapse of the Hittite ruling dynasty at Hattuša.46

Shell-Tempered Cooking Ware

Shell constituted the main tempering agent used in cooking ware. The shell-tempered fabric is coarse, and was used in the production of large, closed vessels. Frequent mottling on their exterior surfaces suggests these vessels were used for cooking. The use of crushed shell as a tempering agent for cooking pots has a long tradition both in the Amuq, as attested at Tell Atchana since LB I,47 and in Cilicia, as encountered at Tarsus-Gözlükule from at least the LB I. The Tayinat shell-tempered ware continued this tradition throughout all phases of Iron IA. In the earliest phases of the Iron IA, the shapes consist of closed, often two-handled pots, with a ridge running along the exterior of the rim, and then become more varied in form in the later phases of Iron IA.

Slipped and Burnished Ware

Slipped and Burnished Ware is present in small quantities in the FPs 6 and 5 assemblages. The Slipped and Burnished Ware forms have a red slip, and are varyingly burnished, from lustrous to dull; a few examples of white, cream-slipped surface treatment also occur. The fabric ranges from fine to medium-course in texture, and is fired to a red, oxidized core. However, some vessels exhibit a sharply different, finer fabric, fired to a pale yellow/brown color. A similar fabric occurs in the LB II assemblage at Tarsus-Gözlükule.48

The Slipped and Burnished Ware at Tayinat continues a Late Bronze Hittite Empire period potting tradition, and includes Hittite transport amphora, a particularly common central highland Anatolian form. These transport amphorae are also found in the Late Bronze Age levels at neighboring Tell Atchana,49 and in the LB IIA levels of Tarsus-Gözlükule.50 At Tayinat, they occur primarily in FPs 6 and 5. The finer fabric vessels belong to the Red Lustrous Wheelmade Ware (RLW-w) class, and at Tayinat are best represented by spindle bottles.

43 Goldman 1956, figs. 313 and 380.
44 Haider 1999, figs. 29, 31.
45 M. Horowitz, personal communication.
46 Genz 2005, p. 82.
47 M. Horowitz, personal communication.
48 Goldman 1956, p. 203.
49 Woolley 1955, plate CXI.39.
50 Goldman 1956, fig. 385.1191.
Gray Ware

Gray Ware is indigenous to northwest Anatolia, as attested at Troy throughout the Late Bronze Age and well into the Early Iron Age levels, following the destruction horizon of VIIa. Gray Ware has also been found throughout the eastern Mediterranean, albeit in limited amounts and primarily at coastal sites, where it typically occurs in terminal Late Bronze Age levels or post-destruction contexts.

The Tayinat Gray Wares have a very fine fabric texture, and were fired in a reducing environment, resulting in a grayish black fabric and surface color. The vessels are generally highly burnished. Although the application of the incised decoration is careless, it accentuates the sharp profiles of the vessels. Found in relatively small, but significant numbers, the range of forms include carinated bowls, small jars, juglets, and cups with simple rims and high vertical handles.

Tan Ware

The Tayinat excavations thus far have produced only one recognized example of Tan Ware, another distinctive northwest Anatolian pottery tradition, and the leading ware type in the LB II/EIA levels at Troy, where it accounts for up to 70% of the Level VIIa assemblage. Tan Ware does not have a wide distribution in the eastern Mediterranean.

Loom weights

The Field 1 excavations thus far have produced more than two hundred and fifty non-perforated, cylindrical unbaked clay loom weights. Variously described as spools or spool weights, these distinctive indicators of weaving activity are commonly found in LH IIIC levels at sites throughout the Aegean, most notably at Mycenae and Tiryns. More recently, they have been recognized in Early Iron Age levels at an increasing number of Levantine sites, generally in association with LH IIIC pottery.

The non-perforated, cylindrical unbaked clay loom weights from Tell Tayinat occur almost exclusively in Iron I contexts. These items have been found in a wide variety of sizes, ranging from 3 to 14 cm in length, and weighing between 30 and 770 gm. Generally speaking, two size ranges predominate: a smaller size averaging 7–8 cm in length, and weighing approximately 170–180 gm, and a larger size

51 Becks 2003, p. 49.
53 Blegen et al. 1958, p. 23.
54 Analysis of the Early Iron Age textile industry has been conducted by D. Lumb.
averaging 10–12 cm in length and 550–560 gm in weight. Significantly, chronological variation in loom weight size is evident at Tell Tayinat, with larger heavier loom weights appearing in the earliest FP's, and smaller, lighter examples occurring in the later phases.

