Lecture 4: Yeast as a model organism for
functional and evolutionary genomics

Part Il




A brief review

What have we discussed:

Yeast genome in a glance \
Gene expression can tell us about yeast functions
Transcriptional regulation.

— How to find transcription factor binding sites ?

— TF sites turnover, evolution of the gene regulatory network j

Next:

Proteomics: Protein-protein interaction and network
— Experiments and analysis
— Biological network analysis — a primer

Genetic interactions: SGA technology

Gene and genome duplication in yeast



What is Proteomics

Proteomics (1997): large-scale study of proteins in a high-
throughput manner.

Protein-protein interactions, protein complexes,

— Yeast Two-hybrid, and mass spectrometry
Post-translational modifications, e.g. phosphorylation
— Mass spec, protein binding array

Protein abundance and half-life

— GFP (green florescence protein), microscopy or flow
cytometry

Protein sub-cellular localization
— GFP and high content microscopy



Protein-Protein interactions and
Protein complexes

The majority of the proteins in the cell form a complex or have
stable interactions with another protein or with themselves, very
few proteins work alone in the cell.

Permanent protein complexes:

— homo-dimer, hetero-dimer, trimer, tetramer, multi-subunit
complex

— Gene expression are highly correlated

Transient protein-protein interactions:
— For example: kinase / phophatase and substrates
— No correlation in gene expression.
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Examples of stable protein complexes



Two complementary experimental approaches

/Yeast Two-Hybrid (Y2H):\ / TAP-MS (Tandem Affinith

Purification followed by Mass
spectrometry): Use one
protein as “bait” and identify
the entire protein complex

detect pair-wise interactions,
use one protein as “bait” and
detect one “prey” at a time.




How does Yeast 2-Hybrid work ?

RNA Polymerase

Gal4
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UAS . Reporter gene ( LacZ)

* Expression of the reporter gene (LacZ) depends on the binding of
Gal4 transcription factor to the promoter.

* Gal4 consists of a DNA Binding Domain (BD) and an Activation
Domain (AD).

* The BD binds to promoter, and AD binds to RNA polymerase, both
domains are required to trigger gene expression.



How does Yeast 2-Hybrid work ?

 no expression
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* Expression of the reporter gene (LacZ) depends on the binding of
Gal4 transcription factor to the promoter.

* Gal4 consists of a DNA Binding Domain (BD) and an Activation
Domain (AD).

* The BD binds to promoter, and AD binds to RNA polymerase, both
domains are required to trigger gene expression.
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Only Bait and DNA
Binding Domain, no
reporter expression

Only Prey and
Activation domain, no
reporter expression

Interaction between
Bait and Prey triggers
reporter expression



The next generation Y2H

478 | VOL.8 NO.6 | JUNE 2011 | NATURE METHODS

Next-generation
sequencing to generate
interactome datasets

Haiyuan Yu!-3, Leah Tardivo2%, Stanley Tam%5,
Evan Weiner!->>, Fana Gebreab!:2, Changyu Fan!-2,
Nenad Svrzikapa'-?, Tomoko Hirozane-Kishikawal-2,
Edward Rietman'?, Xinping Yang'?, Julie Sahalie'2,
Kourosh Salehi-Ashtianil>>, Tong Hao!*?,

Michael E Cusick!2, David E Hill»2, Frederick P Roth!*>,
Pascal Braun!? & Marc Vidall-2

Use next generation sequencing and barcoding to
measure gene expression level in parallel



TAP-MS: Tandem Affinity Purification followed
by Mass Spectrometry

« Tandem Affinity: adding two “tags” to the “bait”
protein to improve purification.

Calmodulin Binding Peptide

Target Protein :-

TEV Protease Cleavage site Protein A

http://www.cellmigration.org



TAP-MS: Tandem Affinity Purification
followed by Mass Spectrometry

Contaminants Calmodulin Binding Peptide

|

Associated TEV Protease Cleavage site
Proteins

Protein A

1st Affinity Column
TEV Protease

Cleavage
?’rga Protein Calmec;dulln

2"‘*l Affinity Column
Native Elution

(EGTA) C i P!
Target Protein

http://www.cellmigration.org



TAP-MS: Tandem Affinity Purification followed by
Mass Spectrometry

“pull down” by
the “tag”

®

TAP-tagged “Bait” protein

v

Mass

spectrometry l

Protein network
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Protein complexes




Comparing Y2H and TAP-MS

They are two complementary and orthogonal methods

Y2H is best for detecting pair-wise direct interactions,
while TAP-MS is best for detecting the entire complex

TAP-MS can not detect transient interaction.

Y2H can not detect indirect interactions

TAP-MS can be adapted to identify RNA components of
the complex.



different network topologies

Binary Y2H

Binary
(Y2H-union)

AP-MS Literature curation
Co-complex Literature
(Combined-AP/MS) (LC-multiple)

i

Yu, ... Vidal Science d2008




Integrating Y2H and TAP-MS

« Sophisticated “machine learning” algorithms have been
developed to integrate these two types of data, and other
biological information (such as gene expression correlation) to
reduce false positive rate, and to predict new interactions.

Science 17 October 2003: < Prev | Table of Contents | Nex
Vol. 302 no. 5644 pp. 449-453
DOI: 10.1126/science.1087361

REPORT

A Bayesian Networks Approach for Predicting Protein-Protein
Interactions from Genomic Data

Ronald Jansenir, Haiyuan Yul, Dov Greenbaum?l, Yuval Klugerl, Nevan J. Krogani, Sambath Chungl';,

Andrew Emilii, Michael Snyderg, Jack F. Greenblatt? and Mark Gersteinl:3:i




Two landmark MS papers

Article

Nature 440, 637-643 (30 March 2006) | doi:10.1038/nature04670; Recelved 20 December 2005; ;
Accepted 23 February 2006

Global landscape of protein complexes in the yeast
Saccharomyces cerevisiae

Nevan J. Krogani212.11 Gerard Cagneyl3:12, Haiyuan Yu?, Gouging Zhong?,

Article

Nature 440, 631-636 (30 March 2006) | doi:10.1038/nature04532; Received 17 October 2005; ;
Accepted 15 December 2005

Proteome survey reveals modularity of the yeast cell
machinery

Anne-Claude Gavinlfﬁé, Patrick Aloygfﬁ, Paola Grandil, Roland Krauselé,

=



These two experiments reported very few
common interactions

MIPS (7,020)

NV

Gavin et al (18,137) Krogan et al (14,317)



These two experiments reported very few
common interactions

Possible reasons:

1. These two studies used different bait proteins.

2. Used different statistical threshold in “calling an
interaction”

3. It s likely that these studies only surveyed a small
portion of the entire “interactome”

220 154

Gavin et al (18,137) Krogan et al (14,317)



Database for protein-protein interactions

+  DIP:http://dip.doe-mbi.ucla.edu/ || D
« MINT: http://mint.bio.uniroma2.it/ # movr || SHPact
* BIND: http://bind.ca/

+ HPROD: http://www.hprd.org/ e

» IntAct: http://www.ebi.ac.uk/intact
* BioGrid: http://thebiogrid.org/

» Ophid:http://ophid.utoronto.ca/ophidv2.201/

» iRefweb: http://wodaklab.org/iRefWeb/
» iMEx (international Molecular Exchange Consortium)
— http://www.imexconsortium.org/

However, these databases are not always consistent




BIND BioGRID

Inconsistency between
Interaction databases

| ] Shared PPIs

B . I Unique PPIs

0 50% 100%

Turinsky Nature Biotech 2011



Estimate the size of yeast interactome

« Assumptions: the inconsistency between different experiments is
mostly because each experiment only sampled a small portion of the
entire “interactome”. Therefore using the sampling theory we can

estimate the total number of interactions.

Experiment 1

N = true positive interactions
(the ‘interactome’)

m

False positives

no

Experiment 2

/

Hart, et al. Genome Biology 2006



Estimate the size of yeast interactome

Assumptions: the inconsistency between different experiments is
mostly because each experiment only sampled a small portion of the
entire “interactome”. Therefore using the sampling theory we can
estimate the total number of interactions.

In Yeast: N
Maximum possible interactions: 5800 X 5800 /2 = 16,820,000
Estimated interactions in budding yeast: 37,800 - 75,500

Current known interactions (BioGrid): 61,459

/
In Human * \

Maximum possible interactions: 22,000 X 22,000 /2 = 242 million
Estimated interactions in human: 154,000-369,000
Current known interactions (BioGrid): 10,290

* ignoring alternative splicing /

Hart, et al. Genome Biology 2006



| networks
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A brief tutorial on b

Binary
(Y2H-union)




Analysis of Protein interaction network

Topological analysis
— Degrees, hubs, modularity etc

Network dynamics
— Integrate network with gene expression data

Evolutionary analysis

— Conservation of protein sequence, interactions, complexes,
and modules.

Robustness, noise buffering, evolvability, etc ...



Biological networks

« Why use a network approach ?
— Because this is how cells work !