Variation in the shape of cylindrical non-perforated loom weights has also been noted. Despite some degree of individual variation, two forms typically occur: 1) cylindrical forms with straight sides and rounded ends, and 2) examples with a distinct hourglass shape with a tapered mid-section and flattened ends. Many examples of this second type have a single notable indentation approximately 1 cm in diameter on one end. Chronological developments in shape do not seem to be evident in the Tayinat assemblage, with examples of both dominant forms occurring in a range of sizes and during all phases of the Iron I. In addition, suggested developments in the quality of manufacture that have been noted at other sites in the region, namely at Tell Afis, are not evident in the Tayinat data. Specifically, a shift from unbaked clay cylinders towards fired clay cylinders over time has not been noted. A majority of the non-perforated loom weights at Tayinat are unbaked. However, low-fired examples are present in small numbers throughout the Iron I, and examples that appear to have been accidentally burned occasionally occur.

The Field 1 loom weights typically have been found in caches, sometimes of twenty or more, deposited in pits, although isolated examples have also occurred. The Syrian-Hittite Expedition also uncovered a cache of these distinctive loom weights at Chatal Höyük, although apparently in an early Phase O context (Room T81, Level 5b). It is now generally accepted that the warp-weighted loom was reintroduced to the eastern Mediterranean during the Early Iron Age, providing further support for a non-local origin of this weaving technology. Cylindrical loom weights become less frequent towards the end of the Iron I at Tell Tayinat, and are eventually replaced entirely by round, doughnut-shaped centrally-perforated stone loom weights, mirroring the similar decline in the presence of LH IIIC pottery.

Spindle Whorls

In addition to loom weights, the Field 1 excavations have uncovered numerous spindle whorls, attesting to the attendant thread-making activities associated with textile production at the site. In total, more than 200 spindle whorls have been recovered from the field 1 excavations to date. Two main categories can be distinguished: 1) whorls deliberately fashioned for the purpose of spinning, of which just over 100 have been found, and 2) perforated sherd-discs manufactured from re-used pot sherds,

59 Haines 1971, pl. 16B.
either body or base sherds. A majority of the deliberately fashioned whorls are typically carved out of stone, with a number of ceramic examples also represented; bone and wooden spindle whorls have not been recovered. The spindle whorls are primarily conical or truncated conical in shape, with a smaller number of bi-conical forms. The whorls vary in weight between 7 and 65 gm, with an average weight of 28 gm. Reused pot sherds tend to be lighter, varying between 2 to 44 gm, with an average of 14 gm. Stone spindle whorls are manufactured primarily from green serpentine, a common rock found in the Amanus Mountains, but a breccia-like stone was also used. Several of the stone spindle whorls exhibit finely carved decorations.

Miscellaneous Small Finds

The Iron I levels in Field 1 have produced a wealth of other cultural remains, including a number of miscellaneous small finds, figurines and potters marks in particular, of possible Aegean derivation. The Field 1 excavations have also produced extensive botanical and faunal records, the latter of which may reflect western culinary practices.61

Contrastingly, a clay bulla, originating from FP 6c, the earliest Iron I phase in Field 1, preserves a seal impression from a circular seal similar to known Hittite seals and seal impressions. The center of the seal contains a series of Hieroglyphic Luwian signs, including an oval sign with vertical markings that resembles the god sign (DEUS). A second sign does not match any discernable Hieroglyphic Luwian sign, but could conceivably be a /la/ or a /li/.62

Field 2

The Syrian-Hittite Expedition achieved limited exposures of two large structures, identified as Buildings XIII and XIV, beneath the floors and walls of buildings assigned to the Second Building Period complex in the West Central Area, this latter complex dated by the excavators to the late 9th and 8th centuries (ca. 825–720 BCE).63 Similar to the Second Building Period, Buildings XIII and XIV appear to have formed part of a large complex oriented around a central courtyard.

Although only the sub-floor structural foundations of Building XIII were found intact, its general outline was reasonably clear, betraying the unmistakable characteristics of a *bit hilani*. The building was roughly rectangular in shape, measuring approximately 28 × 35 m, and was entered from the south through what appears to have been a porticoed entrance, with a series of side rooms arranged around a long,

61 For a more thorough description of this material, see Harrison et al. forthcoming; also Lipovitch 2008.
62 T. van den Hout, personal communication.
63 Haines 1971, p. 66.
rectangular central room, presumably the main reception hall. The building’s foundations were formed by deeply cut, vertically-faced trenches filled with unbaked brick, a distinctive construction technique also used in many of the other monumental buildings of the West Central Area.

Building XIV, though only partially excavated, appears to have been considerably larger than Building XIII. As with Building XIII, very little of its superstructure was found intact, and the excavators therefore were unable to reconstruct a coherent plan of the complex, nor identify its function. However, they did assemble a composite outline of the architectural remains they encountered that gives some indication of its enormous size, which they estimate to have been at least 49×95 m. A number of isolated architectural finds also appear to belong to this First Building Period complex, including at least two enormous column bases, found out of context stratigraphically above Buildings XIII and XIV, and possibly as many as three lion-headed orthostats, found reused in the walls of buildings assigned to the Second Building Period.

In 2005, excavations were initiated to the north of Field 1 in the vicinity of Building I. The primary objectives of the excavations in this area, identified as Field 2, were to determine whether anything remained of Building I, and then to excavate the earlier levels associated with Building XIV and thereby better establish the stratigraphic relationships between these two structures.

The 2005 excavations, limited to a 10×10 m area, proceeded to uncover a series of large mudbrick walls immediately below the modern plow zone. In 2006, two 10×10 m squares were opened to the south and east, linking Fields 1 and 2, and in 2007 three additional squares to the east and north. The 2006 and 2007 seasons also revealed a series of substantial walls which, together with the 2005 remains, appeared to form part of a single monumental structure. The walls averaged more than 3 m in width, and form a tight grid pattern of small rooms, none of which were equipped with entryways. Probes were excavated in the corners of two of these rooms, and reached a depth of more than 3 m before uncovering the bottoms of their walls. Unfortunately, no internal surfaces or floors corresponding to the use-phase of the complex were identified, although a number of earlier surfaces cut by the walls were encountered. Clearly the foundations of an enormous structure, our excavations suggest that the Field 2 walls very probably formed part of the southeastern corner of Building XIV.
In 2007, excavations were initiated to the east of this structure in an effort to find surfaces that might have sealed against the eastern exterior of the building. These excavations revealed a stone pavement, which in turn sealed a densely packed sherd-strewn surface, comprised predominantly of Red Slipped Burnished Ware (or Iron II) pottery. Unfortunately, the Syrian-Hittite Expedition had trenched along the exterior face of the wall, effectively obliterating any stratigraphic connections that might have existed between these surfaces and the wall. Despite the stratigraphic break, and the lack of internal surfaces, the pottery associated with this monumental structure suggests a Late Iron I/Early Iron II date (ca. 10th–early 9th centuries BCE) for the complex.

The TAP investigations have also begun to shed more light on the depositional history of the numerous Hieroglyphic Luwian fragments recovered during the course of the Syrian-Hittite Expedition’s excavations, in part due to the discovery of additional fragments with the resumption of excavations. These fragments, and those of the Chicago expedition, cluster tightly around Building XIV. The extraordinary size of its walls, the monumental column bases and carved orthostats possibly associated with it, and the rich epigraphic record concentrated in its vicinity, unquestionably mark this structure as an important building. Moreover, although further excavations and analysis are needed, its apparent date and relative stratigraphic position within the Early Iron Age sequence at Tayinat also raises the prospect that Building XIV might have been constructed as part of the elite residential area of the rulers of the Land of Palistin.

Field 4

An Early Iron Age metal workshop was uncovered in Field 4, located along the western flank of the upper mound (Fig. 2). The workshop can be divided into three rooms. A southern room consisted of a semi-circular installation with a mudbrick platform built on top of a layer of sherds, bones and cobble-sized stones. The installation measured 2.3 × 1.2 m, and was covered by a layer of ash. In the northern room, five ash deposits, each about 50 cm in diameter, formed an ‘L-shaped’ pattern in the southwest corner of the room. The deposits were spaced approximately 75 cm from the center of each deposit; a trail of ash was also detected in the northeast corner of the room. A concentration of slag cakes was found deposited in a semi-circle in the southwest corner of the third room. Significant amounts of slag, copper and iron fragments, and tuyère and crucible fragments were recovered from each of the rooms. The workshop was dated to the Iron IA period based on the associated pottery, most notably the presence of LH IIIC.