— Because molecules often interact with several other
molecules to fulfill their functions, e.g. enzyme-metabolites,
protein — proteins, protein — DNA, genetic interactions.

— We need to network approach to understand the cellular
pathways, signal transduction etc.

“The whole is greater than the sum of parts”.




Biological networks
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Biological networks

MEM22\ 6 F v
O,y Ol S c— gLl =

These are all real networks 1n which the
edges represent biological interactions
between bio-molecules. There are other
types of networks, in which the
connections represent “similarities” or
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Network approach is an efficient and
intuitive way to analyze and visualize
relationships and similarities among a large
number of subjects.
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Another example: a network of
drq_g side-effect similarities

Campillos, Kuhn, Gavin, Jensen, Bork Drug Target Identification Using Side-Effect Similarity Science 2008



Networks are everywhere

Internet
[Burch & Cheswick]

Electronic
Circuit

| Disease
" Spread
[Krebs]
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Example: The 7 bridges of Konigsberg
(747 iE) R% )
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Is it possible to walk with a route
that crosses each bridge exactly
once ?



Example: The 7 bridges of Konigsberg
(747 o] RR )

3
node
5 3
3
Lol FTTRg
Is it possible to walk with a route Solution: represent
that crosses each bridge exactly landmass as nodes, and

once ? bridges as edges



undirected vs directed graph
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Weighted vs unweighted graph

Providence, RI

unweighted

Honolulu

weighted




Shortest Path — unweighted graph

Providence, RI

unweighted




Shortest Path — unweighted graph

Providence, RI

Path Length
=4

Honolulu

Providence, RI

Path Length
=3

Honolulu




Shortest Path — weighted graph

Path Length
= 5584 km

Path Length
= 5147 km




Hubs and Betweenness

Hubs: the nodes in the network that have the most
number of connections (highest degree)

Betweenness: measures the importance of a node in
network communication

— For all the possible node pairs, we determine the shortest
path between them.

— Then for each node, we ask what fraction of these shortest
paths pass through this node.



Hubs and Betweenness: who are more

important ?

Nodes of high
betweenness

.\le o
I

4!
5.0

Zhang et al Bioinformatics 2009



hubs in PPl network are important

* Quiz: how to test whether a yeast gene is important ?

« Hint: we discussed this in the beginning of lecture 3.



Hub proteins are more likely to be essential

Nature 411, 41-42 (3 May 2001) | doi:10.1038/35075138

Lethality and centrality in protein networks

H. Jeongl, S. P. Mason?, A.-L. Barabasil & Z. N. Oltvai? ;
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0.7% of the yeast proteins have > 15 links, 62% of them are
essential.




But be careful of ribosome !

20

Such global topological analysis can be dominated by heavy
hitters such as ribosome or polymerase.




“Party hub” and “Date hub”

« Party Hubs: which interact with most of their partners
at the same time.

« Date Hubs: which bind their different partners at
different times or different locations



“Party hub” and “Date hub”

Nature 430, 88-93 (1 July 2004) | dol:10.1038/nature02555; Recelved 16 December 2003; Accepted 6
April 2004; Published online 9 June 2004

Evidence for dynamically organized modularity in the
yeast protein—-protein interaction network

Jing-Dong J. Hani, Nicolas Bertin, Tong Haol, Debra S. GoldbergZ, Gabriel F.
Berrizg, Lan V. Zhangz, Denis Dupuyl, Albertha J. M. Walhoutlé, Michael E.
Cusickl, Frederick P. RothZ & Marc Vidall

These authors mapped the yeast gene expression data sets
(cell cycle, environmental perturbation) to the interaction
network, and observed two peaks.



“Party hub” and “Date hub”

O = N W & On

Probability density

Compendium Stress response
n=315 5 | n=174
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1.0 -0.5 0 0.5 10 1.0 -05 0 0.5 1.0
Pheromone treatment Unfolded protein response
n=45 K. n=10

<«

Han, et al Vidal Nature 2004



“Party hub” and “Date hub”

“ ...support a model of organized modularity in which date
hubs organize the proteome, connecting biological processes—
or modules —to each other, whereas party hubs function inside
modules.”