69 For a more thorough description of this material, see Harrison 2009b, p. 179; 2009c, p. 179.
70 This section summarizes the ongoing analysis of the Early Iron Age metal workshop by J. Roames.
Metallurgy

Ten iron and twelve copper artifacts of identifiable form were found in the metal workshop, including weaponry (projectile points and armor scales), tools (needles and a nail), and jewelry (pins, a ring and a fibula). In addition to the identifiable metal artifacts, numerous scraps of iron and copper fragments were recovered. Preliminary X-Ray Fluorescence (XRF) analysis on two of these copper fragments indicates that the copper was alloyed with high amounts of tin.71

XRF analysis of the slag further indicates that both bronze and iron were being worked in the same rooms. Four of the slag samples analyzed were determined to come from bronze-working, and two were determined to come from iron-working. Hearth bottom slag cakes associated with iron smithing were among the quantities of slag recovered. Two sizes of iron slag cakes were identified: (1) concavo-convex shapes, approximately 6 cm in diameter and 1 cm in thickness, and (2) plano-convex shapes, with diameters over 10 cm and thicknesses of 3 cm. Future work will try to determine whether these discrete types of iron slag cakes represent different iron-working processes, such as forging and secondary smithing. Additionally, flake hammerscale from iron smithing was recovered from the northern room. Consequently, a 20 × 20 cm fine grid was set up in this room, and each find grid sampled. Magnets were then used to recover the hammer scale flakes from each of the collected soil samples.

The slag analysis indicates that iron smithing, copper smelting and copper alloying all occurred in the workshop, and that both iron and bronze were worked in all three rooms. While there was some separation of certain features within these rooms, there was no clear separation between the iron-working and bronze-working remains.

Additionally, approximately 100 tuyère fragments were recovered from the metal workshop, some of which were part of the same tuyère. The tuyères grouped into round and square types, based on their cross-sections. Their bore holes are generally 0.6 to 1.0 cm, unless the back-end is preserved, in which case the inner diameter starts at about 2 cm and then tapers down. Outer diameters or widths are mostly in the range of 2.5 to 5 cm, but can reach as much as 8 cm. Although the tuyères recovered from the metal workshops discovered at the southern Levantine sites of Tell Beth-Shemesh and Tell Hammeh were square,72 round tuyères have been found alongside square tuyères in the workshop at Tell es-Safi.73 The longest preserved Tayinat tuyère, at approximately 15 cm, was elbow-shaped. In addition to tuyère fragments, the refractory materials included both crucible and furnace fragments. It was often difficult to distinguish between these fragments, but the preservation of

71 See Roames 2011.
72 Veldhuijzen 2009.
complete rims with slag adhering to their rim interiors was interpreted as indication they were crucible remains.

The analysis completed to date on the remains recovered from the Early Iron Age metal workshop at Tayinat permits a number of important observations. In particular, the analytical results point to the existence of a non-specialized metal workshop involved in the production of both iron and copper goods of a variety of types. Iron smithing occurred alongside the melting and mixing of copper and tin. A wide variety of activities were carried out in this small workshop, with no discrete areas devoted to any particular specialized activity. Thus, it appears, at least in the Tayinat workshop, that early iron-workers were also bronze-workers, and that craft specialization had not yet fully separated these two activities in the Early Iron Age, or more specifically the Iron IA (or 12th century BCE). Furthermore, the variety of goods produced indicates that these metalworkers were producing utilitarian and prestige goods made from both metals.

EARLY IRON AGE TAYINAT AND THE ‘LAND OF PALISTIN/WALISTIN’

Though the specific historical circumstances continue to remain elusive, the accumulating archaeological and epigraphic evidence point ever more confidently to the existence of a powerful — even if ephemeral — Early Iron Age kingdom, with its royal city centered in the North Orontes Valley at Tell Tayinat. Ruled by a line of kings with traditional Hittite names, and very possibly with direct ancestral links to the Hittite royal dynasty, this Early Iron Age polity intriguingly also preserves an identity, or name, the ‘Land of Palistin/Walistin,’ with possible roots in the migratory movements that marked the end of the Bronze Age so famously portrayed on the walls of the mortuary temple of Ramesses III at Medinet Habu. This heterogeneity is mirrored in the material cultural diversity exhibited in the archaeological record of Early Iron Age Tayinat which, as we have seen, portrays an intriguing amalgam of Aegean, Anatolian (or Luwian) and Bronze Age West Syrian cultural traditions.