\‘___, / Party hub;

Date hub; same time
different time and space
and/or space _

same time
and space Han, et|al Vidal Nature 2004




Distinct structure properties of
Party Hub and Date Hub

* Hypothesis: if the Party Hubs interact many partners
simultaneously, and Date Hubs interact many partners at
different time, then the Party Hubs should have more structure

interfaces

B1

B2

’ \
. \
/
b = /
\ ) I
\_’
-
- ~

7 B3 | B3

Relating Three-Dimensional Structures to Protein Networks Provides
Evolutionary Insights

Philip M. Kim%, Long J. Lul, Yu Xia®2 and Mark B. Gersteinl2:3:




Global properties of protein-protein
interaction network

Many large networks such as protein interaction network, internet
have the following properties:

« Scale-free network, i.e. Power-law degree distribution:

— Small number of nodes have may connections while majority
of nodes have few connections

 Small World property:

— A small average node-to-node path, i.e. most nodes can be
reached from every other node by a small number of steps

e Robustnhess:

— Resilient and have strong resistance to failure on random
attacks but vulnerable to targeted attacks



Scale-free network: power-law degree distribution
-

« Small number of nodes are highly connected (hubs), while =
majority of nodes have few connections.

« For example, ribosome, chaperones, Google, Yahoo

Random
network

Scale-free

k 1 10 100 1,000
k



Scale-free network: power-law degree distribution

« Small number of nodes are highly connected (hubs), while
majority of nodes have few connections.

« For example, ribosome, chaperones, Google, Yahoo

« Other examples of power-law distribution: personal wealth
distribution in a society, size of companies in a free market

k 1 10 100 1,000
k



Scale-free network: power-law degree distribution

« Small number of nodes are highly connected (hubs), while
majority of nodes have few connections.

« For example, ribosome, chaperones, Google, Baidu.

« Other examples of power-law distribution: personal wealth
distribution in a society, size of companies in a free market

/Mechanism: \

* In a society: “rich getting richer”

* In protein interaction network: “preferential attachment”,
l.e. hub proteins are likely to gain more interacting
S partners (by duplication of hub or nodes.) )




Small World Network

Small world network: most nodes are not neighbors of one
another, but most nodes can be reached from every other by a
small number of steps (edges).

Small world network tend to contain cliques, i.e. a protein
complex, a group of densely connected nodes.




Example of Small World Network

« Six degrees of separation: everyone is on average
approximately six steps away from any other person on Earth

— Result of the evolution of human society and
communications technology. This is probably not true 2000
years ago.



Example of Small World Network

« Six degrees of separation: everyone is on average
approximately six steps away from any other person on Earth

— Result of the evolution of human society and
communications technology. This is probably not true 2000
years ago.

« Six Degrees of Kevin Bacon: any actor can be linked to Kevin
Bacon in 6 steps (movies).

Jackie Chan (I) has a Jackie Chan (I) \
Bacon number of 2. -
(Find a different link ) Around the World in 80 Days (2004) |
with
Luke Wilson (1) |
was in
My Dog Skip (2000) |

with

Kevin Bacon ’




Protein interaction network is robust

Robust: immune to gene mutations and deletions.

Scale-free network: the network has a few hubs and many
sparsely connected nodes

Small World: most of the nodes communicate to each other
through the hubs.

Therefore, a random mutation (attack) will most likely hit on a
non-hub protein, and will not interfere with the communications
between mosr of the nodes on the network.

However, a clever invader such as a virus can initiate targeted
attack on important nodes such as hubs, and disable the host
network. “




But a word of caution

Biological data is much more complex than other type of networks

— We only surveyed a very small % of yeast and human protein-
protein interaction network, and 60% of the yeast genetic
network

— The quality of the data is improving but still noisy

— The interactions could be biased by the experimental
methodology used.

Lack of dynamics or temporal data in biological network
— Yeast PPi and SGA are all done in lab rich media condition
— Almost all the human PPi are done in HeLa or HEK293 cells

A lot of the earlier analysis papers were published when only less
than 10% of the network is know.




The Temporal Dynamics of Protein Complex

* Question: How do protein interactions or protein complex
memberships change when the cells are under different
environmental conditions, or when they undergo cell cycle ?

« Rational: The Yeast 2-Hybrid and Mass Spec experiments were
all conducted in a single “non-physiological” condition in the lab.

« Approach: mapping the gene expression profiles onto these
observed interactions.



Dynamic Complex Formation During the
Yeast Cell Cycle

* De Lichtenberg et al Science 2005

« “... we integrated data on protein interactions and gene
expression... We discovered that most complexes consist of
both periodically and constitutively expressed subunits,
which suggests that the former control complex activity by a
mechanism of just-in-time assembly.”

« Translation: most of the protein complexes have a “core sub
complex” that never changes, and additional subunits are added

to the complex at different time point.

Condition 1 Core complex Condition 2



Evolutionary analysis of protein-protein
interaction network

* Do protein-protein interactions have any evolutionary constraints
on protein sequence evolution ? In other words, do hubs evolve

at the same rate as non-hubs ?

 How well are protein-protein interactions conserved in related
organisms ?



Evolutionary distance, d; s ¢
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Protein essentiality and evolution rate

“Our analysis reveals a highly significant relationship between
protein dispensability and evolutionary rate” “The relationship is
highly conserved, so that protein dispensability in yeast is also

predictive of evolutionary rate in a nematode worm.

S Y s . Aaron Hirsh, Hunter Fraser,
Protein dispensability and rate
of evolution Nature 2001

= A 0.11 A i A A 0t2 A A A = A 0f3.1 A A A 0.14 i
Fitness effect, f;



Evolutionary Rate in the Protein Interaction Network

« “connectivity of well-conserved proteins in the network is
negatively correlated with their rate of evolution.”
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Evolutionary Rate in the Protein Interaction Network

* “Proteins with more interactors evolve more slowly not because
they are more important to the organism, but because a greater
proportion of the protein is directly involved in its function.”

Fraser, Hirsh, et al Science 2002



but this is not the end of story ...

BMC Evol Biol. 2003 Jan 6;3:1. Epub 2003 Jan 6.

No simple dependence between protein evolution rate and the number of protein-protein
interactions: only the most prolific interactors tend to evolve slowly.

Jordan IK, Wolf Yl, Koonin EV.

BMC Evol Biol. 2003 Oct 2;3:21.

Apparent dependence of protein evolutionary rate on number of interactions is linked to
biases in protein-protein interactions data sets.

Bloom JD, Adami C.

BMC Evol Biol. 2004 May 27,4:13.

Evolutionary rate depends on number of protein-protein interactions independently of gene
expression level.

Fraser HB, Hirsh AE.

BMC Bioinformatics. 2006 Mar 13,7:128.
Protein protein interactions, evolutionary rate, abundance and age.

Saeed R, Deane CM.
Department of Statistics, Oxford OX1 3TG, UK. saeed@stats.ox.ac.uk
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Everything is correlated to each other

Protein
expression
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XiaY et al, Integrated Assessment of
interactors

Essentiakty Genomic Correlates of Protein Evolution,

PLOS Comp Biol 2009




Conservation of protein interactions

» Interologs: orthologous pairs of interacting proteins in different
organisms

Target Organism (e.g. Yeast)

Interacting Proteins .

A

Protein-Protein :
_ Interologs with _
Orthologs with ! foint identiy | Orthologs with '\l ] 4 X ] B

identity /4 | T NTTT I|dent|ty s
| I

Interacting Proteins

Source Organism (e.g. Worm)

Yu et al Genome Research 2004



Conservation of protein interactions

Interologs: orthologous pairs of interacting proteins in different
organisms,

Annotation Transfer Between Genomes:
Protein-Protein Interologs and
Protein-DNA Regulogs

Haiyuan Yu,' Nicholas M. Luscombe,’ Hao Xin Lu," Xiaowei Zhu,' Yu Xia,’

Jing-Dong |. Han,? Nicolas Bertin,? Sambath Chung,' Marc Vidal,? and
Mark Gerstein'-*

“We find that protein—protein interactions can be transferred

between organisms when a pair of proteins has a joint sequence
identity >80%”



Enough prediction, we need some
real data ...

“ we experimentally examine 87 potential interactions between
Kluyveromyces waltii proteins, whose one to one orthologs in
the related budding yeast Saccharomyces cerevisiae have been
reported to interact. “

Proc Natl Acad ScilU S A. 2011 May 24,;108(21):8725-30. Epub 2011 May S.

Measuring the evolutionary rate of protein-protein interaction.

Qian W, He X, Chan E, Xu H, Zhang J.
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, M| 48108S.

S. cerevisiae

WGD S. bayanus

K. waltii

K. lactis

A. gossypii




Fraction of

: Divergence
Organisms conserved time (MY) ) :
PPls « “. .. we estimate that the
evolutionary rate of protein
human ﬂ 1.00 I 0 interaction is (2.6 £ 1.6) x
mouse b 0.98 90 10-1% per PPI per year, which
is three orders of magnitude
lower than the rate of protein
sequence evolution
fish '%"o 0.89 == 430
* “The extremely slow
evolution of protein
molecular function may
0.79 900 account for the remarkable
0.77 I 1000 conservation of life at
molecular and cellular levels
and allow for studying the
0.71 1300 mechanistic basis of human
disease in much simpler
0.66 1600 organisms.”




End of Protein-Protein interactions

o coffee break