The emergence of Palistin/Walistin as a regional power also appears to have coincided with a decisive settlement shift in the North Orontes Valley. While the existing survey data indicate significant levels of settlement continuity during the transition from the Late Bronze to the Early Iron Age, there is also evidence of change, attested perhaps most revealingly in the shift of the primary settlement in the valley from Tell Atchana (ancient Alalakh) to nearby Tayinat. Whether the terminal Late Bronze Age

74 For more on these settlement trends, see Harrison 2009b, pp. 175–176.
75 Yener has now raised the provocative possibility that Atchana and Tayinat were in fact part of a single, two-mounded mega site, with a mobile central administration, during this period; see this issue.
settlement at Alalakh was destroyed or abandoned remains unclear, but the renewed excavations at Tayinat have now demonstrated conclusively that it was resettled in the Early Iron I (either early 12th century, or possibly the late 13th century BCE), after an eight-century hiatus corresponding to the period of Alalakh’s ascendancy. Moreover, the Taita reliefs in the Storm-God temple in Aleppo suggest that Palistin/Walistin had eclipsed Aleppo as the dominant regional power by the eleventh century, shifting the locus of power west to the North Orontes Valley. By the ninth century, Tayinat had emerged as the royal city of Kunuluwa, capital of the Neo-Hittite Kingdom of Patina (or alternatively Unqi), though its political fortunes had waned. Caught in the geopolitical contest between the greatpowers of the Iron Age, it would eventually lose its independence altogether to the Assyrians in the latter part of the eighth century.

ACKNOWLEDGEMENTS

The Tayinat Archaeological Project has received research grants and financial support from the Social Sciences and Humanities Research Council of Canada, the Institute for Aegean Prehistory (INSTAP), and the University of Toronto, for which we are deeply grateful. I wish also to thank the Directorate of Cultural Heritage and Museums of Turkey, which has graciously awarded the research permits necessary to conduct each of our excavation seasons, the landowners who have generously permitted us to work on their land, and our project staff, whose dedicated efforts have ensured the successful results of each field season.

BIBLIOGRAPHY

ALLEN, S. H.

BATIUK, S., HARRISON, T. P. and PAVLISH, L.

BECKS, R.

BLEGEN, C. W., BOULTER, C. G., CASKEY, J. L. and RAWSON, M.
Braidwood, R. J. and Braidwood, L. S.

Capet, E.

Cecchini, S. M.

Dinçol, A.
2010 “Two New Inscribed Storm-God Stelae from Arsuz (Iskenderun) and the Base from Demirköprü (Jıır-el Hadid IV).” Paper presented at the symposium on *Across the Border: Late Bronze-Iron Age Relations Between Syria and Anatolia*, Koç University, May 31–June 1, 2010.

Dothan, T. and Zuckermand, A.

Du Pheid, L.

Gelb, I. J.

Genz, H.

GOLDMAN, H.

GONNELLA, J., KHAYYATA, W., and KOHLMEYER, K.

HAIDER, P. W.

HAINES, R. C.

HANFMANN, G. M. A.

HANSEN, C., and POSTGATE, N.

HARRISON, T. P.

HARRISON, T. P., et al.
Forthcoming “Shifting Networks and Community Identity at Tell Tayinat in the Iron IA (ca. 12th–mid 11th Cent. BCE).”

HAWKINS, J. D.

JANEWAY, B.
Kahn, D.

Kohlmeyer, K.

Korb, G.

Lipovitch, D.

Müller, U.

Rahmstorf, L.

Roames, J.

Schoop, U.-D.

Sevin, V. and Körüglu, K.

Stager, L.

Steitler, C.

Sürenhagen, D.
Fig. 1 Contour map of Tell Tayinat showing the Syrian-Hittite Expedition excavation areas that produced traces of Early Iron Age (Phase N) settlement (adapted from Haines 1971: pl. 93).
Fig. 2 Contour map of Tell Tayinat showing the principal TAP excavation areas (created by S. Batiuk).
Fig. 3 Composite plan of the Early Iron Age architecture in Field 1 (created by S. Batiuk).
Tell Ta‘yinat bowls (Phases 6-3)

Fig. 4 Late Helladic IIIC pottery from Field 1 (drawn by B. Janeway).
Fig. 5 Local Wares from Field 1
(drawn by E. Ünlü).
Tell Tayinat 2007: Field II
Late Iron I/ Early Iron II (Building XIV)

Fig. 6 Plan of Field II architecture in Field 2
(created by S. Batiuk).
Fig. 7 Plan of Building XIV remains (created by S. Batiuk).